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The Effect of Increment in Simulation Samples on a
Combined Selection Procedure

Mohammad H. Almomani, and Rosmanjawati Abdul Rahman

Abstract—Statistical selection procedures are used to select the
best simulated system from a finite set of alternatives. In this paper,
we present a procedure that can be used to select the best system
when the number of alternatives is large. The proposed procedure
consists a combination between Ranking and Selection, and Ordinal
Optimization procedures. In order to improve the performance of Or-
dinal Optimization, Optimal Computing Budget Allocation technique
is used to determine the best simulation lengths for all simulation
systems and to reduce the total computation time. We also argue
the effect of increment in simulation samples for the combined
procedure. The results of numerical illustration show clearly the effect
of increment in simulation samples on the proposed combination of
selection procedure.

Keywords—Indifference-Zone, Optimal Computing Budget Allo-
cation, Ordinal Optimization, Ranking and Selection, Subset Selec-
tion.

I. INTRODUCTION

WE consider optimizing the expected performance of a
complex stochastic system that cannot be evaluated

exactly, but has to be estimated using simulation. Our goal
is to solve the following optimization problem

min
θ∈Θ

J(θ) (1)

where Θ the feasible solution set and it is finite, huge and
has no structure. J is the expected performance measure,
L is a deterministic function depends on θ and ξ, so we
can write J(θ) = E[L(θ, ξ)], θ is a vector representing the
system design parameters, and ξ represents all the random
effect of the system. If we simulate the system to get estimate
of E[L(θ, ξ)], then the confidence interval of this estimate
cannot be improved faster than 1/

√
k where k is the number

of samples used to get estimates of J(θ). This rate maybe
good for a problems with small number of alternatives but
it is not good enough for the class of complex simulation
which we consider in this paper. Thus, one could compromise
the objective to get a good enough solution rather than doing
extensive simulation.

Ranking and Selection (R&S) procedures, are used to select
the best system or a subset that contains the best systems
when the number of alternatives is small, see Kim and Nelson
[1]. However, for a large scale problems, these procedure will
need a huge computational time. In this case, we would relax
our objective to finding good systems rather than estimating
accurately the performance value for these systems, and this
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is the idea of Ordinal Optimization (OO) procedure, that
proposed by Ho et al. [2].

In this paper, we study the effect of the increment in
simulation samples, Δ on the performance of the combined
selection procedure, that proposed by Almomani and Abdul
Rahman [3]. We consider a combined selection procedure
that used to selecting a good simulated system with high
probability when the number of alternative system is huge.
This procedure consists of four stages. In the first stage
we use the OO procedure to select randomly a subset that
overlaps with the set of the actual best m% systems with
high probability from the feasible solution set Θ. In the
second stage, we use Optimal Computing Budget Allocation
(OCBA) technique to allocate the available computing budget
in a way that maximizes the probability of correct selection.
This follows by a Subset Selection (SS) procedure to get a
smaller subset that contains the best system from the selected
subset. In the final stage, we use the Indifference-Zone (IZ)
procedure to select the best system among the survivors in
the previous stage. This combined procedure is applied on
M/M/1 queuing system with various values of increment in
simulation samples, Δ to study their effect on the performance
of the procedure.

Note that, the increment in simulation samples, Δ cannot
be too small, to avoid repetition in the increment step in the
OCBA algorithm such that will increase the simulation time.
On the other hand, if Δ is too large then this will imply a waste
in the computation time and will end up with unnecessary high
confidence level. Chen et al. [4] and Chen et al. [5] suggested
a good choice for the increment in simulation samples, Δ
should be between 5 and 10% of the simulated system.

This paper is organized as follows; In the next section, we
present a background of OO, OCBA, SS, and IZ procedures.
In Section 3, we present our combined selection procedure.
Section 4, includes the numerical illustration. Finally, in Sec-
tion 5, we give some concluding remarks.

II. BACKGROUND

A. Ordinal Optimization (OO)

The OO procedure has emerged as an efficient technique
for simulation and optimization. The aim of this procedure is
to find good systems, rather than estimating the performance
value of these systems accurately. This procedure has been
proposed by Ho et al. [2].

Suppose that the Correct Selection (CS) is to select a
subset G of g systems from the feasible solution set Θ that
contains at least one of the top m% best systems. Since we
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assume that Θ is very huge then the Probability of Correct
Selection P (CS) is given by P (CS) ≈ (1 − (1 − m

100 )g).
Now, suppose that the CS is to select a subset G of g systems
that contains at least r of the best s systems. Let S be the
subset that contains the actual best s systems, then the P (CS)
can be obtained using the hyper geometric distribution as,

P (CS) = P (|G ∩ S| ≥ r) =
∑g

i=r
(s

i)(n−s
g−i)

(n
g)

. However, since
we assume that the number of alternatives is very large then
the P (CS) can be approximated by the binomial random
variable. Therefore, P (CS) ≈ ∑g

i=r

(
g
i

)
( m
100 )i(1 − m

100 )g−i,
where s/n×100% = m%. It is clear that this P (CS) increases
when the sample size g increase.

B. Optimal Computing Budget Allocation (OCBA)

The OCBA was proposed to improve the performance
of OO by determining the optimal numbers of simulation
samples for each system, instead of equally simulating all
systems. The goal of this procedure is to allocate the total
simulation samples from all systems in a way that maximizes
the probability of selecting the best system within a given
computing budget. For more details of OCBA see Chen et
al. [4], Chen et al. [5], and Chen [6].

Let B be the total sample that available for solving the
optimization problem given in (1). Our goal is to allocate
these computing simulated samples to maximize the P (CS).
In mathematical notation

max
T1,...,Tn

P (CS)

s.t.
n∑

i=1

Ti = B

Ti ∈ N i = 1, 2, . . . , n

where N is the set of non-negative integers, Ti is the number
of samples allocated to system i and

∑n
i=1 Ti denotes the

total computational samples and assuming that the simulation
times for different systems are roughly the same. To solve this
problem Chen et al. [4] proposed the following theorem.

Theorem 1: Given a total number of simulated samples
B to be allocated to n competing systems whose per-
formance is depicted by random variables with means
J(θ1), J(θ2), . . . , J(θn), and finite variances σ2

1 , σ2
2 , . . . , σ2

n

respectively, as B −→ ∞, the approximate probability of CS
can be asymptotically maximized when

1) Ti

Tj
=

(
σi/δb,i

σj/δb,j

)2

; where i, j ∈ {1, 2, . . . , n} and i 	=
j 	= b.

2) Tb = σb

√∑n
i=1,i �=b

T 2
i

σ2
i

where δb,i the estimated difference between the performance
of the two systems (δb,i = Jb − Ji), and Jb ≤ mini Ji for all
i. Here Ji = 1

Ti

∑Ti

j=1 ξij , where ξij is a sample from ξi for
j = 1, . . . , Ti.

Proof: See Chen et al. [4].

C. Subset Selection (SS)

SS procedure screens out the search space and eliminate
non-competitive systems and construct a subset that contains
the best system with high probability. This procedure is
suitable when the number of alternatives is relatively large,
and it is used to select a random size subset that contains the
actual best system. It is required that P (CS) ≥ P ∗, where the
Correct Selection (CS) is selecting a subset that contains the
actual best system, and P ∗ is a predetermined probability.

The SS procedure dating back to Gupta [7], who presented
a single stage procedure for producing a subset containing
the best system with a specified probability. Extensions of
this work which is relevant to the simulation setting include
Sullivan and Wilson [8] who derived a two stage SS procedure
that determines a subset of maximum size m that, with a
specified probability will contain systems that are all within a
pre-specified amount of the optimum.

D. Indifference-Zone (IZ)

The goal of IZ procedure is selecting the best system
among n systems when the number of alternatives less than
or equal 20. Suppose we have n alternative systems that
are normally distributed with unknown means μ1, μ2, . . . , μn,
and suppose that these means are ordered as μ[1] ≤ μ[2] ≤
. . . ≤ μ[n]. We want to select the system that has the best
minimum mean μ[1]. The IZ is defined to be the interval
[μ[1], μ[1] + δ∗], where δ∗ is a predetermined small positive
real number. We are interested in selecting an alternative i∗

such that μi∗ ∈ [μ[1], μ[1] + δ∗]. Let CS here is selecting an
alternative whose mean belongs to the indifference zone. We
prefer the CS to take place with high probability, say with a
probability not smaller than P ∗ where 1/n ≤ P ∗ ≤ 1.

The IZ procedure consists of two stages. In the first stage,
all systems are sampled using t0 simulation runs to get an
initial estimate of the expected performance measure and their
variances. Next, depending on the information obtained in the
first stage, how many more samples are needed in the second
stage for each system in order to guarantee that P (CS) ≥ P ∗

is computed. Rinott [9] has presented a procedure that is
applicable when the data are normally distributed and all
systems are simulated independently of each others. This
procedure consists of two stages for the case when variances
are completely unknown. On the other hand, Tamhane and
Bechhofer [10] has presented a simple procedure that is valid
when variances may not be equal.

To achieve the CS with high probability, R&S procedures
need a huge computational time, so it is not practical when
n is large. Therefore the combined procedures were proposed
to reduce the competent system. Nelson et al. [11] proposed
a two-stage subset selection procedure. The first stage is to
reduce the number of competitive systems. These systems
are carried out to the second stage that involved with the
IZ procedure using the information gathered from the first
stage. Alrefaei and Almomani [12] proposed two sequential
algorithms for selecting a subset of k systems that is contained
in the set of the top s systems. Another comprehensive review
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of R&S procedures can be found in Bechhofer et al. [13],
Goldsman and Nelson [14], and Kim and Nelson [15].

III. THE COMBINED SELECTION PROCEDURE

Our combined procedure consists four procedures, OO,
OCBA, SS, and IZ. Initially, using OO procedure, a subset
G is randomly selected from a feasible solution set that
overlaps with the set that contains the actual best m% systems
with probability (1−α1). Then using the OCBA procedure to
allocate the available computing budget. This is follows with
SS procedure to get a smaller subset I that contains the best
system among the previous selected subset with probability
(1 − α2). Finally, we apply IZ procedure to select the best
system from set I with probability (1 − α3).

Algorithm:-
Setup: Specify the values of g and k, where |G| = g and

|G′ | = k. Also consider that the number of initial
simulation samples t0 ≥ 2, the indifference zone δ∗,
and t = t

(1−α2/2)
1

g−1 ,t0−1
from the t-distribution.

Let T l
1 = T l

2 = . . . = T l
g = t0, and determine

the total computing budget B. Note that, G is the
selected subset from Θ, that satisfies P (G contains
at least one of the best m% systems) ≥ 1−α1, and
G

′
is the selected subset from G, where g ≥ k. Also

note that, l represents the iteration number.
Select a subset G of size g randomly from Θ and for
each system i in G, where i = 1, . . . , g take a random
samples of t0 observations yij (j = 1, . . . , t0) .

Initialization: Calculate the sample mean ȳi
(1) and vari-

ances and s2
i , where ȳi

(1) =
∑T l

i
j=1

yij

T l
i

and s2
i =∑T l

i
j=1

(yij−ȳi
(1))2

T l
i
−1

, for all i = 1, . . . , g.
Order the systems in G according to their sample
averages; ȳ

(1)
[1] ≤ ȳ

(1)
[2] ≤ . . . ≤ ȳ

(1)
[g] . Then select the

best k systems from the set G, and represent this
subset as G

′
.

Stopping Rule: If
∑g

i=1 T l
i ≥ B, then stop. Otherwise,

Randomly select a subset G
′′

of the g−k alternatives
from Θ − G

′
, let (G = G

′ ⋃
G

′′
).

Simulation Budget Allocation: Increase the computing
budget by Δ and compute the new budget allocation,
T l+1

1 , T l+1
2 , . . . , T l+1

g , by using Theorem 1.
Perform additional max{0, T l+1

i − T l
i } simulations

for each system i, i = 1, . . . , g, let l ←− l + 1. Go
to Initialization.

Screening: Set I = {i : 1 ≤ i ≤ k and ȳ
(1)
i ≥ ȳ

(1)
j −

[Wij − δ∗]−,∀i 	= j}, where Wij = t
(

s2
i

Ti
+ s2

j

Tj

)1/2

for all i 	= j, and [x]− = x if x < 0 and [x]− = 0
otherwise.
If I contains a single index, then this system is the
best system. Otherwise, for all i ∈ I, compute the
second sample size Ni = max{Ti, 
(hsi

δ∗ )2�}, where
h = h(1 − α3/2, t0, |I|) be the Rinott [9] constant
and can be obtained from tables of Wilcox [16].

Take additional Ni − Ti random samples of yij for
each system i ∈ I , and compute the overall sample

means for i ∈ I as ȳ
(2)
i =

∑Ni

j=1
yij

Ni

Select system i ∈ I with the smallest ȳ
(2)
i as the

best.
Remarks:-
• Increment in simulation samples, Δ, is a positive integer

representing the additional number of simulation samples
that is used in the Simulation Budget Allocation step.
Note that, if Δ is too small, then we need to repeat this
step many times.

• Nelson et al. [11] have shown that with probability at
least 1 − (α2 + α3) our combined selection procedure
selects the best system in the subset G. Therefore, if
G contains at least one of the top m% systems, then
our procedure selects a good system with probability
1 − (α2 + α3). On the other hand, from the OO pro-
cedure we can show that the selected set G, contains
at least one of the best m% systems with probability
(1 − α1) = 1 − (

1 − m
100

)g . Therefore, P (the selected
system in the combined selection procedure is in the top
m% systems) ≥ (1 − (

1 − m
100

)g)(1 − (α2 + α3)) ≥
1 − ((

1 − m
100

)g + α2 + α3)
)
.

IV. NUMERICAL EXAMPLE

In our example, we consider the queuing systems when
the inter arrival times and the service times are exponentially
distributed and the system has one server. This queuing system
is known as M/M/1 queuing system. Our goal is selecting one
of the best m% systems that has the minimum average waiting
time per customer from n M/M/1 queuing systems.

As a measure of selection quality for our combined selec-
tion procedure, we use the Probability of Correct Selection
(P (CS)), and the Expected Opportunity Cost (E(OC)) of
a potentially incorrect selection, where the Opportunity Cost
(OC) is the difference of unknown mean between the selected
best system and the actual best system. More details of E(OC)
in He et al. [17], and Chick and Wu [18]. In this example we
take the E(OC) for our procedure as the absolute value of
the difference of unknown mean between the selected best
system and the actual best system. We estimate the P (CS)
for our combined selection procedure by counting the number
of times we successfully find the best system that belongs to
the actual m% best subset out of 100 independent replication.

To study the effect of the increment in simulation samples,
Δ, we consider five different values; Δ = 10, 20, 50, 80, 100.
We apply our procedure in two experiments of M/M/1 queu-
ing systems under some assumptions. In the first experiment,
we assume the arrival rate λ is fixed and the service rate
μ belong to the interval [a, b]. In particular, take λ = 1
and μ ∈ [4, 5]. Suppose we have 1000 of M/M/1 queuing
systems, and we discretize the problem by assuming that
Θ = {4.001, 4.002, . . . 5.000}. Therefore, the best queuing
system would be the 1000th queuing system with μ1000 = 5.0.
Let n = 1000, g = 50, α2 = α3 = 0.005, δ∗ = 0.05, k = 10,
B = 500 and t0 = 10. Suppose we want to select one of
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the best (5%) systems, then our target is the systems from
951 to 1000. The correct selection is defined as selecting
the system that belongs to {μ951, μ952, . . . , μ1000}. We can
calculate the analytical Probability of the Correct Selection as
P (CS) ≥ 1 −

((
1 − 5

100

)50 + 0.005 + 0.005)
)
≥ 0.91.

Table I contains the results of this experiment, with 100
replications for selecting one of the best (5%) systems. From
the table,

∑g
i=1 Ti and

∑
i∈I Ni for each are referring to the

average number of the total sample size in Stopping Rule and
Screening respectively in our algorithm, and E(OC) denotes
the average number of Expected Opportunity Cost.

In the second experiment, we applying the same parameters
from the first experiment above, but we change the initial
sample size t0 from 10 to 50, and we assume that the total
budget B = 2500. The results are shown in Table II for 100
replications.

From Table I and Table II, we note the changing in
∑g

i=1 Ti

as we change the value of increment in simulation samples,
Δ. Clearly the value of

∑g
i=1 Ti increases when Δ increase,

and this is expected since Ti are calculated in our algorithm
after we increase the computing budget by Δ. However, the
amount of the increase in

∑g
i=1 Ti is relatively small when

we increase the value of Δ. Furthermore, we can see that the
values of

∑g
i=1 Ti in Table I is less than the value of

∑g
i=1 Ti

in Table II. This is due to the changing of the initial sample
size t0 from 10 to 50. Also note that, the value of

∑
i∈I Ni

approximately the same in all cases of Δ in both experiments.
Moreover, from the Table I and Table II we can see that the

P (CS) for our combined selection procedure is very closed
to the analytical P (CS). The highest P (CS) occurs in Table
I when Δ = 50 with the P (CS) = 90% comparing with the
other values of Δ. Also, the highest value of P (CS) occurs
in Table II when Δ = 50 with the P (CS) = 85% comparing
with the other values of Δ.

We also notice that the E(OC) for our procedure in Table I
are high and are not so close with the analytical E(OC). The
reason for this is that with a small t0 will end up with a poor
estimate for the initial mean and variance. It means that we
get a bad estimator for the means for the actual best system
and the best systems that are choose by our procedure, but we
note here the E(OC) is not affected by Δ. Whereas in Table
II we note that the value of E(OC) for our procedure is very
small and closed to the analytical E(OC), which also indicate
that the E(OC) is not affected by Δ.

V. CONCLUSION

This paper discuss the effect of increment in simulation
samples, Δ on the performance of a combined selection
procedure that is used to selecting a good simulated system
when the number of alternatives is large. The procedure
consists four stages. Initially, using OO procedure, a subset G
is randomly selected form a feasible solution set that overlap
with the set that contains the actual best m% systems with
high probability. Then OCBA procedure is used to allocate
the available computing budget. This is follows with SS
procedure to get a smaller subset I with high probability, that
contains the best system among the previous selected subset,

where |I| ≤ 20. Finally, IZ procedure is applied to select
the best system from that set I . We apply this procedure
in two experiments of M/M/1 queuing system under some
parameters setting, with five different values for Δ, to study
the effect of Δ on our combined selection procedure. From
the numerical results we note that the increase in

∑g
i=1 Ti

with the increment simulation in samples, Δ. Also, we note
that, there is no effect from Δ on the

∑
i∈I Ni and P (CS).

Moreover, there is also no substantial effect from the Δ on the
E(OC). However, we should be careful when we choose the
value of increment in simulation samples, Δ, since we need
to increase the computing budget by Δ if Δ too small and
also, by choosing a large value of Δ will lead to a waste in
the computation time.
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TABLE I
THE NUMERICAL ILLUSTRATION FOR n = 1000, g = 50, m% = 5%, k = 10, t0 = 10, B = 500

Δ 10 20 50 80 100

∑g

i=1
Ti 1423 1879 3338 4815 5856

∑
i∈I

Ni 3732 3919 4266 4694 4686

Procedure P (CS) 79% 84% 90% 83% 88%

Analytical P (CS) 91% 91% 91% 91% 91%

Procedure E(OC) 0.014393922 0.012408734 0.013044338 0.013937230 0.015563045

Analytical E(OC) 0.009587749 0.004870680 0.006655096 0.008899322 0.008017380

TABLE II
THE NUMERICAL ILLUSTRATION FOR n = 1000, g = 50, m% = 5%, k = 10, t0 = 50, B = 2500

Δ 10 20 50 80 100

∑g

i=1
Ti 5188 5599 7050 8428 9380

∑
i∈I

Ni 2660 2552 2568 2776 2603

Procedure P (CS) 83% 76% 85% 73% 81%

Analytical P (CS) 91% 91% 91% 91% 91%

Procedure E(OC) 0.006947018 0.006561811 0.006334258 0.005562929 0.007340014

Analytical E(OC) 0.009958084 0.009390408 0.009271699 0.009432285 0.009389010


