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Abstract—We present a genetic algorithm application to the
problem of object registration (i.e., object detection, localization and 
recognition) in a class of medical images containing various types of 
blood cells. The genetic algorithm approach taken here is seen to be 
most appropriate for this type of image, due to the characteristics of
the objects. Successful cell registration results on real life microscope 
images of blood cells show the potential of the proposed approach.

Keywords— Genetic algorithms, object registration, pattern 
recognition, blood cell microscope images

I. INTRODUCTION

NE of the most frequently arising problems in the
processing of (still) images is that of object registration.

It arises in images containing objects, possibly overlapping,
against a more-or-less uniform background. Objects may
belong to one or more types or classes. Class identifying
differences typically refer to the object morphology or shape,
dimensions, color, opaqueness, surface texture and location /
direction characteristics, [1], [5]. The aims of digital
processing of an object image are numerous: Object detection,
localization, recognition and classification constitute major
goals. Furthermore, more detailed object characterization in
terms of size, color, direction, scaling, shift or rotation might
be of interest for specific applications. Finally, search of an 
image for the existence or not of a specific object prototype 
(under a given degree of flexibility as to the similarity level 
required in the match) is often of importance, [1].

Common in all the problems mentioned above is the
processing of the images digitally, through an appropriate
software package, either general-purpose or custom developed
for the application at hand. Digital image processing is a
mature field that offers to the researcher a variety of 
approaches. Given a field application, however, choice of the
most suitable method or approach has not yet been fully
automated.

In the present paper we present an application of the genetic
algorithms approach to the problem of localization of objects
in medical images of blood cells, taken via a microscope. The 
problem arises invariably in all blood or serum analysis
medical contexts, and as such it has early received an intense 
research interest. Although there certainly exist automated

solutions, the issue of quality along with the critical nature of 
the results, often necessitate manual / visual treatment by the
human expert on a microscope.
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We propose the genetic algorithms approach here, because,
as it will become clear through the results obtained, it was 
seen to be well suited to the morphology of the objects in the
images treated.

A genetic algorithm is a non-linear optimization method
that seeks the optimal solution of a problem via a non-
exhaustive search among randomly generated solutions.
Randomness is controlled through a set of parameters, thus
turning genetic algorithms into exceptionally flexible and
robust alternatives to conventional optimization methods.
Genetic algorithms suffer a few disadvantages: they are not
suitable for real time applications and take long to converge to
the optimal solution. Convergence time cannot be predicted
either. Nevertheless, they have become a strong optimization
tool, while current research focuses on their combination with
fuzzy logic and neural network techniques, [2].

Genetic algorithms imitate natural evolutionary procedures 
for the production of successive generations of a population. 
In a technical context, each generation is a candidate solution 
for evaluation. An evaluation function is necessary to “guide”
the evolution process towards improved generations
(solutions), [3], [4]. If we assume that the solution to a given
problem can be expressed as a set of vectors (e.g., a set of
points on the 2-D plane), then this set of vectors is called a
“generation” and each vector is called a “chromosome,” while
the vector elements are called “genes”. Of course they may
represent practically any physical quantity. The set of all 
possible generations forms a “population”. The first
generation is generated randomly. Each “parent” generation is
evaluated through an evaluation function that yields a “grade.”
The next generation is created so as to get a higher grade, i.e.
to represent a better solution.

In its simplest form, a genetic algorithm consists of three
(3) mechanisms: (i) parent selection, (ii) genetic operation for 
the production of descendants (offspring), and (iii)
replacement of parents by their descendants, [2]. Parent

selection process follows one of the selection processes of 
roulette, classification, constant situation, proportional forms
or elitist choice. The genetic operations of (i) crossover and 
(ii) mutation combine parents to produce offspring of
improved characteristics (getting higher grade by the
evaluation function). Parent replacement strategies include (i)
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generational replacement and (ii) steady state reproduction.

II. THE PROPOSED METHOD

A. Problem description

Blood cell microscope images, such as the sample shown in
Fig. (1), show cells of two different classes (possibly
overlapping) against a uniform background. Class A is
represented by bigger and usually more deformed cells
whereas class B is represented by cells looking generally more
normal and more uniform in shape and size. Cell color or 
grayscale can also be exploited; yet it is unreliable by itself,
due to the various cell coloring techniques usually applied on
the sample before it is placed in the microscope. In the present 
context, we will not go into the medical interpretation of the
image, i.e. the diagnosis of certain pathologies connected to
the presence or count or percentage of class A or class B cells,
as this does not affect the technical problem addressed – 
although it renders the obtained results critical.

Fig. 1: Sample blood cell microscope image showing two
classes of cells in a uniform background. 

Referring to Fig.1, we aim to address the following problems
in ascending order of importance:

1) Detection of class A cells,
2) Percentage of the class A cells surface in the image,

and
3) Registration of class A cells (coordinates and size).

Although this could be treated as an image segmentation
problem, [1], we claim that the genetic algorithms approach 
taken here is far more efficient in terms of processing time,
while it yields high correct recognition scores.

B. Image preprocessing

The histogram of the grayscale scale image is employed in
order to obtain a grayscale threshold value Th, below which 
fall class A cells only. The sample histogram, shown in Fig.
(2a), exhibits three major areas of grayscales, corresponding –
from darker to lighter scale – to: (i) class A cell pixels, (ii)
class B cell pixels and (iii) background pixels. Threshold 
value Th is set to the local minimum of the histogram curve, 
lying between the first two peaks mentioned above. The image
is thresholded by Th, thus producing a binary (black and 

white) image, as in Fig. (2b).

Fig. 2: (a) Histogram of the grayscale image in Fig.(1),
(b) Binary version of Fig. (1) with threshold Th=110.

The first two problems (detection of class A cells and 
calculation of their % area in the image) are straightforward if 
we use the binary image. We next focus on the third problem,
for which we employ a genetic algorithm method.

C. The proposed genetic algorithm approach

The genetic algorithm is repeatedly applied to the image as
many times as the number of class A objects (bigger than a
threshold area of TB pixels) it contains. Of course, an 
appropriate stopping rule is necessary, because the number of 
class A objects is originally unknown.

Within each of the above repetitions, the genetic algorithm
generates a succession of T generations, each consisting of N
chromosomes. Each chromosome contains three (3) genes,
namely, the 2-D plane coordinates of the center of an object
(circle) and the radius of it. The first generation is generated
randomly, whereas every next one is based on the following
choices:

(i) Chromosomes are binary encoded, with 9, 10 and 4 bits
for the 1st, 2nd and 3rd gene, respectively.

(ii) Parent pairs are selected by the roulette rule.
(iii) The genetic operations include 3-point crossover for

the 1st and 2nd gene and 1-point crossover for the 3rd

gene, with crossover probability Pc and arithmetic (bit)
mutation, uniform across genes, with mutation
probability Pm.

(iv) Generalized replacement is employed, combined with 
an elite strategy using a number of Pe elite 
chromosomes directly copied to the next generation.

(v) No schema theory is employed.
Once a new generation is produced, its N binary

chromosomes are decoded and evaluated by the fitness
function. This function assigns a numerical “grade” to each
chromosome, which is used for the parent selection and 
genetic operations of the next generation. When the T-th
generation is reached, iteration stops and the chromosome of 
the T-th generation with the highest grade is considered as a
solution (localized circular object).

As mentioned earlier, a stopping rule is necessary:
Repetition stops when the area of the image designated by
such a solution is found to contain less than 40% of class A 
pixels – meaning that essentially there remain no more
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significant class A objects.
Critical for the success of the genetic algorithm is the

choice of the evaluation (fitness) function, [3]. Indeed this is
the only means of communication between the genetic
evolutionary process and its environment (i.e., the problem it
seeks to solve). When chromosomes of the current generation
are graded by the fitness function, the genetic algorithm gains
feedback from the environment so as to adjust its evolution
towards an improved next generation, [4]. For the problem at
hand, we have employed the straight-forward option of a 
fitness function which counts the class A pixels contained in
the area of the original image designated by the (center,
radius) pair of a given chromosome. In that sense, 
chromosomes (circular objects) highly overlapping with class
A objects in the image get a higher grade.

III. EXPERIMENTAL PART

In Section II it became clear that the both the efficiency and
the success of the method depend critically on a number of 
parameters, like Th, TB, T, N, Pm, Pc, Pe, etc. These should
be adjusted using prior information about the specific family
of images, for optimal performance. In this Section we 
investigate the effect of these parameters on the overall 
method performance.

A sample blood cell image with superimposed results is
shown in Fig. (3). Circular objects localized by the genetic
algorithm are marked with a white circle. This is a particularly
successful experiment, as 20 out of 20 (100%) class A objects
are localized. Major parameter choices are N=50

chromosomes, T=50 generations, Pc = 80%, Pm = 8% and 
number of elite chromosomes Pe = 5.

Fig. (3): Original image with superimposed genetic
algorithm results marked with a white circle. 20 out of 20

(100%) of class A objects are localized correctly.

However, not all parameter choices yield analogous results.
We have therefore varied the set of parameters according to 
Table I, and examined results for a set of 16 images of the 
same family.
In order to reduce the number of all possible parameter
combinations, we have used the set of parameters mentioned

for the Fig. (3) experiment, namely, [N=50 chromosomes,
T=50 generations, Pc = 80%, Pm = 8% and number of elite 
chromosomes Pe = 5], as the default, and varied one 
parameter only at a time, while the others retained their
default values.

TABLE I
GENETIC ALGORITHM PARAMETERS VARIATION

Nr. Parameter Range

1 T [10, 50, 90]
2 N [10, 50, 70]
3 Pc [10%, 50%, 80%]
4 Pm [4%, 8%, 50%]
5 Pe [1, 5, 20]

Due to the random initialization of the genetic algorithm
(random gene values in the first generation of chromosomes),
convergence of the algorithm to the same local minimum in
successive iterations is not guaranteed. Therefore each
experimental setup is run four (4) times, and results are 
averaged.

Out of the set of all experiments performed, we present here 
results obtained on the sample image of Fig. (1), for:
(i) a highly successful parameter choice of N=70, localizing

17 out of the 18 objects included (results in Fig. (4)),
(ii) a least favorable parameter choice of N=10, localizing 8 

out of the 18 objects included (results in Fig. (5)). 

Fig. 4: Successful localization of 17/18 objects [N=70].

Fig. 5: Unsuccessful localization of 8/18 objects [N=10].
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Comparison of Figs. (4) and (5) shows the critical role of
the number of chromosomes N: Solution improves as N

increases, but processing load and time increase rapidly with 
N, as well! 

The results obtained in the performed set of experiments
show that solution improves as:
1) T increases; yet a this picture is reversed if T increases 

incommensurately with the N.
2) N increases, which is an expected result. Moreover, for 

high values of N convergence to the same optimal
solution is achieved for all iterations.

3) Pc increases, as far as it does not exceed 80%
approximately, and as far as a few elite chromosomes are
copied directly to the next generation.

4) Pm remains close to a medium value of around 10%. A 
lower Pm does not allow “luck” to play some role in the
procedure, whereas a higher Pm randomizes considerably
the procedure.

5) Pe remains around a medium value of around 5 (in a 
population of about 50), as lower values eliminate
promising candidates, whereas higher values do not allow
for enough innovation.

As it has become clear from the experiments performed, the
relation between T and N values is critical for the overall
performance of the genetic algorithm. In light of that
observation, we have experimentally obtained a empirical
function N = f(T). This function can be expressed as the ratio
of two first order polynomials of T, whose coefficients vary 
according to a set of selections. Fig. (6) shows the plot of the
empirical function f(T), for three different coefficients
(selections).

Fig. 6: Plot of function N = f(T) for 3 different coefficients 
(selections): [300, 500, 1000] (lower to upper curve). 

The plot in Fig. 6 may be used as a rule of thumb for the
selection of the number of chromosomes N appropriate for a 
given number of generations T. For example, if we use the

middle curve, T=50 produces the choice of N=50. This choice
has already been seen to produce excellent results in Fig. (3).

As a last comment, let us note that, as Fig. (7) “zooms” in a 
part of Fig. (3), it reveals that localization of physical shapes 
by ideal circles can only be approximate. The evaluation
function yields a grade for each solution, based on the pixel
count of the area over which real object and the genetic
algorithm circle overlap. If the grades given by the evaluation
function to each solution are summed up, then this total can 
serve as a type of error, i.e., as an objective measurement for 
the overall quality of the solution.

Fig. 7: A zoom into the upper central part of Fig. (3) reveals
the approximate nature of the localization results.

IV. CONCLUSION

We have applied a genetic algorithm approach to the
problem of localization of objects belonging to a certain class,
in blood cell microscope images. Thanks to its non-exhaustive
nature, the proposed approach is far more efficient than
conventional image processing solutions, such as image
segmentation. Experiments on real field images yield strongly
encouraging correct localization results, rising up to 94% (17 
over 18 objects) or even 100% (18 over 18 objects), for
appropriate choice of the genetic algorithm parameters.
Furthermore, an empirical function is obtained, as an aid to
the choice of the two major parameters among them.
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