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Abstract—This research investigates risk factors for defective 

products in autoparts factories. Under a Bayesian framework, a 
generalized linear mixed model (GLMM) in which the dependent 
variable, the number of defective products, has a Poisson distribution 
is adopted. Its performance is compared with the Poisson GLM under 
a Bayesian framework. The factors considered are production 
process, machines, and workers. The products coded RT50 are 
observed. The study found that the Poisson GLMM is more 
appropriate than the Poisson GLM. For the production Process factor, 
the highest risk of producing defective products is Process 1, for the 
Machine factor, the highest risk is Machine 5, and for the Worker 
factor, the highest risk is Worker 6. 
 

Keywords—Defective autoparts products, Bayesian framework, 
Generalized linear mixed model (GLMM), Risk factors.  

I. INTRODUCTION 
UTOPARTS industry is one of the largest industries in 
Thailand. An increasing global demand for automotive 

vehicles, Thailand has become the favorable place for autopart 
investment. Fig. 1 shows that there are approximately 1,700 
local automotive parts suppliers in Thailand, of which about 
700 are Original Equipment Manufacturers [1]. Since all 
major Japanese automakers have opened manufacturing sites 
in Thailand, many of their parts manufacturers have relocated 
here as well to meet their customer demands. 

Producing defective products is one of major problems in 
an autopart factory. Moreover, It defects the production cost 
and customer satisfaction. This motivated us to find the risk 
factors in order to minimize the number of the defective 
products. 

Generalized Linear Mixed Model (GLMM) under a 
Bayesian frame work is adopted, since it allows for different 
sources of variability in a mean response. The mean of the 
response contains both a function of some explanatory 
variables and a function of random variables called random 
effects. Bayesian method has recently become more attractive, 
mainly because of recent advances in a computational 
methodology [2]. A GLMM can be formulated as a 
hierarchical model under a Bayesian framework.  
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Fig. 1 Structure of Thai automotive intrustry, Source: Thai Autoparts 
Manufacturers Association 

 
In this paper we apply a Poisson GLMM to the defective 

product data collected from an autopart factory in Pathum 
Thani province of Thailand during the period from January, 
2012 to July, 2012. We also compare the performance of the 
Poisson GLMM with the Poisson GLM. The structure of this 
paper is as follows. In Section II, we define notation for the 
Poisson GLMMs, Bayesian Method and the application. The 
result is illustrated in Section III. We discuss and conclude the 
paper in Section IV and Section V, respectively.  

II. METHODOLOGY AND APPLICATION  

A. Poisson GLMMs  
For 1,...,i m= , conditional on ,i iyb  are independent and 

assumed to have a Poisson distribution [3]: 
 

iid

ib , Pois( )i iy μ| ∼ ,                                    (1) 
 

A Poisson GLMM is expressed as:  
 

log( ) T T
i i i i iμ η= = +x β z b ,                          (2) 

 
where E( | ) ,  i i iy μ=b β  is a  x 1p  vector of fixed-effect 
coefficients related to covariates ,  i ix b is a x 1q  vector of 
random-effect coefficients related to covariates iz , and iy  are 
observations. Typically, we assume 
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Pitsanu Tongkhow, Pichet Jiraprasertwong 

Risk Factors for Defective Autoparts Products Using 
Bayesian Method in Poisson Generalized Linear Mixed 

Model 

A



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:7, 2014

2072

 

 

B. Bayesian Method  
For a vector of data 1,..., )( T

my y=y and a vector of 
parameters 0 1, ,..., )( T

nθ θ θ=θ , a hierarchical Bayesian model [4] 
is expressed as:  

 

 f ( | )π( )p( | ) f ( )= y θ θθ y y
                             (4) 

 
where f ( | )y θ  is a likelihood, π( | )θ y  is a posterior distribution 
which stands for the marginal probability density of the 
parameter vector θ  given the data ,  π( )y θ  is a prior 
distribution of θ , and f ( )y  is the marginal distribution of data 
y . A hierarchical Bayesian model usually consists of three 
stages: at the first stage, a linear model is set up given the 
fixed effects and random effects; at the second stage, 
distributions of the fixed-effect coefficients and random 
effects are specified given the hyper parameters; at the last 
stage, prior distributions are given for the hyper parameters.  

The Gibbs sampling MCMC available in Open BUGS is 
widely used for parameter estimation in a Bayesian method. 
The MCMC algorithms are the class of algorithms for 
sampling from probability distributions based on constructing 
a Markov chain that has the desired distribution as 
its equilibrium distribution [5]. A set of vectors θ  with 
density p( | )θ Y  in which the model parameters can be 
estimated is the final result of the MCMC. 

Sampling from the posterior 0 1, ,..., )p( | ), ( nθ θ θ=θ y θ  the 
Gibbs sampler requires a random starting point of parameters 
of interest, ( )(0) (0) (0) (0)

1 2, ,..., nθ θ θ=θ  

The steps of Gibbs sampling are 
1) Generate (1)

1θ  from (0) (0)
1 2π( ,..., , )nθ θ θ y . 

2) Generate (1)
2θ  from (1) (0) (0)

2 1 3π( , ,..., , )nθ θ θ θ y .  

Use updated value of (1)
1θ . 

3) Generate (1)
3θ  from (1) (1) (0)

3 1 2π( , ,..., , )nθ θ θ θ y .  

Use updated value of (1)
1θ  and (1)

2θ . 

4) Generate (1) (1)
4 ,..., nθ θ  similarly to step 1 to 3 

5) Generate (2)θ  using (1)θ  as a starting point and 
continually using the most updated values. 

6) Repeat until we get M  samples, with each sample being 
a vector of (1) (2) ( ), ,..., Mθ θ θ , where M  is the number of 
samples . 

7) Monte Carlo integration on those draws to the quantity of 
interest can be done. For example, the mean of 0θ  results 
from: 

 

( )
0 0

1

1E( )
M

i

iM
θ θ

=

= ∑                              (5) 

C. Application to Autoparts Defective Products  
Data: The defective products data were collected from an 

autopart factory in Pathum Thani province of Thailand during 
the period from January, 2012 to July, 2012 (189 times). The 
products coded RT50 are observed. The considered factors 
related to producing defective products are 4 production 
Processes, 7 Machines, and 11 Workers. 
Model: For each product, let ,  1,...,189iy i =  denote the 

number of defective product observed at time i  The proposed 
model is:  

 
3
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+ +
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where the “process”, “machine”, and “worker” are dummy 
variables. The “total” is the total products at each time which 
is treated as an offset. Note that we use only the random 
intercept, i.e. T

i i ib=z b . We assume N(0,1.0E06)  for 

0 19,...,β β . We also assume 2
bN(0, )τ for ib  and 

G(0.1,0.001)Ι  for 2
bτ  [6]. 

The proposed method is compared with the Poison GLM 
[7], [8] without the random intercept:  
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The deviance information criterion (DIC) is used for model 

comparison. The model with smaller DIC is better than the 
model with larger DIC [9]. The Gibbs sampling MCMC is run 
in Open BUGS. 

III. RESULT 
The Gibbs sampling MCMC is converged when being run 

for 25,000 iterations and the initial 5,000 iterations are 
discarded as burn-in. The history plots of some parameters, as 
an example, in Fig. 2 show no trends, and snake around the 
mean. As well as their Kenel density plots in Fig. 3 do not 
show a multi-modal curve. The summary of the parameter 
estimate from the Poisson GLMM are presented in Table I, 
compared with the one from the Poisson GLM in Table II. The 
DIC of the proposed model is 1,127 which is smaller the one 
from the Poisson GLM (2,898), indicating that the Poisson 
GLMM is more appropriate than the Poisson GLM. 
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Fig. 2 History plots indicating MCMC convergence 

 

 
Fig. 3 Kernel density plots indicating MCMC convergence 

 
The parameter estimate from the proposed model in Table I 

indicates that, for the production process factor, the rate of 
producing defective products in production Process 2 is 
1.0840 times of the rate in Process 1, the rate in Process 2 is 
18.02% more than the rate in Process 1, but the rate in Process 
4 is 92.87% less than the rate in Process 1. For the Machine 
factor, the rates of producing defective products from Machine 
2 and 5 are 6.97% and 76.65% more than the rate from 
Machine 1, respectively, and the rates from Machine 3, 4, 6 , 7 
are 43.21%, 32.4%, 16.95%, 28.87% more than the rate from 
Machine 1, respectively. For the Worker factor, the rates of 
producing defective products from Worker 2, 4, 5, 6, 7,8,11 
are 28.43%, 27.10%, 30.40%, 84.67%, 16.80%, 4.17%, 3.99% 
more than the rate from Worker1, respectively, and the rates 
from Worker 3, 9, 10 are 89.89%, 91.98%, 93.54% less than 
the rate form Worker 1. 

IV. DISCUSSION 
A hierarchical Bayesian method via MCMC algorithms 

allows more complicated models that classical methods based 
on maximum likelihood are unable to estimate. It use DIC to 
compare models with different methods including hierarchical 
models, where classical model fit statistics cannot compare 
different methods or hierarchical models. A GLMM is more 
appropriate than the GLM because it can account for the 
subject-specific random effects which naturally happen to 

individuals. The highest risk factors of producing defective 
products in each type of factors are Process 1, Machine 5, and 
Worker 6; therefore, those factors should be closely studied in 
to solve the problems. The Poisson GLMM can be applied to 
other kinds of problems in which the observations are count 
data. 

 
TABLE I 

PARAMETER ESTIMATE FROM THE POISSON GLMM WITH DIC = 1,127 
Factor Mean Standard  MC  95% Credible Relative 
    Deviation Error  Interval Rate 
Intercept -4.277 0.729 0.061 -5.875 -3.098 . 
Process1 Ref. . . . . . 
Process2 0.734 0.458 0.038 0.000 1.747 2.084 
Process3 0.166 0.491 0.040 -0.654 1.301 1.180 
Process4 -2.641 0.421 0.028 -3.420 -1.753 0.071 
Machine1 Ref. . . . . . 
Machine2 0.067 0.697 0.047 -1.355 1.402 1.070 
Machine3 -0.566 0.626 0.047 -1.683 0.716 0.568 
Machine4 -0.392 0.457 0.037 -1.276 0.414 0.676 
Machine5 0.569 1.050 0.081 -1.506 2.800 1.767 
Machine6 -0.186 0.507 0.039 -1.157 0.797 0.831 
Machine7 -0.341 0.444 0.036 -1.231 0.464 0.711 
Worker1 Ref. . . . . . 
Worker2 0.250 0.378 0.023 -0.471 0.986 1.284 
Worker3 -2.292 1.310 0.103 -4.942 0.319 0.101 
Worker4 0.240 0.306 0.020 -0.382 0.851 1.271 
Worker5 0.265 0.351 0.023 -0.498 0.900 1.304 
Worker6 0.613 0.336 0.024 -0.014 1.281 1.847 
Worker7 0.155 0.347 0.023 -0.510 0.877 1.168 
Worker8 0.041 0.331 0.022 -0.622 0.697 1.042 
Worker9 -2.523 1.415 0.111 -5.267 0.227 0.080 
Worker10 -2.739 1.414 0.111 -5.536 -0.020 0.065 
Worker11 0.039 0.307 0.021 -0.538 0.660 1.040 

V. CONCLUSION  
Risk factors for defective products in autoparts factories are 

investigated using a Poisson GLMM under a Bayesian 
framework. The performance of the proposed model is 
compared with the Poisson GLM. The factors, production 
Process, Machines, and Workers are considered. The products 
coded RT50 are observed. We found that the Poisson GLMM 
has a better performance than the Poisson GLM. The highest 
risk factors of producing defective products in each type of 
factors are Process 1, Machine 5, and Worker 6. 
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TABLE II 
PARAMETER ESTIMATE FROM THE POISSON GLM WITH DIC = 2,898 
Factor Mean Standard MC 95% Credible 

    Deviation  Error  Interval 
Intercept -3.680 0.210 0.016 -4.103 -3.255 
Process1 Ref. . . . . 
Process2 -0.205 0.191 0.014 -0.590 0.165 
Process3 -0.762 0.194 0.014 -1.148 -0.379 
Process4 -2.991 0.156 0.009 -3.305 -2.689 
Machine1 Ref. . . . . 
Machine2 0.522 0.129 0.006 0.268 0.771 
Machine3 -0.485 0.200 0.014 -0.890 -0.099 
Machine4 0.107 0.099 0.005 -0.087 0.296 
Machine5 0.588 0.318 0.014 -0.010 1.219 
Machine6 -0.142 0.109 0.006 -0.356 0.069 
Machine7 0.057 0.098 0.005 -0.133 0.246 
Worker1 Ref. . . . . 
Worker2 0.293 0.078 0.002 0.142 0.446 
Worker3 -2.853 0.369 0.021 -3.585 -2.161 
Worker4 0.168 0.065 0.002 0.040 0.294 
Worker5 0.517 0.071 0.002 0.381 0.657 
Worker6 0.455 0.066 0.002 0.327 0.586 
Worker7 0.182 0.069 0.002 0.049 0.321 
Worker8 0.081 0.067 0.002 -0.049 0.214 
Worker9 -2.949 0.403 0.022 -3.744 -2.182 
Worker10 -2.935 0.398 0.022 -3.716 -2.176 
Worker11 0.197 0.066 0.002 0.069 0.327 
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