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Abstract—The transient analysis of a queuing system with 
fixed-size batch Poisson arrivals and a single server with exponential 
service times is presented. The focus of the paper is on the use of the 
functions that arise in the analysis of the transient behaviour of the 
queuing system. These functions are shown to be a generalization of 
the modified Bessel functions of the first kind, with the batch size B 
as the generalizing parameter. Results for the case of single-packet 
arrivals are obtained first. The similarities between the two families 
of functions are then used to obtain results for the general case of 
batch arrival queue with a batch size larger than one. 

Keywords—batch arrivals, generalized Bessel functions, queue 
transient analysis,  time-varying probabilities. 

I. INTRODUCTION

HE transient analysis of a queuing system with fixed-size 
batch Poisson arrivals and a single server with 

exponential service times is presented. One can envision 
messages arriving at a buffer in fixed size batches of packets 
and released one packet at time [1]. Transient performance 
measures for queues have long been recognized as being 
complementary to the steady-state analysis [2-5], and 
justifications for transient analysis of traffic in 
telecommunication systems abound [6]. There often exists a 
need to understand the initial behaviour of a system. In 
general queuing systems, arrivals at a service point (e.g. a 
switch) may occur in batches of different sizes. Depending on 
the network conditions, the arrivals may be queued for later 
forwarding. Additionally, there may be cases where the 
network traffic is diverted suddenly to cope with faults, as in 
automatic protection switching in which the transport system 
re-directs traffic when faults and failures occur in 
subcomponents of the network. In such cases a service point 
may experience a sudden increase in its load, and this may 
continue until the original fault has been cleared. After the 
fault is corrected, traffic reverts to the previous distribution, 
and this presents another perturbation in the network. There 
exists now a reduction in the load in parts of the network. The 
restored element experiences an increased load transient 
starting from an empty state. This scenario presents the 
service points with transient conditions that require the kind of 
analysis attempted here and elsewhere [7]. 

Numerical inversion of Laplace transforms or generating 
functions have been used to obtain the transient behaviour of 
queuing systems [8,9]. Other methods that are equally 
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time-consuming are based on recursive computations. What is 
presented here is a method that uses a family of functions 
arising in the analysis of the queuing system. It is shown that 
these functions are related to the modified Bessel functions of 
first kind. The relevant properties of the Bessel functions are 
available in [10] from which a select few are taken for the 
purposes of this paper. The relationship between the function 
families is exploited  to obtain the results presented. The main 
key in this exercise is the fact that the empty system 
probability can be obtained explicitly in closed form for 
single-packet arrivals. 

The analysis proceeds here by first considering 
single-packet Poisson arrivals, i.e. a batch size of one (B=1). 
Results for this case can also be found in [11]. In Appendix A 
the present paper includes additional steps to those of [11] and 
then proceeds in Appendix B to the general case (B > 1) by 
using the inherent correspondence between the modified 
Bessel functions of the first kind and the batch arrival 
functions. Incidentally this analysis provides a method of 
implicitly solving the integral equation that is encountered, 
which elsewhere [7] is solved by a combination of modelling 
and signal processing. There are other methods [12-14] of 
solution to such  integral equations. 

The paper is organized as follows. Section II presents the 
system model, and sets the main point of reference for the rest 
of the presentation. Section III presents a discussion of the 
time-varying probabilities that in the limit of large t eventually 
yield the steady state results. The section relies on the 
derivations given Appendix A and Appendix B concerning the 
relationships between the function families. Section IV 
presents the expressions for the queuing system statistics 
needed to assess performance. Section VI gives the results and 
conclusion. Appendix A gives a detailed derivation of the 
relevant results for single-packet arrivals (B=1), and 
Appendix B relies on the results of Appendix B and proceeds 
to the general case B>1). The appendices carry material that is 
necessary to support the development of the paper but which, 
if placed in the main body, would compromise readability. 

II. SYSTEM MODEL
Packets arrive at a service point in fixed size batches of B 
packets according to a Poisson process of mean rate  arrivals 
per second. The single server completes the service at the rate 
of  packets per second. The probability flow rates are as 
shown in  Fig.1 for a batch size of  B packets.  

Denote by Pk(t) the probability that there are k packets in 
the system at time t. The probability flow balance equations 
are given by  
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For Pk(t) let P(z,t) be the moment generating function,  P*(z,s) 
the Laplace-Stieltjes transform  of P(z,t). Using these in (1) 
gives 
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Fig. 1.  Probability  Flow For an Arrival Batch size B 

The solution to (2) is easily seen to be 
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in which )(* sPk
 is the Laplace-Stieltjes transform of )(tPk

 and 
it is assumed that there are i packets in the system initially, 
giving izzP )0,( . The analysis proceeds here by first 
considering a batch size of one, i.e. single Poisson arrivals 
(B=1). By using the inherent correspondence between the 
functions that arise in the analysis and the modified Bessel 
functions of the first kind, the results for  single-packet 
arrivals are generalized for a batch  size B greater than 1. For 
B=1, the transient expression for empty probability starting 
with i packets is obtained in Appendix A. The results in 
Appendix B are used to obtain an equivalent expression for a 
batch size greater than one (B>1), as shown in Fig.2. 

III. PROBABILITIES  FOR THE NUMNER OF PACKETS IN
THE SYSTEM

The moment generating function (3) contains the exponential 
function  exp[( zB+ z-1)t]  which can be expressed as a two-
sided power series  

k
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where )1/(1)1/(1 / BBB  and Bkk / , the 
smallest integer not less than k/B. Using (5), (6) and (7) in (3) 
gives 
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Since this expression appears to be cumbersome, it seems 
reasonable to introduce here the functions thk

  and tqk
defined by  
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to cast (8) more compactly as 
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By setting k=0  the above equation yields the following  
integral equation for P0(t).
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There are many methods of solution for such an integral 
equation. It is possible to use transforms (e.g. Laplace-
Stieltjes transforms) to solve the integral equation. The 
required transforms would be expressed as power series in 
inverse powers of the Laplace variable s. Numerical 
techniques may be employed to invert the resulting 
transforms. Several authors have presented methods of 
solution that express the unknown function (P0(t) in this case) 
in terms of the derivatives of the known function [12,13]. 
Other methods exist for convolution kernels that have special 
forms, such as Bessel functions[14]. An indirect solution of 
the integral equation (12) is via modelling and signal 
processing is presented in [7].  
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Fig. 2.  P0(t) Expression for B>1 inferred from relations between  
batch arrival functions and the modified Bessel functions. 
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The method used in this paper exploits the natural similarities 
between the functions 

)()(B
kV

 and )(kI , the modified Bessel 

functions of the first kind. Appendix A derives the expression 
for P0(t) for the single-packet arrivals (B=1) in readiness for 
generalizations given in Appendix B, which presents many of 
the relevant relations needed in the conclusion of this paper. 
Fig.2 gives the empty probability as inferred from the 
discussions in Appendix A and Appendix B. 

It has been found necessary to use )()( tV B
m  because it 

avoids the parameter k and the results obtained are in 
agreement with those found using other methods.  
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Equation (B9) can be re-written as  
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The known expression for P0(t) can be substituted in (8) to 
obtain the rest of the probabilities Pk(t).

IV. QUEUING SYSTEM STATISTICS
The statistics such as the average number in the system and 
the variance of this number can be obtained by taking 
appropriate derivatives of (4) with respect to z, setting z=1, 
and inverting the indicated Laplace-Stieltjes transforms.  
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with /B   as the offered load. These equations can be 
inverted to obtain the corresponding expression in the time 
domain. 
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From these, the mean number )(tN  of packets in the system 
and its variance )(2 tN  are obtained as functions of time.  
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The statistics obtained here are useful during the transient 
stage and also after steady state has been achieved. They 
address the buffer requirements, and give an indication of the 
possible waiting time before exiting the system. The more 
“customers” there in the system the longer will be the waiting 
time.  

V. RESULTS AND CONCLUSION
Fig.3 gives the empty probability for the system starting from 
two conditions. The curves beginning at the top left of the 
figure  are for the empty initial state (i=0), while those 
beginning from the bottom are obtained when the system 
starts from a non-empty state (i=5).  Clearly the two sets of 
curves merge as they approach and eventually reach their 
steady state levels. Furthermore, the results  agree with those 
obtained by other methods [7].  
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Fig. 3  The Empty Probability. One Set of curves begins from 1 
(System Initially Empty, i=0), and the other set begins from zero 

(System Initially non-Empty, i=5), 
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Fig.4 shows the non-empty probabilities, Pk(t) for 
k=1,2,3, …, as a function of time (normalized time t). The 
trace at the top is for P1(t) and the one at the bottom is for P12.
Other traces are omitted for obvious reasons. The probabilities 
are found to decrease as the index increases. The results 
obtained are in support of those obtained earlier.  

Fig.5 shows the mean number of packets in system as a 
function of time starting from the empty state (i=0). Evidently 
these traces approach the correct steady state values, although 
they take some time to stabilize. Fig.6 shows the same statistic 
for a system starting from a  no-empty queue (i=5). The same 
steady state values are reached in this figure as well. 
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Fig. 5  Mean number of Packets in the system as a function of 
normalized time ( t) starting from an empty queue (i=0) 

Mean Number of Packets (B=3, i=5)
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Fig. 6  Mean number of packets in the system as a function of 
normalized time ( t)  starting from a non-empty queue (i=5) 

The paper has addressed the problem of obtaining the 
transient solution to a queuing system in which packets arrive 
according to a Poisson process in fixed size batches, with 

exponential service time. The analysis has exposed an 
underlying family of functions that bear resemblance with the 
modified Bessel functions of the first kind. After establishing 
this resemblance, the paper has proceeded to exploit the 
isomorphism with the case of single-packet arrivals to obtain 
results for the general case (B>1). the analysis replaces the 
occurrences Ik(.) replaced by (.))( B

kV   of the appropriate 
argument to obtain the required expressions.  These functions 
are in some sense a generalization of the modified Bessel 
functions of the first kind, and are shown in Appendix B  to 
share similarities.  

For the case of single-packet arrivals (B=1), an explicit 
closed form solution is found. Coupling this with the relations 
between the two families of functions exposes inherent 
similarities. This is immediately exploited in the analysis by 
replacing the occurrences of Ik(.) by (.))( B

kV  with the 
appropriate argument, and using the relevant relations to 
obtain the required expressions.  The conclusions drawn here 
as before indicate that steady state results are not sufficient to 
capture the queue behaviour following a perturbation. 
Transient analysis is required, and this paper has provided a 
means to accomplish this task for the fixed size batch arrivals. 
The conclusions drawn here are in agreement with what is 
already known. 

APPENDIX A. EMPTY PROBABILITY FOR A BATCH
SIZE OF ONE (B=1)

The moment generating function  P(z,t)  has Laplace-Stieltjes 
transform P*(z,s)  given by  
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For this case of single arrivals (B=1) exact solutions can be 
found, since the denominator in (A1) is quadratic in z, can be 
easily factored to yield the zeros 
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It can be shown [11] that  11z  and 12z . The function 

),(* szP  must be analytic within the unit disc 1: zz .

Therefore by Rouché’s Theorem, there we be a pole-zero 
cancellation to remove the pole in the unit disc. This gives 
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Before obtaining the expression for P0(t), it is noted that the 
exponential function in (3) for B=1 can expressed as a two-
sided series in z according to
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where Ik(.)  is the modified Bessel function of the first kind of 
order k.  Differentiating both sides of (A4) with respect to z 
gives 
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Replacing the exponential on the left with its power series 
(A4), and reorganizing, gives 
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This result is available in many texts. The derivation is given 
here in anticipation of the results for the general case where B 
is greater than one. The same steps will be followed later for 
the general case of B >1. The Laplace transform of  
exp[ ( z+ z-1 )t]  is 

21
2

1exp
zzzz

z
zsz
ztzzL           (A7) 

This can be expanded as a power series in z to give 
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Substituting for 1z   and 2z   we obtain  
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which can be re-written as 
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Combining (A4) and (A10) gives  
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From (A6) it is evident that  
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Using the fact that |z1| < 1 in (A3) gives  
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which is easily inverted using (A14) to give 
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Using (A6) in (A15) finally yields  
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This result is available in other places, e.g. [11], and is derived 
here in preparation for the general case to be addressed in 
Appendix B. 

APPENDIX B. RELATIONS BETWEEN BATCH
ARRIVAL FUNCTIONS AND THE MODIFIED BESSEL

FUNCTIONS
For  B > 1,  the exponential (3) now takes the form 
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and for  k > 0 the variable k is defined by k = k/B , the 
smallest integer not less than k/B.  It is shown in the sequel 
that the functions in (B3) and (B4) reduce to the modified 
Bessel functions and the relations among them also reduce to 
equivalent relations among the Bessel functions. 

A. Coalescence to Modified Bessel Functions 
When B=1 the functions in (B3) and (B4) coalesce to Ik(2x)
where Ik(.) is the modified  Bessel function of the first kind of 
order k.  This can be seen by directly substituting  B = 1 
above. Specifically for B=1 gives k = k, and so 
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This is the first case of the relations between the functions 
)()(B

kV  and )(kI , the kth order modified Bessel function of 

the first kind.  

B. Recursive Relations 
Starting with the definition (B1) and differentiating both sides 
with respect to z gives  
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which can be re-written as 
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which  then gives the relations 
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Using the definition (B2) of   gives 
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Incidentally for B=1, and substituting )2()()1( xIxV kk
 in (B9) 
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Replacing x2   by x  gives  
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which is one of the functional relations [10] for )(xIk , the 
modified Bessel functions of the first kind of order k.  

C. Differentiation with Respect to Argument 
Differentiating both sides of (B1) with respect to t, and letting 
x = t,  gives fhe following result 
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Substituting for the exponential on the left hand side and 
reorganizing  gives 
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As a check, setting  B=1, this becomes 
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and this is another one of the functional relations [10] of the 
modified Bessel functions of the first  kind of order k.  Other 
forms of correspondence may be obtained by applying these 
relations and other operations to the defining equations. There 
is sufficient correspondence to take it that the functions are 
indeed generations of the modified Bessel functions of the 
first kind of the appropriate order.  The batch size B plays the 
role of the generalizing parameter. It remains to be shown 
how the development presented here can be used to obtain 
equivalent generalizations of  the Bessel functions.  This task 
can be  explored elsewhere; the main concern of this paper is 
to use the set of  functions already presented to solve the 
transient queuing problem. 
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