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The Effects of Detector Spacing on Travel
Time Prediction on Freeways
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A Traffic Monitoring Station (TMS) is defined assat of

Abstract—Loop detectors report traffic characteristics imlre inductive loop detectors that covers each mairdine ramp.

time. They are at the core of traffic control prege Intuitively,

one would expect that as density of detection as®e, so would
the quality of estimates derived from detector détawever, as
detector deployment increases, the associated tomerand

maintenance cost increases. Thus, traffic agerafies need to
decide where to add new detectors and which detectioould

continue receiving maintenance, given their resswenstraints.
This paper evaluates the effect of detector spacimgrreeway
travel time estimation. A freeway section (Intetsta5) in Salt
Lake City metropolitan region is examined. The reseaeveals
that travel time accuracy does not necessarily rideste with

increased detector spacing. Rather, the actualidomcaf detectors
has far greater influence on the quality of tratrele estimates.
The study presents an innovative computational cgubr that
delivers optimal detector locations through a pssdiat relies on
Genetic Algorithm formulation.

TMS reports traffic characteristics in real timelare at the
core of the traffic management process. Utah Depant of
Transportation (UDOT) has deployed TMSs on |-15ait
Lake City metropolitan region at approximately Yzlemi
spacing. This half mile spacing is a product oflyear
requirements for real-time data collection and $&dito
manage traffic and provide driver information. Withe
advent of advanced video surveillance such as @lose
Circuit Television (CCTV) technology, the use oé¢le data
for incident detection has become less importeotwvever,
there are other important uses of the data that diferent
requirements for TMS placement. For example, welrtee
estimate travel time from TMS detector data. Thifeasible
if the TMSs are placed so that they can samplenwiige
conditions effectively. There is a tradeoff betwetre

Keywords—Detector, Freeway, Genetic algorithm, Travel timelntensity of TMS spacing and the accuracy of tratveie

estimate.

[. INTRODUCTION

estimates. Intuitively, one would expect that as density
of detection increases, the quality of travel tiegtimates
also increases. However, this improved accuracyesomnith

NDUCTIVE loop detectors are installed on many, ost: installation and maintenance.

freeways in the United States. Loop detectors roonit

traffic conditions at single-point locations. Theypply
data about traffic conditions: vehicle presencepwfl

The literature shows that the effect of field datec
spacing on traffic forecasting measures along fegswhas
been addressed. For a 9 mile Californian route, fiKetoal.

occupancy and speed. Flow and occupancy may bectstt |31 showed how derived congestion measures sudbtak
directly from loop data; ho.wever, algorithms mus*_bdelay, extent and duration of congestion, vary wite
developed to calculate point speed and travel timBumper of detectors. They infer that the accurady o

Evaluation of freeway performance
information derived from loop detectors. The religpand
accuracy of these data depends on the number

is based on t

timates increases in proportion to the numbetetéctors
deployed. However, the authors did not focus ometrime
imation. Ozbawt al. [4] investigated the effect of sensor

placement of loop detectors. Proper placement e8ablocation on travel time estimation during recurrand non-

transportation agencies to derive more accuratanmdtion
for performance monitoring, which in turn improveaffic
operation activities overall, such as
However, as Departments of Transportation (DOTglaje
more detectors, the associated operating and maimte
cost increases [1]. So, traffic agencies need tiddewhere
to add new detectors and which detectors should
maintained, given their resource constraints [2].
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recurrent congestion on I-76 in southern New Jersagy
found that increasing the number of sensors doealnays

ramp meteringmnrove the accuracy of travel time estimates. iBagt al.

[5] showed that the marginal gain of travel timewacy
decreases as the number of road-based surveillamite
increases. By selecting the detectors in a praiddfivay,
jito et al. [6] studied the effect of detector spacing on
travel time index (congestion measure), using fidkta
from Cincinnati, Ohio, and Atlanta, Georgia. Thairalysis
did not show any definite pattern of the variatmitravel
time index with detector spacing. Chanal.[7] proposed a
bi-level programming model to determine the spestéctor
density with travel time information. They showéaitt Root
Mean Square Error (RMSE) of average link traveletim
estimate decreases with increase in the numbempeéd
detectors. In a similar study, Sehal. [8] showed that the
measured travel time errors are nonlinear and smher
proportional to the number of probe vehicles. Baml. [9]
indicated that as sensor spacing increases, tramed
estimation becomes more sensitive to actual sensor
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locations. Cheret al. [10] studied how short-term waffi Nable2d10ists the TMS spacing scenarios generated f
forecasting performance is related to detectorisgagsing analysis.
neural networks. They concluded that forecasting

performance was not significantly affected by d&tec TABLE |
spacing. Cheu and Ritchie [11] reviewed severaidamt TMS SPACING SCENARIO
detection algorithms applied to sites with both skemnd Average g o
sparse arrays of detectors. They reported no diedr distanct T\ " Noof
between performance and detector spacing. Nam¢ bi}"}ge' possiblt Smpsed
To summarize, the literature shows research that (mile)  datasets
addresses the relationship between field detediuh the Baseline 05 1 0
estimation of traffic metrics is active, throughtheds that Mile1.0 1.0 2 1
can be characterized as modeling [4],[5],[9] or &ioal Mile15 15 3 2
[3],[6]-[8]. Chen et al [10] has tested their modeling Mile 2.0 2.0 4 3
findings with empirical data from field. Howevehgir work Mile25 25 5 4
addressed short-term forecasting, not travel tistenating. Mile3.0 3.0 6 5
There is need for further work. Methods validatedfield Total 21

data needs to be developed. Further, there is d fae

methods that address detector error. In concludthg,

literature for travel time estimates is inconsistend hence The freeway study section is divided into 57 Zorfe o
inconclusive. Influence (ZOI) sub segments which are definedabthe

The goal of this paper is to determine the impaft distance upstream and downstream to the neighbdiing
decreasing TMS coverage on a freeway corridor @ thyg shown below in Fig. 1.

computation of congestion measures such as trawved t
estimates. In other words, how is the inaccuradheftravel

time estimates affected by increased TMS spacinge T [ Freeway segment |

paper analyzes the sensitivity between the accuwhtavel r e R R gl

time estimates and TMS spacing. Several hypotHetica ™S | T™S 2 ™S 3

uniform spacing cases are examined: 0.5, 1, 1.2.2,3 @on e @n o R

miles. Field data comes from the Interstate-15 5{l-1 — — —

freeway in Salt Lake City metropolitan area. Tratiate § = L L b
TMS 1 TMS 2 TMS 3

estimates from speeds collected from field detsctare
compared to travel time estimates derived from anicr
simulation. This would ensure the robustness and Fig. 1 Freeway section and zones of influence ST
applicability of the methodology. A further analysidopts a
metaheuristic method to develop Pareto optimaltsois to The spot speeds from detectors that constitute & TM
the multi-criteria optimization problem. Resultirgareto \were used to calculate the travel time over thé@e@Ol.
optimal solutions would deliver a robust and conmpis®  Travel time for each TMS is given by the ZOI length
design of the optimal location of TMS. divided by the spot speed across the TMS. The lttave
Solving single objective optimization problems byfor each of the constituent ZOls was calculated amdmed
Genetic Algorithms (GAs) has become a proven araelyi to give the total estimated travel time for theirentreeway
accepted technique. Genetic Algorithms are hearistsegment. The difference between the estimated |ttawe
optimizers based on the evolutionary concepts d@irah and the actual travel time is the travel time effiar the
selection and survival of the fittest [12]. Genetigorithms  freeway segment.
has also been found to be most successful in mbjéetive Travel time estimates from field analysis were paned
optimization [13]. In this paper, a Pareto basedltimu to travel time estimates derived from simulatioVi$SIM
objective GA is applied to the simultaneous optatian of  [14] for validation purpose. The field analysigirtinent to

travel time accuracy and number of TMSs. the cases when existing TMS layouts should be itedisn
order to find if removing redundant stations wouddiuce
Il. METHODOLOGY costs of their operations and maintenance withéfecténg

A novel computational approach was developed totme@uality of the travel time estimates. However, theid
the study objectives. The study segment is the frd@way analysis cannot be used to plan for new famhma;i_ to
between 800 south in Salt Lake City (SLC) to 400tsan develop a new TMS layout on the freeways which are
Orem, Utah. The 35 mile study corridor has the TMgurrently not detectorized. For such purposes are use
spacing of approximately % mile. The baseline sdena m|C(OS|muIat!on mo_dels,_ which accurately resembddf
represents the average TMS spacing. With the heselitraffic operations. Fig. 2 |Ilust.rates.the.meth.cm‘tm qsed to
scenario of half-mile spacing and increasing thecsyg in compare field analysis with ~high-integrity = simuéati
increments of half-mile up to three miles produss analysis. _ ) _ _
uniform TMS spacing scenarios (0.5, 1, 1.5, 2, &8 3 There fgllows.a detailed explanatlpn of the fiefdlysis
mile). Deleting alternating TMSs from the baseli@@5 and the Simulation (VISSIM) analysis.
mile) scenario creates the 1 Mile scenario. Thisegates
two scenarios: the odd numbered TMSs (1010101) tlaend
even numbered TMSs (0101010). The same procedwse wa
repeated for the other uniform TMS spacing betwgen
Mile and Mile 3, to generate 21 TMS spacing scexrsari
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Field Analysis VISSIM Analysis
Collect information Simulate TMS
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TMS detector 701 701 Extract
speeds length length speeds

I R B

4 A

GPS Travel Travel Time Travel Time Travel Time
Time TTV —»TTgr- TTyr«— Estimate Estimate —» TTgs - TTys ¢ (entry to exit time)
MF TTep TTgs TTws
Travel Time Travel Time
Error, TTg Error, TTg
Compare
TTF VS. TTS
for 21 scenarios
Fig. 2 Steps involved in Field and VISSIM Analysis
A Field Data longitude and the time data [17]. Altogether 96 GRBs

) were completed. The difference between therlahd TTye
Field data was collected from the TMSs on the I-1gjves the travel time error (EY for the entire freeway
freeway (800 south in SLC to 400 south in OremthinSalt  segment. In a similar manner, the travel time srfor all

Lake City metropolitan area. The loops are mostigldoop 21 TMS spacing scenarios were estimated.
detectors which give direct measure of speed datsome

cases, there are radar units (Wavetronix model 10&) B- Simulation
deliver the same data as single loop detectorsy &pply a The VISSIM model of the freeway study segment was
speed algorithm that presents an average speed bashe developed for a recent High Occupancy Vehicle
occupancy numbers for the prior 16 vehicles. (HOV)/High Occupancy Toll (HOT) study [18]. Buildin
UDOT reports the 20-second loop detector speeds foalibrating and validating the VISSIM model reqdire
purpose of real time traffic management applicatiofhe extensive field data collection and data reductidarious
20-second data are imported in real-time to VISUN®, traffic data were collected between 6.30 AM and)9%M
a program now called PTV Traffic Platform, to féteite (morning peak) on Tuesdays, Wednesdays, and Thgsda
further archival and analysis [15]. The measuregeweunder fair weather and dry pavement conditionsraufour
recorded at 20-second intervals. The detector speenle weeks in August, 2007. Other periods were excluded
then extracted. because the traffic was light. Both the network ahd
The field data was extracted for the morning pealiod model input were based on actual peak period trafiita of
traffic on Tuesdays, Wednesdays, and Thursdaythéor the 1-15 corridor. Detail description of the datalibration,
month of August, 2007. Flawed or aberrant datatduead and validation results is documented [17], [18]lidation
work or detector failures were excluded from thalgsis. results showed a very close match between trawelstifrom
The mean of spot speeds from detectors that cotestt field and simulation. Further, UDOT provided thedtions
TMS were used to calculate the travel time overehtre of the installed TMS along I-15 on a KMZ file in Ggle
ZOl. Travel time for each TMS is given by the Zéngth Earth software [19], providing a realistic backgndumage.
divided by the aggregated spot speed. The estinteagdl The image enables users to easily navigate throagh
time (TTgp) is the sum of travel times of the constituenhetwork. Using this tool, the specific location tbe TMS
ZOls of the freeway segment. For measured travekti were identified and added into the existing I-15deloas
(TTwe) computation, Global Positioning System (GPSyata collection points. Fig.3 represents the VISShddel
travel time for the entire freeway section wasizgil. The of 1-15 for an intersection showing the built in taa
GPS speed data was collected using the Floating Gavllection points which resembles the actual TM&tmns
Technique. In this technique, a GPS device wagllestin  obtained from the Google Earth KMZ file.
the vehicle that was driven according to the “flofatraffic” VISSIM generated the spot speeds at the built-inSTM
throughout the study segment [16]. While the vehiid locations. These spot speeds served to calculatdraivel
running, the GPS device automatically logs theaddg and time over the entire ZOI. Travel time for each ThMSjiven
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by the ZOl length divided by the spot speed. Thamedet4, No:6, 2010 70l

travel time (TE9 is the sum of travel times of the TTi- Travel time for ZOI(TT = —)

constituent ZOls. Two travel time sections, on¢hatentry \/

and one at the exit of the freeway segment werlt im0~ TTe (=TTgr Or TTeg) - Estimated travel time for the freeway
the model to obtain the measured travel timeyd) Tor the . n

freeway segment. The difference between thesTdnd section E )

TTws is the travel time error (TgJ for the entire freeway TTy (=TTyr Or TTyus) - Measured travel time for the freeway
segment. The procedure was repeated to calculatiabel section

time errors for all 21 TMS spacing scenarios. ¢ - Estimation Error #TE -TT ‘

AN 0007 - . oplimel spacing for s eements n 15160 12 3007 i
juator

Travel time for each ZOI is estimated from the sphdata
obtained at the TMS location. The length of the dvided
Z0l
by this speed gives the travel time valt]lé'l'i(=—v ~) at
each TMS location. Td for the entire freeway section is
obtained by summing individual travel time estinsa(€T;)

 for all constituent ZOls Ein:lT'ﬁ ). The travel time error is
given by:
ZOl;

I _
v TTM (1)

o= LT - TR =2l

For the first TMS in the freeway section,

zol, = x1+(X2;X1) =(X1;X2),fori= 1 @)

For all intermediate TMSs in the freeway section,

541791
2

zol; = ©)

Fig. 3 Model of a part of I-15 showing built-in TM&cations For the last TMS in the freeway section,
resembling those in KMZ file

X
(1 n~ X1, _ Xn X1
ZOIn =(L xn) +(72 )=L- (7)
Ill.  FORMULATION OF THETRAVEL TIME ERRORFUNCTION  fori=n (4)

Travel time error is the difference between the snead
travel time and the estimated travel time requirettavel a  Substituting (2), (3) and (4) in (1), the travehd error
roadway segment. This concept was used in the fation ~ Pecomes:
of the travel time error function. The analyticgdpaoach
followed is similar to the approach reported by Eadz al
[20]. Two specific travel time estimates are define €= (Xl Xz) +Zn i >§+1 A =) +L~( i 2\/)8 PN -TTy
Measured Travel Time (T4) and Estimated Travel Time n
(TTe). TTw represents the actual travel time required to 5)
traverse the freeway section. The notation and déations
are discussed as follows: IV. RESULTS

A. Travel Time Prediction with Field Data

Notation: Fig. 4(a) and 4(b) summarizes the results obtafneuh
field data analysis. Fig. 4(a) shows that there weeak trend
between travel time error for different TMS spacing
. 4 However, the spread appears to be big and varidd thve

i - Index of the'f TMS _ increase in TMS spacing. There are inconsistensigish

L - Length of the freeway section _ do not follow the trend such as: specific scenairiadlile 1,

X - The distance from the origin of the freeway ®eCto 110 2.5 and Mile 3. This is probably due to thetust

h .
the " TMS location location of TMS in those scenarios. Similar obstore are

n - Number of TMSs on the freeway section (= nundfer
zones of influence)

ZOJ; - Length of Zone of influence of the TMS noted in Fig. 4(b), which provides the relationshigtween
L= Zn:ZOI travel time error versus the number of TMS deplofged21
T4 i detector spacing scenarios. There appears to beeak w

relationship between travel time error and numidef MS

i=1
Vi- Speed reported by the TMS deployed with some anomalies. These anomaliesilely |
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due to the difference in the location of TMSs ifffedérit4, KNrargelbate error. However, there are many incdesisies

scenarios. to the general trend. This is likely due to theuattocation
of the TMSs in the scenarios. Simply put, optimielector
1 EeTR o placement is essentially idiosyncratic. So, blaadegalized
“ : “ . modeling of freeway segments will deliver sub-omim
: locations which would be little better than locatiguesses
£, R iy 3 made by a traffic engineer. There is a need torahte the
s e : optimal number and location of TMS which requires a
| R R R S . sound and robust optimization technique.
T e SR T e T 18
a) b)
Fig. 4 Field Results (a) Travel time error as a fiomcof TMS 16 .
spacing (b) Travel time error as a function of nemtf TMS
deployed 14

B. Travel Time Prediction with Simulation Data 12

Fig. 5(a) and 5(b) present the results obtainedh fthe
micro simulation using VISSIM. Fig. 5(a) shows thlet of
the travel time errors versus TMS spacing for déife
spacing scenarios. Similar to the field resultgrehis a

10

Field Travel Time Error [min]
oo

weak relationship between the travel time error aniS 6
spacing. However, the spread appears to become laruh 4
varied with the increase of TMS spacing. Furtheere are
some scenarios that deviate from the general tréhid. is 2
likely due to the location of TMS in an individust¢enario.
Fig. 5(b) provides the relationship between thedrdaime 0 -+
errors and the number of TMS deployed for 21 spmgcin o 2 4 6 8 10 12 14 16 18
scenarios. There appears to be weak trend suggestme VISSIM Travel Time Error [min]
correlation between the travel time error and thmier of
TMS deployed with few anomalies. Fig. 6 Comparison between Simulation and Fieldltgsu
- s g : TABLE Il
N : N SUMMARY OF TRAVEL TIME ERROR FOR TMS SPACING
» » . . . \1c_Travel Time Error (min) Average Travel Time Errorijn
e s Scenarios TMS Spacing (mile) No. of TM Feld Smuaton Feld Smuaton
T, iiziign: . Baseline 0.5 57 361 1.01 3.61 101
£, Lopezm £ . - 1 1.0 29 0.14 0.61
. [ patedi oy 2 1.0 28 4.72 1.93 243 127
. : e b 1 15 19 5.04 271
5 : ' o 2 15 19 5.60 3.64 4.84 3.50
o o5 1 1s 2 25 s as ks o % w w0 e 3 15 19 3.89 4.14
TMS Spacing [mile] No. of TMS. 1 2.0 15 5.82 7.32
_ ) a.i ) b) ) 2 2.0 14 341 4.85 5.72 5.79
Fig. 5 Simulation Results (a) Travel time error dsrection of 3 2.0 14 7.03 4.47
TMS spacing (b) Travel time error as a functiomomber of TMS 2 22 = o =
deployed 2 25 12 419 1.62
. . . . 3 25 11 15.78 16.64 7.76 5.86
C. Comparison between Simulation and Field Results 4 25 1 518 2.92
. . . 5 2.5 11 7.29 4.51
Fig. 6 presents the comparison between liréinee T 30 ) 5.07 521
errors obtained from field versus simulation usii§SIM. 2 3.0 10 411 2.90
The travel time error for all 21 scenarios werettgi to : o v ORI 5,63
facilitate the comparison. The plot shows that thiero 5 30 9 14.83 15.80
6 3.0 9 4.25 2.12

simulation is closely consistent with the field édsanalysis
(R? = 0.85). Comparing both Figs. 4 and 5, it is obeer
that VISSIM model underestimates travel time erbyr
about 2 min; however this underestimation is caasisand V. OPTIMAL LOCATION OFTMS

therefore does not significantly affect the overall The problem of the placement of TMS within a roagwa
relationship between travel time error and numbBéerMSs.  network is not unique. It belongs to the broad dfi@f
Further, the good correlation between the travekterror location theory that deals with the placement of
derived from cleaned field measurements, and micinofrastructure facilities in a given space by optimg
simulation, suggests that the findings are reliableertain desired objectives [21]. Literature showsatt
Comparison between both data also proves the walafi operations research techniques, especially optioiza
the methodology. Table Il provides a summary ofttagel have been used successfully to determine the optima
time error obtained from simulation and field datelysis. location of desired facilities, such as placemedndeiectors

It is evident that there is a broad and varied dréimat for O-D estimation, AVI readers for travel time iesition
suggests that as the TMS spacing increases, so tHees etc [5], [22], [23].
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problem of placing TMSs within roadway, in such ayio
minimize both number of TMSs and travel time estiora

error, cannot be easily reduced to a single-objecti
multi-objective

optimization ~ problem.  Sometimes,
optimization problems are transformed into singhgeotive
optimization problem by finding a ‘common denomanat
by which both of the objectives can be representde

m potential TMS locations

Fig. 7 Solution representation

‘common denominator' is often expressed as a muyneta |Nne study area is divided into m discrete cells aadh

value. In this problem, however, costs can be assigo
number of TMSs (e.g. operating and maintenancesybsit
it is very difficult to assign a monetary valuethe fact that
there is an error in estimated travel time. Ourdigbto
accurately estimate travel time does not directipact the
traffic conditions in the field.

In such a situation, when multiple objectives arespnt,
a front of Pareto optimal solutions can be veryphgl By
using Pareto front decision-makers can visuallyogeize
solutions that will fit their current goals regardione of the
objectives and yet making sure that they get ttet bethe
other objective, in the solution they selected eRapptimal
set are feasible solutions that are not dominayeahly other
solutions. A Pareto-optimal solution cannot be ioved
upon without hurting at least one of the criteria.

During the past two decades, GAs has successfaliyi b
used for optimization of difficult problems. Unlikenost
conventional search algorithms, GA’'s search from
population of points, producing an entire set disons as
the optimization outcome. Foundations of GA arenfbin
Goldberg [12] and a comprehensive survey with ezgjiimg
applications is given by Gen and Cheng [24]. Thergst in
application of GAs in the area of detector locati®still in
its early stage. One study has illustrated GA apfibn to

cell corresponds to a potential TMS location. Tladug in
the cell indicates the existence of a TMS. A vabfel
means that a TMS is deployed at that location aval@e of
0 means there is no deployment. The sum of allwles,
or the length of the string, is equal to the numdfefMS to
be deployed.

The NSGA-Il is evaluated using the aforementiobiggiry
encoding of the decision variables. The aim ofaly®rithm
is to simultaneously optimize both travel time ereo(Refer
to 5) and the number of TMS, n, to arrive at a Sofuthat
delivers the optimal number and locations of TMS. A
population of size 100, a uniform crossover (prolitsiof
0.98), and a mutation probability of 0.01 are ugedhe
algorithm. The NSGA-II is run for 250 generatioseld
data for 1-15 NB for August’'07 (AM peak period) wased
in the algorithm. Fig. 8(a) shows the step-by-giegredure
how the NSGA-II algorithm works.

a Initially, a population of individuals,,Rsize N=100) is
created in the search domain. Then, the fithesgd¢tibe)
functions for the individuals are calculated. Theual
tournament selection, recombination, and mutatjperators
are used to create an offspring populatigno®size N. A
combined population R= RUQ, is formed. The population
is of size 2N. Next step is to sort the populatmsed on

evaluate optimal placement of detectors on Virginia non domination. Each solution is assigned a fitifessank)

freeways [20]. However, the results were based ingles
objective optimization of the travel time estimdtection.
The optimal location problem is essentially an atee
process involving conflicting objectives and coasits. A
better approach is to look upon this design probssma
multiobjective optimization problem. Genetic algbms

equal to its nondomination level (1 is the besele® is the
next-best level, and so on). The next step involves
discrimation between individuals with identical doation
rank. This is performed by favoring individuals less
crowded regions of the objective space. This eraxges the
discovery of a diverse approximation to the Pagestb Fig.

have also been found to be most successful in mulB(b) shows schematically how the sorting based on

objective optimization [13]. In this paper, the Nimminated
Sorting Genetic Algorithm 11 (NSGA II) proposed Beb et
al. [25] is applied to simultaneously optimize (imiization)
the competing objectives: travel time error and bhamof
TMS. This will deliver optimal number and locatiarf
TMSs. NSGA-Il is a heuristic multi-objective optineir
based on the genetic algorithm optimization appno#cis
one of the most popular and best performing mudjective
genetic algorithms [26]. To achieve a robust athon, a
Pareto optimal scheme is applied to ensure a ne@mal
Pareto solution [27].

nondomination and crowded distance works in tHe n
generation. Since all previous and current poputati
members are included in,Relitism is ensured. Now,
solutions belonging to the best nondominated sedré of
best solutions in the combined population and mhest
emphasized more than any other solution in the aoeab
population. If the size of Hs smaller than N, we definitely
choose all members of the set fér the new population
P.+12. The remaining members of the populatiofRre
chosen from subsequent nondominated fronts in rither @f
their ranking. Thus, solutions from the set &e chosen

The proposed algorithm (NSGA-Il) generates a Parettext, followed by solutions from the sef, land so on. This

optimal subset from which a robust and compromissgh
can be selected. Through iteration of the optimizbe
population will converge toward a Pareto front, ethi
describes a near-optimal trade-off curve. Existiteyature
shows that the Pareto-based multi objective GArnwabeen
used in the optimization of detector locations.

A. Using NSGA-II to Optimize TMS locations

An intuitive way of representing a solution foetifMS
location problem is using a string of cells as shawFig. 7.

procedure is continued untii no more sets can be
accommodated. Say that the sgig—the last nondominated
set beyond which no other set can be accommodated.
general, the count of solutions in all sets fromd=F, would

be larger than the population size. To choose Bxatt
population members, we sort the solutions of thst feont

F, using the crowded-comparison operator in descgndin
order and choose the best solutions needed toafill
population slots. The new populatiop.Pof size N is now
used for selection, crossover, and mutation toteraanew
population Q.,of size N.
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Fig. 8 NSGA-II algorithm (a) Flowchart of algorithth) Procedure at'hgeneration

The diversity among nondominated solutions is iohiced
by using the crowding comparison procedure, whichsed in
the tournament selection and during the populatéstuction
phase. Solutions that dominate other solution avered for
selection by a tournament selection procedure. Aauent
selection randomly choose a few (the exact numbdrased
on evolution pressure) individuals and then alwtake the
single best individual. In the next step, crossame mutation
are employed to generate new children from thectele
procedure. Crossover allows for the combinationuséful
traits. Mutation induces random alterations to texision
variables to allow for the examination of hew ségpoints as
well as the restoration of lost genetic materiah Alitist
replacement scheme is used to determine the aserstst of
the subsequent generation by combining the panedttiae
child populations and keeping only the N best iittiials
based on domination ranks.

B. Results from NSGA-II

Results of the NSGA-II runs for the 1-15 NB sectiare
shown in Fig. 9, 10, 11and 12. The results forkiast variant
of NSGA-II (uniform crossover, tournament selecjiavere
investigated. Several optimization runs correspogdito
different random seeds were examined to arrivehathtest
pareto optimal solution. The Pareto front generdtganulti-
objective optimizer for TMS location problem is ghed in
Fig. 9.

TravelTimeError Ihinl

4 6 8 10 12 1
Number of TMS
Fig. 9 Pareto front for NSGA-II

The Pareto front consists of the set of objectieetars
associated with the Pareto optimal set. Paretonaptset are
those solutions that are not dominated by any agh&rtions.
These solutions represent the best possible conigesrwith
respect to the competing objectives of optimizimghbtravel
time error and number of TMS. The plot shows that ¢rror
value is high when only a few TMSs are deployedyéwer,
as the deployment increases the error value dexgeadter
reaching approximately 10 (strategically-located)iSs, any
further increase in the number of TMSs may notificantly
decrease the error. The optimal placement of 13 §M&s an
accurate estimate of travel time. The corresponfiticgtion of
these 13 TMS as obtained from the optimization @oyis
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shown in Fig. 10. Fig. 11 depicts a three-dimeraliquiot
showing
generations. As the number of generation increafies,
algorithm reaches convergence and generates tie¢oFfeont
of the optimal solutions. In the first 100 geneyat, most of
the individuals use a larger number of TMS andédtaime

error is high. As the number of generation increadbe
Pareto front is starting to get a shape-the algoriinds that a
lower number of TMSs can achieve the same (or malbw

travel time error. In addition, the algorithm testeme
solutions with only few detectors and it finds thdiese
solutions generate very high travel time errorsteAf200
generations, the results seem to have reached tmuop
level between both the competing criteria. Fig.sh®ws the
number of times a potential TMS location is presenthe

optimal solution. This plot specifies the locatiohthe most
critical TMS along the study stretch. The TMSs whiie on

the zero line are not important. TMSs which arenMeen O
and 6 (excluding 6) are moderately important, wagréhe
TMSs which are placed 6 or more times in the optimdS

solution are very important.
deployments, for example, locations 22, 36, 41 d8dare
selected 11 times. This indicates that these loestiare
critical for TMS deployment. Location 22 correspend the
TMS located immediately downstream of the
interchange (Belt Route) and locations 36, 41 a@dade
located near the interchange of UT-154/Bangertghuiay
(Fig. 10).

N
) ‘% E
s
O  TMS location

# No. of times the TMS is selected
in the Pareto Optimal solution

400 S Orem

Fig. 10 Location of the Optimal Set of TMSs for3-lB Study
Section (13 TMSs)

the convergence of the algorithm over 25i

Of the 13 sets of TMS

1-218

Generation

Travel Time Eror imin.

Number of TMS

Fig. 11 Attainment of Pareto optimal solution

.
=)

o
L]
L]

Number of Solutions Placing TMS at each location
IS @
.
.
.

~

0 10 20 30 40 50 60
TMS Location

Fig. 12 Frequency Plot showing the Number of TimddS is
placed at Each Location (I-15 NB, August'07, AM Rea

VI. DISCUSSION

Results have shown that traffic performance in tewh
travel time estimate was not affected significatyyuniform
TMS spacing. With the increase in uniform TMS spgd0.5
to 3 mile) the travel time error tend to increasewever the
relationship is weak. There appears to be a broadvaried
spread of travel time error with the increase of S'kpacing.
There are some scenarios whose travel time ersord to
deviate from the general trend. Part of the conipleis
attributed to the actual location of the TMSs. Tisibecause
some scenarios might contain TMS in some locatwhih
would translate into overestimating or underestingatthe
travel time error. This indicates that there is ertan
placement of TMSs that provide better traffic periance in
terms of travel time estimates than the other plegds.
Assuming that the cost of TMS infrastructure isgmdional
to the number of TMSs installed, higher densitysioet seem
to pay off, as the costs rises sharply for littturn in
accuracy.

Further analysis using NSGA-II algorithm generatbé
Pareto front that consists of the optimal solutiofitiese
solutions represent the best possible compromigbsr@spect

(5///'/7////7'.},.-:2"’ e
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to the competing objectives of optimizing both #htime

engineering design tool.

error and number of TMS. Results suggest that @itim This empirical study illustrates the effect of TNBacing

placement of 13 TMS would outperform 57 TMS ingtdliat

0.5 mile spacing (approximately). This is becalseaverage
of travel time derived from TMSs included in thesblne

scenario depresses the actual congestion at tlyested areas
on the freeway. Results indicate that these lonatiare

critical for travel time computations and the TM&ployed in

these locations need to be regularly maintainece @hnthe

outputs of the algorithm is the frequency plot thates the

number of times a TMS is placed at any location tha

corridor for different sets of TMSs. Locations withigh

frequencies are the ones that are most criticatlémoyment
and/or maintenance. Results showed that TMS atito=a22,

36, 41 and 42 are crucial to obtain accurate tradwak

estimates on the study corridor. In general, theekbped

method shows that the TMS density needs to be highe
congested areas of a corridor. Un-congested sactibrihe

corridor need only a nominal deployment. Therefotteg

general philosophy of more is better is only amilie for

congested sections of freeway corridors. It wasndothat

TMSs (22, 41, 42) are required at merge areas em@aance
ramps, especially when the acceleration lanes laog.sThis

can be attributed to the potential reduction ifffizespeeds in
merge areas due to increased weaving.

VIl. CONCLUSION

The goal of this paper is to determine the impaft
decreasing TMS coverage on a freeway corridor otricse
such as travel time estimates. The methodologyldped in
this study to calculate the travel time error wifeaive in
determining the sensitivity analysis between TM%etage
and travel time estimate. Findings suggest thatetlie a
relationship between travel time errors with respic the
TMS spacing. More TMSs are not necessarily beReather,
the quality of estimates varied with TMS spacing &rcation.
The analysis shows that actual location of the Tisithe key
element in the estimation of travel time for theefvay
section. Depending on the TMSs “selected”, a diffiépicture
for the congestion measure along the freeway sec#m be
obtained.

Further analysis shows that selection of specifécgment
of the TMSs is essential in obtaining valid measwétravel
time. Results indicate that substantially fewer TM&re
needed for accurate travel time prediction than was for
incident detection. With carefully placed TMS detes that
are well maintained, travel time estimates can dxévdd with
an acceptable level of accuracy. Overall, it isertal to

deploy more TMSs to cover major bottleneck aread an

nominal for free-flow regimes. These findings sugjgthat
highway agencies can reduce the number of TMSscthyr
maintained and can deploy far less than the cutvalft mile
spacing guidelines. This could save in capital exere,
operations, and maintenance costs. Further, theessful
application of NSGA-II algorithm showed the potahtiof
using the optimization formulation in this problefResults
reveal that the presented approach is promisingaas

on travel time accuracy under non-incident condgio
Incident conditions were not tested within the scap this
study. Including information on incidents, road ditions,
road geometry, and work zones in the analysis m&y
developing guidelines to support freeway perforneanc
measures. To sum up, the reliability of travel tiestimates
depends on the network specific idiosyncratic lmeatof
detector stations; and less on the overall derdfitgetector
coverage.
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