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Probability of Globality
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Abstract—The objective of global optimization is to find the
globally best solution of a model. Nonlinear models are ubiquitous
in many applications and their solution often requires a global
search approach; i.e. for a function f from a set A ⊂ Rn to
the real numbers, an element x0 ∈ A is sought-after, such that
∀x ∈ A : f(x0) ≤ f(x). Depending on the field of application,
the question whether a found solution x0 is not only a local minimum
but a global one is very important.

This article presents a probabilistic approach to determine the
probability of a solution being a global minimum. The approach is
independent of the used global search method and only requires a
limited, convex parameter domain A as well as a Lipschitz continuous
function f whose Lipschitz constant is not needed to be known.

Keywords—global optimization, probability theory, probability of
globality

I. INTRODUCTION

AN optimization problem can be represented in the fol-

lowing way: For a function f from a set A to the real

numbers, an element x0 ∈ A is sought-after, such that

∀x ∈ A : f(x0) ≤ f(x). (1)

Such a formulation is called a minimization problem and the

element x0 is a global minimum. Without loss of generality, it

is sufficient to investigate minimization problems; maximiza-

tion problems can be transformed to minimization problems

via duality. The maximization of a real-valued function g(x)
can be regarded as the minimization of the transformed

function

f(x) = (−1) · g(x). (2)

Depending on the field of application, f is called an

objective function, cost function, energy function, or energy

functional. A feasible solution that minimizes the objective

function is called an optimal solution.

Typically, A is some subset of the Euclidean space Rn, often

specified by a set of constraints (equalities or inequalities) that

the members of A have to satisfy. The domain A of f is often

called search space or choice set, while the elements of A are

called candidate solutions or feasible solutions. In this article

the domain A shall always be limited and convex.

Generally, a function f may have several local minima,

where a local minimum x� satisfies the expression f(x�) ≤
f(x) for all x ∈ A in a neighborhood of x�:

||x− x�|| ≤ δ, δ > 0. (3)
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In other words, on some region around x� all function values

are greater than or equal to the value at x�. The occurrence

of multiple extrema makes problem solving in (nonlinear)

optimization very hard. The global (best) minimizer is difficult

to obtain without supplying global information, which in turn

is usually unavailable for a nontrivial case. Since there is

no easy algebraic characterization of global optimality, global

optimization is a difficult area, at least in higher dimensions

for non-trivial problems.

As most global search techniques cannot ensure that a found

solution x0 is a global minimum, the question whether x0

is only a local minimum or a global one remains open. In

this context a probabilistic approach to estimate, whether a

solution is the globally best solution, is a valuable tool. The

presented approach does no more than that. It uses the function

evaluations f(x1), f(x2), f(x3), . . . f(xm) returned by any

global search method and analyzes the domain’s sampling

density. If the parameter domain A is convex, and if the

function f is Lipschitz continuous, it is possible to determine

the probability of the found solution being a global minimum.

The Lipschitz constant is not needed to be known.

II. RELATED WORK

A. Numerical Analysis

The presented approach is independent of the used algo-

rithms and methods of global optimization which can be

found in, for example, “Numerical Methods” [1], “Numerical

Optimization” [2], “Introduction to Applied Optimization” [3],

“Compact Numerical Methods for Computers: Linear Algebra

and Function Minimisation” [4], as well as in “Numerische

Methoden der Analysis” (english: Numerical Methods of

Analysis) [5] – just to name a few. Besides these introductions

and overviews some books emphasize practical aspects – e.g.

“Practical Optimization” [6], “Practical Methods of Optimiza-

tion” [7], and “Global Optimization: Software, Test Problems,

and Applications” [8].

Current overviews on the latest research results have been

published in “Large-Scale Nonlinear Constrained Optimiza-

tion: A Current Survey Algorithms for continuous optimiza-

tion: the state of the art” [9], “Numerical methods for large-

scale nonlinear optimization” [10], and in “Robust optimiza-

tion – A comprehensive survey” [11].

B. Verified Computing

Unfortunately, most global search techniques cannot en-

sure that a found solution is a global minimum. Very often

the question, whether a better solution exists, remains open.

An exception are verified computation techniques for global
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optimization [12]. These techniques often use interval arith-

metic [13] to calculate an optimal solution, respectively an

inclusion, with a guaranteed error bound [14].

As a consequence, the global optimization methods can be

classified into two groups: verified optimization with guaran-

teed results on the one hand and non-verified optimization

without any indications on optimality on the other hand. The

presented, probabilistic approach in this article is in-between.

It determines the probability of a solution being a global

minimum.

C. Probability Theory

Probability theory is concerned with random phenomena

and stochastic processes. As it is the mathematical foun-

dation for statistics, probability theory is essential to many

fields of applications that involve quantitative analysis of

data [15], [16].

Let Ω be a nonempty set. Then F is called a σ-algebra, if

1) F contains the empty set ∅ ∈ F .

2) If A is in F , then its complement (in Ω) A = Ω\A also

belongs to F .

3) For an arbitrary sequence (An)n of subsets of F the

union
⋃

i∈N Ai is in F .

In a sample space Ω each subset A ⊂ Ω which belongs to F
is called an event and is associated with a probability measure

P , which obeys the axioms of probability:

1) ∀A ∈ F : P (A) ≥ 0,

2) P (Ω) = 1,

3) P
(∑∞

j=1 Aj

)
=

∑∞
j=1 P (Aj) for all sequences

(An)n∈N of pairwise disjunct events.

The triple (Ω,F , P ) is called probability space. The condi-

tional probability of an event A assuming that B has occurred

is denoted P (A|B). It can be calculated via

P (A|B) =
P (A ∩B)

P (B)
=

P (A) · P (B|A)
P (B)

. (4)

If the conditional probability P (A|B) of an event A assuming

event B satisfies the equation P (A|B) = P (A), the events A
and B are called statistically independent. In this case

P (AB) = P (A ∩B) = P (A) · P (B). (5)

A real function whose domain is the probability space and for

which

1) the set {X ≤ x} is an event for any real number x and

for which

2) the probability of the events {X = −∞} and {X = ∞}
equals zero,

is called random variable. Its probability distribution describes

the range of possible values it can attain and the probability

that the value of the random variable is within any measurable

subset of that range.

A σ-algebra F is discrete, if a set of subsets (Ai)i∈I of Ω
exists with

1) the index set I is not empty ∅ 
= I ⊂ N,

2) ∀ i 
= j : Ai ∩Aj = ∅, and

3) Ω =
⋃

i∈I Ai,

so that every element A ∈ F can be described by a union

of some Aj . Furthermore, if the set {Ai|i ∈ I} is finite, the

probability space (Ω,F , P ) is called finite.

For random variables in discrete probability spaces the char-

acteristic values of expectation and variance are of importance.

If for a random variable X : Ω → R of a discrete probability

space (Ω,F , P ) the sum
∑

ω∈Ω X(ω) · P ({ω}) < ∞ con-

verges, the expectation value of X is defined by

E(X) =
∑

ω∈Ω

X(ω) · P ({ω}). (6)

The variance of a probability variable X of a discrete proba-

bility space (Ω,F , P ) is

V (X) = E((X − E(X))2). (7)

In stochastics and statistics it is convenient to omit brackets, if

the short notation does not cause any confusion. The variance

is then written V (X) = E(X − EX)2. The square root of

V (X) is called standard deviation. It is noted

σ(X) =
√

V (X). (8)

The theory of probability and statistics contains many the-

orems which allow approximating various probability terms.

According to the Tschebyshev inequality for any random

variable X with existing expectation value and variance, the

equation

P (|X − EX| ≥ ε) ≤ 1

ε2
· V (X), ε > 0 (9)

is satisfied.

The central limit theorem by JARL WALDEMAR LINDE-

BERG and PAUL LÉVY states that the sum of independent

random variables will approach a normal distribution regard-

less of the distribution of the individual variables themselves.

More precisely, if (Xn)n≥1 is a sequence of independent and

identically distributed random variables with positive, finite

variance σ2 = V (X1) and expectation value μ = EX1, the

limit

lim
n→∞P

(
a ≤

∑n
i=1 Xi − n · μ

σ · √n
≤ b

)
= Φ(b)− Φ(a), (10)

(−∞ ≤ a < b < ∞) converges to the differences

Φ(b)−Φ(a) of the cumulative Gaussian distribution function

Φ(x) = 1√
2π

∫ x

−∞ e−t2/2 d t. According to HANS BANDE-

MER and ANDREAS BELLMANN this approximation by the

standard normal distribution is practicable for sequences with

n > 30, [17].
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D. Statistical Estimation

According to ERIC WEISSTEIN an estimate is an educated

guess for an unknown quantity or outcome based on known

information. The making of estimates is an important part

of statistics, since care is needed to provide as accurate an

estimate as possible using as little input data as possible. Often,

an estimate for the uncertainty of an estimate can also be

determined statistically. A rule that tells how to calculate an

estimate based on the measurements contained in a sample is

called an estimator [18].

More formal, the initial situation consists of a probability

space (Ω,F , P ), a random variable X and a realization (an

observed value) x of X; e.g. x = X(ω) for an element ω ∈
Ω. The distribution is not known completely. The class of

distribution is assumed and its free parameters, which shall

be estimated, are denoted by ϑ. To indicate the dependency

on the distribution, its expectation value, its variance, etc. are

written Pϑ, Eϑ, and Vϑ. The set of all possible parameters

ϑ is the parameter space Θ. For some data x the probability

Pϑ(X = x) can be interpreted as a function of ϑ. This function

Lx :

{
Θ → [0, 1]
ϑ 
→ Pϑ(X = x)

(11)

maps each parameter ϑ to the probability to obtain the ob-

served data x. Lx is called likelihood function. If Lx reaches

a maximum value ϑ̂ for each x, the function ϑ̂(x) is called

maximum likelihood estimator.

A maximum likelihood estimator is a so-called point es-

timator. Its estimate is a single point / a single datum. As

the estimated value T (x) of an estimator T and the unknown

parameter ϑ may differ significantly, confidence regions have

been introduced: A confidence region C(x) for ϑ is a subset

of all possible parameters Θ. Is C(x) an interval in Θ ⊂ R
with endpoints l(x) and L(x), it is called confidence interval.

Confidence intervals are a form of interval estimation. In

contrast to point estimation it indicates the precision with

which the parameter ϑ is estimated. A confidence interval

C(x) = [l(x), L(x)] for ϑ is said to have confidence level

1− α, 0 < α < 1, if

Pϑ ({x ∈ Ω : ϑ ∈ C(x)}) ≥ 1− α, ∀ϑ ∈ Θ . (12)

For n independent and identically distributed random vari-

ables Xi with unknown mean μ and unknown variance σ2,

the sample mean Xn and the unadjusted sample variance can

be calculated via

Xn =
1

n

n∑

i=1

Xi and S2
n =

1

n

n∑

i=1

(Xi −Xn)
2, (13)

which are used to define interval estimators of mean and

variance: The interval estimator of the mean μ is

Tμ
n =

[
Xn −

√
S2
n

n
z0 , Xn +

√
S2
n

n
z0

]
(14)

with 0 < z0. The probability that the unknown mean μ is

within Tμ
n is

P (μ ∈ Tμ
n ) = P

(
−
√

n− 1

n
z0 < Zn−1 < +

√
n− 1

n
z0

)
,

(15)

where Zn−1 is a standard Student’s t-random variable with

n− 1 degrees of freedom. Similarly, the interval estimator of

the unknown variance is

T σ2

n =

[
n

z2
S2
n ,

n

z1
S2
n

]
(16)

with 0 < z1 < z2. The probability that the unknown variance

is within T σ2

n is

P
(
σ2 ∈ T σ2

n

)
= P (z1 < Z < z2) , (17)

where Z is a χ2 random variable with n degrees of freedom.

For practical applications, density functions and their quantiles

are tabulated in standard textbooks [19]. If only an upper or

lower bound is needed, asymmetric quantiles can be chosen.

III. CO-DOMAIN ESTIMATION

Let f be a real-valued, Lipschitz continuous function de-

fined on a limited, convex set A ⊂ Rn. During an optimization

process, a sequence of parameters x1,x2, . . . ,xm and corre-

sponding evaluations f(x1), f(x2), . . ., f(xm) have led to a

minimum candidate x0. The probability of x0 being a global

minimum can be estimated in a two-step process.

1) For each pair (xk, f(xk)) exists a confidence region Rk

with confidence level 1− αk, which does not contain a

parameter with a function value less than the minimum

candidate; i.e.

P (∃x ∈ Rk : f(x) < f(x0)) = α. (18)

2) With the assumption that the distribution of global

minima is uniform, the probability of globality is

P (∀x ∈ A : f(x) > f(x0))

=

∑m
i=1(1− αi) · vol(Ri)

vol(A)
, (19)

with disjunct regions Ri, whose volume is vol(Ri). Due

to the limitation of A, the volume vol(A) < ∞ as well

as the volumes of its subsets Ri exist.

A. Lipschitz Estimator

In local coordinates with origin at (xk, f(xk)) the sequence

of parameters x1, . . . ,xk−1,xk+1, . . . ,xm and their corre-

sponding function values can be described by local vectors

Δk,i = xi − xk and fΔ
k,i = f(xi)− f(xk). (20)

As x0 is a minimum candidate, fΔ
k,0 is a lower bound of

all fΔ
k,i, i = 1, . . . ,m. Furthermore, as f is assumed to be

Lipschitz continuous, the quotient of function values and

parameters is limited:

∃L ∈ R, L ≥ 0 :
|fΔ

k,i|
||Δk,i|| < L. (21)
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This bound L can be approximated via interval estimators

Tm of mean and variance of |fΔ
k,i| / ||Δk,i|| and the fact

that within normally distributed values, realizations of random

variables are within the intervals μ ± σ (in 68.3%), μ ± 2σ
(in 95.4%), μ ± 3σ (in 99.7%), respectively, μ ± zσ (in

Φ0;1(z)−Φ0;1(−z) with Φ0;1(z) =
1√
2π

∫ z

−∞ e−
1
2 t

2

dt) using

the standard deviation σ =
√
V (fΔ) .

Consequently, L can be limited probabilistically by the

combined probability of the estimators confidence levels and

the distribution of function value realizations: e.g. to ensure

a confidence level of 92.69% for L the interval estimators

for μ, σ, and μ ± zσ may have each a confidence level of

97.5%, which would lead – as a conditional probability – to

the desired result

(1− 0.0731)︸ ︷︷ ︸
=0.9269

= (1− 0.025)︸ ︷︷ ︸
=0.975

·(1− 0.025) · (1− 0.025). (22)

B. Probability

Having an probabilistic, upper bounded Lipschitz constant

Lk with combined probability 1 − αk, the function f can be

limited probabilistically by a linear function fL. Then, the

region Rk is defined by a sphere with radius rk, so that all

values x ∈ Rk have fL(xk) > f((x)0). As Lk is finite,

f(xk) = fL(xk), and f(xk) > f(x0), the sphere Rk has

a positive radius. If all regions Ri are pairwise disjunct, the

probability of globality is

P (∀x ∈ A : f(x) > f(x0))

=

∑m
i=1(1− αi) · vol(Ri)

vol(A)
. (23)

IV. IMPLEMENTATION

A. Lipschitz Estimator

The mean and variance estimators of |fΔ
k,i| / ||Δk,i|| do not

utilize the complete set of function evaluations but a sufficient

subset (with cardinality > 30, see [17]) of nearest neighbors

for each (xk, f(xk)). The number of nearest neighbors has two

contradicting effects: on the one hand, the more neighbors the

estimation uses, the better the estimation result; on the other

hand, the more neighbors the estimation uses, the worse the

approximation of f ’s local properties becomes (i.e. areas, in

which f is constantly zero, becomes approximated by a large

Lipschitz constant underestimating the region Rk).

This problem can be solved by a greedy algorithm, that

starts with a statistically significant number of nearest neigh-

bors and expands the neighborhood radius as long as (1−αi) ·
vol(Ri) increases.

B. Probability

The calculation of the combined probabilities relies on

pairwise disjunct regions Ri. Our implementation uses ε-

sets [20] and discrete oriented polytopes [21] to restrict and

limit overlapping regions; i.e. each region is represented by its

center xk ∈ Rn and a fixed set of rays. The ray directions are

precalulated by a spherical code distribution [22], [23], [24].

Along each ray the maximum region expansion is determined

and stored as a simple scalar value: the expansion along

a direction is limited by the region’s radius, the domain’s

boundary ∂A and by neighboring regions. In this way, all

geometric calculations can be reduced to ray-intersections.

V. CONCLUSION

The global (best) minimizer is difficult to obtain without

supplying global information, which in turn is usually un-

available for a nontrivial case. Due to the fact that there is

no easy algebraic characterization of global optimality, global

optimization is a difficult area, at least in higher dimensions.

In Equation (19) this fact is quantified: in practice the domain

A is very often a hypercube (or without loss of generality, a

scaled hypercube). While the hypercube’s volume is constant

and therefore independent of the search space’s dimension n,

the regions Ri have a hyperspherical shape S whose unit

volume is vol(S) = πn/2/Γ(n2 + 1). This function has a

maximum at ≈ 5.28 and converges to zero for increasing

dimensions n. As a consequence, the probability to find the

globally best solution converges to zero as well.

A. Contribution

Most global search techniques cannot ensure that a found

solution x0 is a global minimum. Consequently, the ques-

tion whether x0 is only a local minimum or a global

one remains open. In this context, the presented approach

gives a probabilistic answer. It uses the function evaluations

f(x1), f(x2), f(x3), . . . f(xm) returned by any global search

method and analyzes the domain’s sampling density. If the

parameter domain A is convex, and if the function f is

Lipschitz continuous, it determines the probability of the found

solution being a global minimum (without having to know the

Lipschitz constant).

B. Benefit

The relation between undersampled regions and regions of

high confidence level does not only determine the probability

of globality; this probabilistic framework offers a new kind

of analysis for the results of optimization processes. It can be

interpreted as a probabilistic convergence criterion, according

to which an optimization technique has to process the search

space until an a-priori confidence level is reached. Moreover,

it can identify undersampled regions within the search space in

order to guide an optimization process. Especially stochastic-

and random-based optimization processes – such as Differen-

tial Evolution [25], genetic algorithms [26], etc. – may benefit.
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[12] M. Kieffer, M. C. Markót, H. Schichl, and E. Walter, “Verified global
optimization for estimating the parameters of nonlinear models,” Mod-
eling, Design, and Simulation of Systems with Uncertainties, vol. 1, pp.
129–151, 2011.

[13] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz, C++ Toolbox for
Verified Computing, R. Hammer, M. Hocks, U. Kulisch, and D. Ratz,
Eds. Springer, 1997.
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