
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

406

Abstract—Real-time embedded systems should benefit from
component-based software engineering to handle complexity and
deal with dependability. In these systems, applications should not
only be logically correct but also behave within time windows.
However, in the current component based software engineering
approaches, a few of component models handles time properties in
a manner that allows efficient analysis and checking at the
architectural level. In this paper, we present a meta-model for
component-based software description that integrates timing
issues. To achieve a complete functional model of software
components, our meta-model focuses on four functional aspects:
interface, static behavior, dynamic behavior, and interaction
protocol. With each aspect we have explicitly associated a time
model. Such a time model can be used to check a component’s
design against certain properties and to compute the timing
properties of component assemblies.

Keywords—Real-time systems, Software architecture,

software component, dependability, time properties, ADL, meta-
modeling.

I. INTRODUCTION
HE rapidly increasing complexity of real-time
embedded systems is not the only factor challenging the

development. Also, the tasks they handle are manifold,
ranging from classical control devices to high-end
multimedia applications, automation, and biomedical
engineering. With increasing complexity one can observe a
shift from electronic and pure control based systems
towards software-based systems [1].

In these systems, software has become omnipresent,
critical, and complex. Time-to-market of services, which
rely on system engineering (operating systems, distributed
systems, middleware), is becoming a strategic factor in a
competitive market in which operation (deployment,
administration) costs are much higher than development
costs.

In this context, component-based software architectures
have naturally emerged as a central focus in real-time
embedded systems. Component-Based Software
Engineering (CBSE) is generally recognized as one of the
best way to develop, deploy and administrate increasingly
complex software with good properties in terms of
flexibility, reliability, scalability, lower development cost
and faster time-to-market through software reuse and
programmers productivity improvements.

A CBSE uses architecture description languages to
represent software architecture and its elements, in
particular, components, connectors, interfaces, and
configuration. An ADL models component structure, their
communication patterns, and behavior. It is also used to

analyze properties of the system early in CBSD process.
Many different architecture description languages (ADLs)
have evolved over the years. Some of them targets specific
domains or aspects of architecture, others are more special
purpose languages.

Architectures are naturally colored by the domain or
system family within which they are used, which often gives
rise to specific requirements to architecture descriptions.
Timing properties are an important aspect of real-time
embedded systems. Modeling of time should be a central
concern in model-driven engineering for these systems.

Timing analysis at the architecture level allows validating
the system early in the development process. To do this, an
abstract behavior model of the components should be
specified such as durations of computations, which could be
derived from a first evaluation of the defined components or
from a worst-case-execution-time (WCET) analysis of the
pre-existing other ones. Hence, modeling of time should be
a central concern in component-based engineering for real
time and embedded systems. Time characteristics must be
included in different abstraction levels from the architecture
of the whole system to the source code level.

In some architecture description languages, time
properties are specified in structured or standardized plain
English texts, and especially as a contract model. However,
working with time properties of software components’
assemblies is even more difficult, because loosely defined
time concepts do not compose well and they cannot be used
to build quality of service contracts. Moreover, in these
languages, time properties haven’t represented in
sufficiently explicit manner [2].

In this paper, we present, a set of common and generic
concepts allowing behavioral specification, in meta-
modeling level, while integrating timing properties. Besides
handling these timing properties, our software architecture
description meta-model allows efficiently managing the
large explosion of various behavioral concepts and relations
among them. This offers to architects a complete and well
organized definition of behavioral concepts that can be used
to enhance architectural entities and models by specifying
their behavior in a generic way. It allows describing and
manipulating time as a separate dimension of component-
based software architectures in order to improve the
modularity at the software architect definition step.

This work is an extension of the ones described in [3],
where we have proposed a meta-model, which supports
behavior specification of software architecture. The high
level definition of the meta-modeling concepts and their
classification into four different perspectives, allowed
integrating time relative properties in a generic manner. It

A. Bessam, and M. T. Kimour

Multi-view Description of Real-Time Systems’
Architecture

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

407

could be aligned with the MOF definition [4].
Describing software architecture from multiple

perspectives provides more simplicity in using and
understanding such description. Also, it offers more
advantages for analysis of its functionality. Integrating
multiple views representation for software architecture
provides high level extensibility of complementary views or
concerns of a software system. Indeed, in [5], Medvidovic
and Roshandel have shown that a complete description of
software architecture should be taken according four
viewpoints: interface’s behavior, static behavior, dynamic
behavior, and interaction behavior.

Interface behavior captures, in particular, how a
component behaves with other architectural entities in the
interface level. Static behavior is the discrete functionality
of architectural elements. It is described, in [5], by a set of
properties: {a set of state variables, an invariant, and a set of
operations}. Dynamic behavior is the continuous state
changes of architectural elements during their execution. In
[5] dynamic behavior is defined by a set of properties {an
initial state, a set of states, and a set of transitions}.
Interaction or connection behavior is the specialization of
interaction protocols through an external view of the
architectural entity (interaction's ordering, interaction's
dependencies, etc.).

Our meta-modeling approach takes into account those
aspects and integrates the time model at each of the four
views. In doing so, we should have a distinction between
what is modeled and what is the framework where the
model and its entities live, to make it possible to apply meta-
modeling to real software development. This will cope with
the context of Model Driven Engineering, where meta-
modeling is presented as «a convenient way for isolating
concerns of a system [6]. Meta-model specifies the set of
concerns that should be taken into account while creating a
model.

The remainder of this paper is organized as follow: in
section 2, we provide an overview on behavior specification
in software architectures description. This section focuses
on the value of specifying behavioral aspects of architecture
elements and presents main techniques used by academic
and industrial communalities to specify behavior of
architectural elements. In a third section we give a brief
overview of the general properties in real-time embedded
systems with respect to architecture description. Section 4 is
reserved to describe the proposed multi-view description of
architectural elements behavior. In section 5, we present
what are timing properties and how they are used to express
real-time embedded system characteristics and how they are
integrated in the proposed meta-model. The paper is
concluded with a discussion of given results and some
remarks on our objectives for future work in Section 6.

II. BEHAVIOR MODELING IN SOFTWARE ARCHITECTURES
In this section we focus on the value of specifying

behavioral aspects of architecture elements. Also, we focus
on techniques frequently used for specifying behavioral
aspects of architecture elements. Specifying behavior is a
way to add semantic detail to structural elements and their
interactions that have time related characteristics. Architects

describe behavior to specify how an element behaves when
stimulated in a particular way, or to specify how a set of
elements react with each other. Specification of architecture
elements behavior is used for system analysis, for
constraints enforcing, and for consistent matching of
architectures from one level of abstraction to another. It is
indispensable to reason about and to explore, in
architectural level, the completeness, correctness, and
quality attributes of the final product resulting of
architecture.

Architecture behavior description is supported by some
existing ADLs, although to varying degrees from expressing
behavioral information in component property lists of
UniCon to model of dynamic behavior in Wright and
Rapide. Along this spectrum we find others representations.
Connectors’ behavior is defined especially in ADLs which
model explicitly connectors as first class entities.

In software architecture, to specify architectural elements
behavior, many techniques have evolved over time, scaling
from a documentation written in plain English attached to
each element to some sophisticated formal methods [7]. One
of the oldest forms of component behavior specification is
based on enhancing component interfaces with pre- and
post-conditions. A more convenient approach to specifying
component behavior is employing various process algebras.
These formal methods became domains of interest for a
majority of component models originating in the academic
area.

III. CBSE IN REAL-TIME EMBEDDED SYSTEMS
CBSE has been introduced to mange the growing

complexity of modern software systems. This complexity is
issued from the diversity and complexity of both functional
and non-functional properties of systems. Mean of
evaluation and analysis of these properties before
programming phases is given by the description of system
architectures using architecture description languages. This
requirement is increased with real time systems, for which
early simulation and validation steps are critical to assess
safety properties. A real-time embedded system is
characterized by a specific kind of tasks, called real-time
tasks. A real-time task is defined in [8] as “an activity that is
scheduled for handling in the entire system. It may be
periodic, triggered by a periodic timer, or a periodic,
triggered by an external interrupt”.

A. Time Properties of Real-Time Embedded Systems
Many real-world computing systems are associated with

time constraints [9]. These systems require that their own
computations must complete before specific deadlines to
ensure a safety execution without any damages. Such
systems are called real-time systems. Typical examples are
nuclear power plants, the military command and control,
automatic manufacturing factories, crisis action
management, and air traffic control systems. Real-time
system within its timing constraints must accept any stimuli
produced by the environment that is an important factor in
this kind of systems. Real-time system takes into account
timing properties and requires mechanisms to handle this
kind of information. So, we must insure, in architectural

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

408

level, a well definition and handling of different timing
requirements of the system and ensure that the system
performance is both correct and timely. As examples of
timing properties in real-time systems, we can talk about
constraints on the execution platform, periodicity of tasks
handling, execution time, etc.

B. ADLs for Real-Time Embedded Systems
Architecture specificities of real-time systems pertain

more to non-functional constraints, such as different quality
of service properties. Several models in real systems
architectures must be improved by adding temporal
characteristics. Various ADLs support time concepts in a
heterogeneous granularity. They represent time
characteristics as second class concepts. Such properties are
generally attached, easily, to architectural elements. In real-
time embedded systems, time properties must be represented
and treated as a first class concept because they are much
more difficult to handle them when they are directly linked
to architectural entities.

AADL [10] uses hybrid automata to define the temporal
constraints of its concepts. It integrates some variables to
denote the time in hierarchical finite state machine. The
expression of these temporal constraints is done in the level
of states and guards over transitions. They express the
timing characteristics about discrete transitions occurrence.
AADL offers a binding mechanism to link software
components to resources components. Time description in
AADL is focused on resources models and lacks model
elements to describe the application components
themselves.

In SysML [11], different concerns are separated from
each other. This separation is provided by SysML allocation
mechanism to represent, in an abstract level, cross-
associations among model elements with the broadest
meaning. It differentiates three of many possible categories:
behavior, flow and structure allocations.

MARTE [12] and the UML profile for scheduling, time
and performance, add time and performance dimensions to
some model elements. They base on various abstract
concepts to specify timing constraints. The abstract concept
of Time is a generalization of Instant and Duration concepts.
TimedEvent is used in MARTE to express an event or
behavior bound to time through a clock. So, time here is not
a simple notation extension but it changes completely the
semantic of the timed model elements. These profiles define
concepts for modeling real-time embedded systems without
precise semantics.

IV. A FOUR VIEWS-BASED ARCHITECTURE DESCRIPTION
An efficient architectural description should provide a

multi view representation of architectural elements and their
relative properties. The complicated aspect in architecture
description is architecture dynamicity. So, it is indispensable
to give more detailed views of architecture behavior.
Authors of [13]-[14]-[15]-[16]-[17] have recognized that
modeling from multiple perspectives is an effective way to
capture several properties of component-based software
systems. For example, UML, in its last version, has
employed thirteen views to model requirements from

several system aspects.
To have a consistent specification of software

architecture behavior, we focus on multiple functional
modeling aspects of software components. We adapt the
four-view modeling technique [5] to allow a high
abstraction level description of functional characteristics of
software entities from four perspectives. In the following
text of the section, the terms in italics have direct
representation in the meta-model.

In order to have a more complete set of behavioral
concepts, we have conducted a detailed study of the most
notable ADLs and their supporting techniques to specify
behavior: Darwin [18], Wright, [19]-[20], MetaH [21],
UniCon [22], Rapide [23], and C2 [24]. Hereafter, we
present, in Table I, the important concepts used by previous
ADLs for specifying behavior of software architecture
elements from the four functional viewpoints allowing the
definition of views presented previously.

TABLE I

BEHAVIORAL CONCEPTS FROM FOUR VIEWS
Interface’s
behavior Static behavior Dynamic

behavior
Interaction
behavior

Event Event Guard Event
Observed
event Post-condition Transition Interaction

rule
Emitted event Pre-condition State Interaction

Event
alternation Result Activity

Synchrono-
us
interaction

Observed
event Process Transition

rule

Asynchro-
nous
interaction

Function call Alternative
activity

Source
state -

Message
passing Control activity Targeted

state -

Event
sequence

Indeterministic
choice activity -

- Parallel activity - -
- Sequence activity - -
- Recursion activity - -

- Deterministic
activity - -

- Format conversion
activity

- -

A. Interface Behavior View
Interface description is taken into account by several

ADLs in different abstraction levels from programming
languages to general purpose modeling notations such as
UML. Behavior of software architecture elements is
focused, generally, on the level of architectural entities
interfaces. Various ADLs such as Rapide [23] and Wright
[19], describe behavior within interface description.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

409

 InterfaceBehavior

EmitedEvent

EmEentCont: S

ObsrvedEvent

ObEventCon:S

FunctionCall Query

name: String
DefQuer: S

CallResponse

« abstract »
Event

name: String

Interface
Has

EventSequence

EventAlternation

Fig. 1 Package 1: Interface behavior meta-model

The first package, depicted by Fig. 1, of the proposed

meta-model, includes all behavior concepts allowing
description of the interface behavior. Both, components,
connectors and the entire system architecture are handled as
first class entities in this level of description. So, when we
talk about component interfaces, connector interfaces and
the whole architecture interface we use respectively, port,
role and architecture interface. The principle behavior unit
in the interface behavior level is the Event concept. An event
is a class that abstracts all events used or generated by the
architectural elements. An interface behavior may be
generated by a sequence or an alternation of various events.

B. Static Behavior View
Static behavior view extends interface one with static

behavioral semantics [25]-[26]-[27]. This extension is
supported by several ADLs to represent behavioral
characteristics in specific discrete state during the system’s
execution. Static behavioral specification is used to describe
several states of a component during specific points of time,
without expressing the manner how the component arrives
at a specific state. It focuses on what a component does
handle while it is in a given state.

In this level we specify functional properties of an
architectural entity in terms of its several states and relative
operations or activities. Instances of a state represent
different states of an architectural element during its
execution. To combine and handle events, we find the
Activity class. An activity is the abstraction of all processes
performed by an architectural entity in the context of
software architecture.

Activity

name: String

Pre-condition

IdPre: String
PrCContent: String

Post-condition

IdPost: String
PoCContent: String

Result

name: String
Rcontent: String

hasResult
*

hasPreCondition

hasPostCondition

*

*

AlternativeActivity

InAlternationWith

*

ControlActivity

IndeterministicChoiceActivity

ParallelActivity InParallelWith

*

SequencyActivity
InSequenceWith

*

RecursionActivity

DeterministicChoiceActivity

FormatConversionActivity

Event

« from InterfaceBehavior »

1
StaticBehavior

Interface

Tied to

Fig. 2 Package 2: Static behavior meta-model

C. Dynamic Behavior View
Dynamic component behavior gives more detailed

specification of the component behavior by adding
information about the manner how it arrives at certain states
during its execution. It is used to express the continuous
state change of architectural elements. This view gives more
detailed internal information about each architectural entity.
Dynamic behavior concepts can be inspired from UML
statechart meta-model.

The main information depicted from this view is a set of
states and a sequence of guarded transitions from a source to
a targeted state. Each transition has a source state and an
arrival or a target state.

A transition can be composed of a guard and, usually, an
event. In a state, a structural element can perform a set of
activities. So, the activity class, in this view, is used to
describe the internal operations of the architectural entity.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

410

 DynamicBehavior

Gard

name: String
type: String

State

name: String
isInitial: Boolean

Transition

name: String

Event

« from InterfaceBehavior »

SourceState 1

TargetState

1

Has
1

RelativeTo

Activity

« from StaticBehavior »

1

Fig. 3 Package 3: Dynamic behavior meta-model

D. Interaction Behavior View
This view is focused on representing of interaction among

architectural entities. It adds information about the manner
how architectural entities communicate during their
execution in time.

Interaction behavior view presents detailed external
information about each architectural element. It is used to
present continuous states changes of an architectural entity
according to its information interchange with its
environment and basing on some interacting rules.

Specification of invocations sequences is done
independently from internal state and operation’s pre-
conditions, because interaction behavior is reserved for
external view of the architectural element.

The set of interaction rules forms protocols of
interactions. And one interaction is based on a set of events.

InteractionRules InteractionEvents
Interaction

name: String

SynchronousMessage AsynchronousMessage

Rule
Event

« from InterfaceBehavior »
 name: String

*
*

InteractionBehavior

Message
Consists of

*

Fig. 4 Package 4: Interaction behavior

An interaction is an entity allowing definition, through its

instantiation, of different interactions among others
structural entities of the system. To make the meta-model
more flexible, an interaction consists usually of several
massages, some of which can be synchronous, some others
can be asynchronous. The set of interaction rules forms
protocols of interactions.

E. Structural Model of Views Dependencies
The interface is in the core of all behavior views. Because

static, dynamic and interaction behaviors are expressed in
relation with architectural entities interface. At static
behavior meta-modeling level, the pre- and post-conditions
are linked to the specific interface used for accessing to the
corresponding operation. The hole schema of the proposed
meta-model is defined in Fig. 5, where different packages
are interrelated by dependency relationships.

Package: Interface behavior metamodel

Package: Interaction
behavior metamodel

Package: Static
behavior metamodel

Package: Dynamic
behavior metamodel

Fig. 5 Structural model of views’ dependencies

V. ADDING TIME PROPERTIES
After defining all behavioral properties in the

architectural entities in four distinct packages relative to
different functional viewpoints, we add some timing
properties into it. Time properties are important concept in
any architectural aspect description, especially for real-time
systems. In this section we show the addition of time
attributes expressed in a meta-modeling level from four
different views. The principle of this section is summarized
in Fig. 6.

Software architecture
Behavior metamodel

Dynamic
behavior

Static
behavior

Interface
behavior

Interaction
behavior

Time properties

Fig. 6 Time dimension in the ADL metamodel

In order to add these time properties to the meta-model

we will classify various timing characteristics by view. This
multi-view based separation provides a high level of
simplicity and extensibility in time relative properties
definition. In elicitation of time constraints and concepts in
order to add them to behavior in real time systems
architectures, we have based on a set of time patterns
extracted from various works such as [28]-[29] on real time
systems specification. For example, we have elicited
concepts of response time, delay, and period of service call,
duration and execution time.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

411

A. At the Dynamic Behavior View
In this level, we have firstly précised a number of basic

concepts where we have, in next step, integrated time
relative properties in our meta-model. Notice that in this
view, as shown in Fig. 7, time is indispensable to express
timing constraints on different component states (duration,
transition time, transition duration, etc). A transition is
represented in various works relative to real time systems
engineering by an intermediate state. In our case transition
is considered as a first behavioral entity. For which we
define time characteristics in independent manner. Plus
functional triggering conditions of the transition, we define
also a set of time dependent enabling conditions to express
at which time points the transition is possible. We define
also a set of urgency attributes those are represented by
Boolean attributes in the transition class: isLazy,
isDelayable, isEager to indicate, respectively, if we have a
lazy, a delayable or an eager transition. Urgency attributes
allow controlling time progress at the semantic level and
they are very adaptable in this architecture meta-modeling
level. These variables are used to express next phenomena:

- Lazy transition can wait forever,
- Eager transition has always the high level of priority. It

never waits,
- Delayable transition can wait, but only until the falling

edge of their time dependent enabling condition represented
in the guard class.

For each state we have defined a set of timing properties:
duration of the state and its triggering and ending time.

Transition

TransitionClock: time
TransitionDuration: real
isLazy: Boolean
isDelayable: Boolean
isEager: Boolean

State

name: String
isInitial: Bool
StateDuration
StateTriggeringTime
StateEndingTime

Gard

name: Strind
type: String

TimedCondition

FunctionalCondition

Fig. 7 Adding time properties into dynamic behavior view

B. At static Behavior View
Temporal characteristics are linked strongly to dynamic

view of a system behavior. So, in static view we haven’t
numerous timing properties to define temporal
characteristics of architectural elements behavior.

 Pre-condition

IdPre: String
PrCContent: String

Post-condition

IdPost: String
PoCContent: String

Activity

name: String
ActivityDuration: real
ActivityEndingTime: clock
ActivityStartingTime: clock

TimedCondition

AlternativeActivity

DurationAlternation: real

SequenceActivity

DurationSequence: real

Fig. 8 Adding time properties into static behavior view

In this level we can provide some activities’ timing

properties such as duration of an activity, starting and
ending times of activities’ execution. For an alternative
activity we define the delay between two alternations of the
same activity. For each Sequence activity we define a timing
property to express time spending to pass to other activity.
Post conditions or preconditions can be timing conditions.

C. At Interface Behavior View
All interface behavior timing properties are event relative

ones. In this view we talk about a timed event which is a
specialization of a standard event on an architectural entity.
A timed event is an event improved by a time value of
timing information.

 « abstract »

Event
name: String

EventAlternation

eventAltDuration: clock

TimedEvent

EventSequence

eventSeqDuration: clock

Fig. 9 Adding time properties into interface behavior view

Event alternations and event sequences can be

constrained also by time information to express the delay
between two event alternations or two events in the same
event sequence.

D. At interaction Behavior View
Real time systems require some timing interaction rules to

constraint their entities interactions.
In this level, we talk about timed rules those are extended

to others interaction rules in various complexity levels of
interaction definition.

The main timing information, like are shown in figure 10,
are synchronization time used to express waiting times
during a synchronous message, and message duration to
express the time required for a message to arrive to its target
component from its source component. These last attributes
are represented as second class properties in level of
Interaction and SynchronousMessage classes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

412

SynchronousMessage

SynchronisationDuration : real

InteractionRule

messageDuration: real

TemporelRule

Fig. 10 Adding time properties into interaction behavior view

VI. CONCLUSION AND PERSPECTIVES
In this paper, we argued that the software description

language in the meta-model level makes the model generic
and reduces the semantic gap which exists between different
specific domains. Each specific system has its own key
properties. Real-time embedded systems key properties are
timing ones. These properties control and constrain behavior
of these systems. So, we can’t talk about real-time system
software architecture behavior without specifying its time
related characteristics.

Our proposed ADL meta-model incorporates, in the same
meta-modeling level, a set of generic time concepts required
to specify several timing properties of an architectural
element to constraint and control behavior of an
architectural entity.

In doing so, we have applied the separation of concerns
principle by presenting four architectural views to
completely modeling the software architecture in real-time
embedded systems, while integrating the time dimension.
The multi-view representation is used to modularize in
separated categories some specific concerns like Behavioral
description, structural description, deployment description,
etc. It allows increasing the efficiency and completeness of
behavior specification in architecture description languages.
It can be used to comprehensively specify interface
properties, static and dynamic behavior, and interaction
properties of software architectural entities. The high-level
definition of behavioral concepts in the meta-model makes it
an extensible, flexible, and opened model on different
transformations into other models. This is particularly
important for real-time embedded systems, where
variability, flexibility and evolution are key success factors.

Currently, we are studying different possibilities to adapt
and enrich our meta-model in at least two directions: i)
studying and evaluating appropriate languages and
techniques to formally specify behavioral and timing
attributes of our meta-model, and, ii) extending the MOF
meta-model corresponding packages to cope with the
behavioral aspects in the ADLs.

REFERENCES
[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time

components in bip. In SEFM ’06: Proceedings of the Fourth IEEE
International Conference on Software Engineering and Formal
Methods, pages 3–12, Washington, DC, USA, 2006. IEEE Computer
Society.

[2] Sébastien Saudrais, Nöel Plouzeau, and Olivier Barais. Integration of
Time Issues into Component-Based Applications.

[3] A. Bessam and M. T. Kimour. Integrating Behavioral Aspect into
COSA Architecture. Proceedings of SEDE-2007 16th Int’l Conf on
Software Engineering and Data Engineering, USA, 2007.

[4] OMG: MOF 2.0 Core, OMG document ptc/06-01-01, Jan 2006.
[5] R. Roshandel, N. Medvidovic, “Modeling Multiple Aspects of

Software Components”, in Proceeding of Workshop on Specification
and Verification of Component-Based Systems,ESEC-FSE03,
Helsinki, Finland, September 2003.

[6] Didonet Del Fabro M., Bézivin J., Jouault F., Breton E., Gueltas G.:
AMW: a generic model weaver. In: Proceedings of the 1st day on
Model-Based Engineering (MDE), 2005.

[7] D. Garlan, S. W. Cheng, A. Kompanek, “Reconciling the needs of
architectural description with object- modeling notations”, Science of
Computer Programming 44 (2002) 32-49.

[8] Zonghua Gu, Shige Wang, Jeong Chan Kim and Kang G. Shin. (2004-
01-02). Integrated Modeling and Analysis of Automotive Embedded
Control Systems with Real-Time Scheduling. (Electronic).
Accessible: <http://kabru.eecs.umich.edu/aires/paper/gu_sae04.pdf>
p.3. (2006-06-08).

[9] Bruce Douglass, Gary Cernosek, Real-time UML: Developing
Efficient Objects for Embedded systems, Addision-Wesley Inc., 1998

[10] SAE: Architecture Analysis and Design Language (AADL). (2006)
document number: AS5506/1.

[11] OMG: Systems Modeling Language (SysML) Specification. (2006)
OMG document number: ad/2006-03-01.

[12] OMG: UML profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE), Request for proposals, Object
Management Group, Inc., 492 Old Connecticut Path, Framing-ham,
MA 01701. (2005) OMG document number: realtime/2005-02-06.

[13] Booch G., Jacobson I., Rumbaugh J. “The Unified Modeling
Language User Guide”, Addison-Wesley, Reading, MA.

[14] Dias M., Vieira M., “Software Architecture Analysis based on
Statechart Semantics”, in Proceedings of the 10th International
Workshop on Software Specification and Design,FSE-8, San Diego,
USA, November 2000.

[15] Hofmeister C., Nord R.L., and Soni D., “Describing Software
Architecture with UML” In Proceedings of the TC2 First Working
IFIP Conference on Software Architecture (WICSA1), San Antonio,
TX, February 22-24, 1999.

[16] Krutchen, P.B. “The 4+1 View Model of Architecture”, IEEE
Software 12, pp. 42 - 50, 1995.

[17] Nuseibeh B., Kramer J., and Finkelstein A., “Expressing the
Relationships Between Multiple Views in Requirements
Specification”, in Proceedings of the 15th International Conference
on Software Engineering (ICSE-15), Baltimore, Maryland, USA,
1993.

[18] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. “Specifying
distributed software architectures”. Proc 5th European Software
Engineering Conference, September 1994.

[19] R. Allen, and D. Garlan, “A Formal Basis for Architectural
Connection”, ACM Transitions on Software Engineering and
Methodology vol.6, No. 3, p. 213-249, 1997.

[20] R. Allen, and D. Garlan, “The Wright architectural specification
language”, Technical Report of CMUCS- 96-TBD, CMU, School of
Computer Science, September 1996.

[21] P. Binns, M. Englehart, M. Jackson, and S. Vestal, 1995, “Domain-
Specific Software Architectures for Guidance, Navigation and
Control,” to appear in International Journal of Software Engineering
and Knowledge Engineering Honeywell Technology Center,
Minneapolis MN, January 1994, revised February 1995.

[22] M. Shaw, “Abstractions for Software Architecture and Tools to
Support Them”. IEEE Transactions on Software Engineering,
1995. 21(4): pp. 314-335.

[23] D.C. Luckham, L.M. Augustin, J.J. Kenny, J. Veera, D. Bryan, W.
Mann. “Specification and analysis of system architecture using
Rapide”, IEEE Tr on Software Engineering vol. 21 no 4, April 1995,
pp 336-355.

[24] R.N. Taylor, and N. Medvidovic, “A Component and Message-based
Architectural Style for GHI Software.”, IEEE Transactions on
Software Engineering, vol. 22, No. 6, June 1996.

[25] Aguirre N., Maibaum T.S.E., “A Temporal Logic Approach to
Component Based System Specification and Reasoning”, in
Proceedings of the 5th ICSE Workshop on Component-Based
Software Engineering, Orlando, FL, 2002.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

413

[26] Liskov B. H., Wing J. M., “A Behavioral Notion of Subtyping”, ACM
Transactions on Programming Languages and Systems, November
1994.

[27] Zaremski A.M., Wing J.M., “Specification Matching of Software
Components”, ACM Transactions on Software Engineering and
Methodology, 6(4):333–369, 1997.

[28] Bruce Powell Douglass. Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

[29] O. Florescu, J. Voeten, H. Corporaal Modelling Patterns for Analysis
and Design of Real-Time Systems. Technical Report ESR-2006-05,
ISSN 1574-9517.

A. Bessam is born in Algeria on Mai 28 1975. He is a teacher in the
Computer Science Department in University of Jijel, Algeria. He has
obtained his Magister Diploma in 2003 at University of Jijel. Now, he is
inscribed to obtain his doctorate thesis in software architectures and data
and knowledge engineering.

Ammar’s research interest is software architecture modeling and
alignment with UML, and MOF metamodels and MDE. In this subject he
has published a paper in proceeding of SEDE’2007 international
conference.

Mr. Bessam is a membership in Decision Support Systems Modeling
team of Modeling in Electro-technique Laboratory (LAMEL). He teaches
courses in information systems, decision support systems, organizational
systems and design methods. His email address is bessamamar@yahoo.fr.

M. T. Kimour is born in Algeria on January 03 1960. He is an associated
professor in Computer Science Department at University of Annaba,
Algeria. He has obtained his Doctorate Diploma in 2005 at University of
Annaba.

Mohamed Tahar’s research interest is software model driven
engineering and real time and embedded systems modeling. He has
published many papers on real time and embedded systems modeling, and
lately a paper on software architecture description in proceeding of
SEDE’2007 international conference.

Dr. Kimour is a head of project research on embedded systems
engineering in Research Laboratory of Computer Science (LRI). He teaches
courses in information systems, software engineering and organizational
systems. His email address is mtkimour@hotmail.fr.

