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Abstract—This paper presents an approach which is based on the 
use of supervised feed forward neural network, namely multilayer 
perceptron (MLP) neural network and finite element method (FEM) 
to solve the inverse problem of parameters identification. The 
approach is used to identify unknown parameters of ferromagnetic 
materials. The methodology used in this study consists in the 
simulation of a large number of parameters in a material under test, 
using the finite element method (FEM). Both variations in relative 
magnetic permeability and electrical conductivity of the material 
under test are considered. Then, the obtained results are used to 
generate a set of vectors for the training of MLP neural network. 
Finally, the obtained neural network is used to evaluate a group of 
new materials, simulated by the FEM, but not belonging to the 
original dataset. Noisy data, added to the probe measurements is used 
to enhance the robustness of the method. The reached results 
demonstrate the efficiency of the proposed approach, and encourage 
future works on this subject. 

Keywords—Inverse problem, MLP neural network, parameters 
identification, FEM.

I. INTRODUCTION

NVERSE problems in electromagnetic are usually formulated 
and solved as optimization problems, so iterative methods 

are commonly used approaches to solve this kind of problems 
[1]. These methods involve solving well behaved forward 
problem in a feedback loop. The numerical models such as 
FEM are used to represent the forward process. However, 
iterative methods using the numerical based forward models 
are computationally expensive. Recently, artificial neural 
networks (ANNs) are introduced to solve the inverse 
problems in most of the research applications in industrial 
nondestructive testing, mathematical modeling, medical 
diagnostics and detection of earthquakes [2-6]. 

Electromagnetic inverse problems can sometimes be stated 
as simply as the following: if there is an electromagnetic 
device, it is easy to calculate the magnetic induction in any 
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region of the device. What, about taking some values of 
magnetic induction to predict physical parameters in a region 
of the electromagnetic device. Since, the inverse problem is 
highly nonlinear and without formulations to follow, it is very 
difficult to construct an effective inversion algorithm. An 
ANN, however, has the following properties: nonlinearity, 
input-output mapping, fault tolerance and most important, 
learning from examples.  

ANNs consist of a large number of simple processing 
elements called neurons or nodes. Each neuron is connected to 
other neurons by means of directed links, each with an 
associated weight [7]. The weights represent information 
being used by the network to solve a problem. The ANN 
essentially determines the relationship between input and 
output by looking at examples of many input-output pairs. In 
learning processes, the actual output of the ANN is compared 
to the desired output. Changes are made by modifying the 
connection weights of the network to produce a closer match. 
The procedure iterates until the error is small enough [8]. 

In this paper we present a new method for the robust 
estimation of electromagnetic parameters. The method is 
based on the use of FEM and ANN scheme. The network is 
trained by a large number of parameters in a metallic wall 
simulated using the FEM. The obtained results are then used 
to generate the training vectors for ANN. The trained network 
is used to identify new electromagnetic parameters in the 
metallic wall, which not belong to the original dataset. The 
network weights can be embedded in an electronic device, and 
used to identify parameters in real pieces, with similar 
characteristics to those of the simulated ones.

For the methodology presented here, the measured values 
are independent of the relative motion between the probe and 
the material under test. In other words, the movement is 
necessary only to change the position of the probes, to acquire 
the field’s values, which are necessary for the identification of 
new parameters. The kinds of parameter we have investigated 
are relative magnetic permeability and electrical conductivity 
of the material under test. For the purpose of the paper, the 
data set was generated considering 20 variations in the relative 
magnetic permeability and 15 variations in the electrical 
conductivity, performing at least 300 finite elements 
simulations. 
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II. NEURAL NETWORK ARCHITECTURE

ANNs are parallel distributed information processing 
models that can recognize highly complex patterns within 
available data. An ANN is an information processing system 
that has certain performance characteristics in common with 
biological neural networks and therefore, each network is a 
collection of neurons that are arranged in specific formations. 
The basic elements of neural network comprise neurons and 
their connection strengths (weights). One of the attractive 
features of ANNs is their capability to adapt themselves to 
special environmental conditions by changing their connection 
strengths or structure. Years of studies have shown that ANNs 
exhibit a surprising number of the brain's characteristics. For 
example, they learn from experience, generalize from previous 
examples, and abstract essential characteristics from inputs 
containing irrelevant data. In this paper we choose the back-
propagation method to demonstrate the potential of ANNs to 
solve electromagnetic inverse problems of parameters 
identifications [9]. 

One of the most influential developments in ANN was the 
invention of the back-propagation algorithm, which is a 
systematic method for training multilayer ANNs [10]. The 
standard back-propagation learning algorithm for feed-
forward networks aims to minimize the mean squared error 
defined over a set of training data. In feed-forward ANNs 
neurons are arranged in a feed-forward manner, so each 
neuron may receive an input from the external environment or 
from the neurons in the former layer, but no feedback is 
formed. The network architecture for a feed forward network 
consists of layers of processing nodes. The network always 
has an input layer, an output layer and at least one hidden 
layer. There is no theoretical limit on the number of hidden 
layers but typically there will be one or two. In our case, there 
is only one hidden layer. Every neuron in each layer of the 
network is connected to every neuron in the adjacent forward 
layer. A neuron's activity is modeled as a function of the sum 
of its weighted inputs, where the function is called the 
activation function, which is typically nonlinear, thus giving 
the network nonlinear decision capability. Each layer is fully 
connected to the succeeding layer. The arrows indicate flow of 
information (Fig.1) [11, 12]. 
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Fig. 3  Feed forward neural network

where ln is the number of neurons in the input layer, Hn is
the number of neurons in the hidden layer, On is the number 
of neurons in the output layer, lx are the inputs to the input 
layer where lnl ,...,1 , ky  is the value of the hidden layer 
where Hnk ,...,1 , mz  is the value of the output layer where 

Onm ,...,1 . ]1[
lkw  is the weight connecting the thl  neuron in 

the input layer to thk neuron in the hidden layer, and ]2[
kmw is

the weight connecting the thk  neuron in the hidden layer to 
the thm neuron in the output layer. The nodes of the hidden 
and output layer are: 
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where the activation function f is traditionally the Sigmoid 
function but can be any differentiable function. The Sigmoid 
function is defined as 

)1(
1)( xe

xf  (3) 

This activation function is depicted in Fig. 2. 
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Fig. 6  Sigmoid activation function

The back-propagation method is based on finding the 
outputs at the last (output) layer of the network and 
calculating the errors or differences between the desired 
outputs and the current outputs. When the outputs are 
different from the desired outputs, corrections are made in the 
weights, in proportion to the error. 

))((']2[
mmmkkm dzzfyw  (4) 

where md represent the desired output, Hnk ,...,1 ,

Onm ,...,1 and
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If f  is the Sigmoid function, and 
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The update rule for the weights from the hidden layer to the 
output layer is 
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where Hnk ,...,1 , Onm ,...,1 and  is the learning rate. 
The update rule for the weights from the input layer to the 
hidden layer is 

On

m
mmmkmklkm dzzfwyfxw

1

']2[']1[ ))(()(  (8) 

]1[]1[
)(

]1[
)( lkoldlknewlk www  (9) 

where lnl ,...,1 , Hnk ,...,1 .

III. ELECTROMAGNETIC FIELD COMPUTATION

In this study, the magnetic field is calculated using the 
FEM. This method is based on the magnetic vector potential 
A  representation of the magnetic field [13]. The calculations 

are performed in two steps. First, the magnetic field intensity 
is calculated by solving the system of equations: 

t
B

Erot  (10) 

JHrot  (11) 
0Bdiv  (12) 

where H  and E  are the magnetic and electric field 
respectively, B  the magnetic induction and J  the electric 
current density. This system of equations is coupled with 
relations associated to material property, material being 
assumed to be isotropic: 

HHB  (13) 
EJ  (14) 

where  is the magnetic permeability,  is the electrical 
conductivity. 

The magnetic vector potential A  is expressed by 
ArotB  (15) 

The electromagnetic field analysis for a cartesian system is 
carried out by the FEM [14]. The equation of the 
electromagnetic field is expressed by A as

st
J

A
Arotrot

1  (16) 

where sJ  is the vector of supply current  
Equation (16) is discretized using the Galerkin FEM, which 

leads to the following algebraic matrix equation 
FACK j  (17) 

with: 
jj yx, AA  (18) 

j  is the interpolation function. 

dxdyjiij gradgradK
1  (19) 

dxdyjiji
C  (20) 

dxdyisi JF  (21) 

i  is the projection function. 
In the second step, the field solution is used to calculate the 

magnetic induction B . More details about the finite element 
theory can be found in [14]. 

IV. METHODOLOGY FOR PARAMETERS IDENTIFICATION

First of all, an electromagnetic device was idealized to be 
used as an electromagnetic field exciter (Fig. 3). In this paper, 
we have considered direct current in the coils. To increase the 
sensitivity of the electromagnetic device a magnetic core with 
a high permeability is used. Deviations of the magnetic 
induction (difference in magnetic induction without and with 
material under test) at equally stepped points in the external 
surface of the material under test are taken (Fig. 4). 

Fig. 3  Structure of electromagnetic field exciter

The methodology used in this work is summarized in the 
following steps. Steps 1-3 correspond to the finite element 
analysis:
1) Generation of the initial finite element mesh. 
2) Modifications in the physical property, changing relative 

magnetic permeability and electrical conductivity of the 
material under test. 

3) Finite element solution getting the magnetic inductions 
values at the sensor position. 

4) Generation of the neural network training vectors  
5) Definition of the neural network architecture and training 

vectors.
6) Neural network training, Validation tests and identification 

of new parameters.  
The problem was solved on a PC with P4 2.4G CPU under 

Matlab® 6.5 workspace using the Partial Differential Equation 
Toolbox and Neural Network Toolbox for the finite element 
meshes generation and neural networks architecture definition 
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respectively [15], [16]. For the finite element problem 
resolution and the inverse problem solution, we use programs 
developed by us. 

The simulations were done for a hypothetic metallic wall 
with 2 mm height and 12 mm width. The material under test is 
1006 Steel (a magnetic material). The relative magnetic 
permeability of the core is supposed to be 4000.  
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Fig. 4  Arrangement for the measurements 

During the phase of finite elements simulations, errors can 
appear, due to it's massively nature. So, the results of the 
simulations must be carefully analyzed. This can be done, for 
instance, plotting in the same graphic the magnetic induction 
deviations for a set of parameters. Fig. 5 shows the magnetic 
induction deviation in the region of the device at the sensor 
position for three materials having the same electrical 
conductivity (6 103 [S/m]), and relative magnetic permeability 
ranging from 185 to 650. A similar graphic, with electrical 
conductivity equal to 2 107 [S/m] and magnetic relative 
permeability ranging from 185 to 650 is shown in Fig. 6. Fig. 
7 shows the graphics for a fixed magnetic relative 
permeability (320), and three different electrical conductivity 
ranging from 2 105 [S/m] to 1.5 108 [S/m]. Fig. 8 shows a 
similar graphic, for the magnetic relative permeability equal to 
560.

The coherence of the curves in these graphics allows us to 
infer if there are or not errors in the dataset. 

Fig. 5  Magnetic induction deviation for three values of magnetic 
relative permeability and electrical conductivity equal to 6 103 (S/m) 

Fig. 6  Magnetic induction deviation for three values of magnetic 
relative permeability and electrical conductivity equal to 2 107 (S/m) 

Fig. 7  Magnetic induction deviation for three values of electrical 
conductivity and magnetic relative permeability equal to 320 

Fig. 8. Magnetic induction deviation for three values of electrical 
conductivity and magnetic relative permeability equal to 560 
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V. FORMULATION OF NETWORK MODELS

In the step 4, we generate the training vectors for neural
networks. In this work, we generated 300 vectors for neural
networks training. Each of the vectors consists of 16 input 
values, which represent the deviation of magnetic induction, 
and two output values, which represent the relative magnetic 
permeability and electrical conductivity of the material under 
test. Of the 300 vectors, a random sample of 225 cases (75 %) 
was used as training, 75 (25 %) for validation. Training data 
were used to train the application and the validation data were 
used to monitor the neural network performance during 
training. 

To show stability of the proposed approach, the measured 
values, which intrinsically contains errors in the real word, is 
obtained by adding a random perturbation to the exact inputs 
values of the network, such that 

exactInnI~  (22) 
where  is the standard deviation of the errors and  is a 
random variable taken from a Gaussian distribution, with zero 
mean and unitary variance. 

Twin numerical experiments were performed. In the first 
one, noiseless data where employed )( 0 . The second 
numerical experiment was carried out using 5 % of 
noise ).( 050 .

The MLP neural network architecture considered for this 
application was a single hidden layer with sigmoid activation 
function. The learning rate initially is 0.1 but as the root mean 
squared error gets smaller it decreases to 0.01. This is the 
experience from the training which also matches the idea of 
learning rate annealing in [7]. 

A back-propagation algorithm based on Levenberg-
Marquardt optimization technique [17] was used to model 
MLP for the above data. 

The Levenberg-Marquardt technique was designed to 
approach second order training speed without having to 
compute the Hessian matrix [17]. This matrix approximated 
with use of the Jacobian matrix which can be computed 
through a standard back propagation algorithm that is much 
less complex than computing the Hessian matrix. The 
performance function will always be reduced on each iteration 
of the algorithm.  

For the MLP neural network, several network 
configurations were tried, and better results have been 
obtained by a network constituted by one hidden layers with 
28 neurons. The MLP architecture had 16 input variables, one 
hidden layer and two output nodes. Total number of weights 
present in the model was 534. The best MLP was obtained at 
lowest mean square error of 0.00057. Percentage correct 
prediction of the MLP model was 96.4 % and 94.7 % for 
noiseless and noise data respectively. 

Fig. 9 shows the performance of the MLP neural network 
during a training session. Table 1 show some results for the 
validation of the network, for this session. 

Fig. 9 Performance of the MLP network during 
a training session 

TABLE I
EXPECTED AND OBTAINED VALUES DURING A TRAINING SESSION

Relative magnetic permeability Electric conductivity 

Expected Obtained Expected Obtained  

 0 % Noise 5 % Noise  0 % Noise 5 % Noise 
160.05 160.21 159.23 1.700 101 1.704 101 1.712 101

247.89 247.87 246.80 3.500 102 3.506 102 3.513 102

321.19 321.21 320.63 4.200 106 4.211 106 4.218 106

448.17 448.25 449.08 3.000 105 3.010 105 3.016 105

526.12 526.28 527.01 7.500 103 7.509 103 7.512 103

640.16 640.33 639.76 2.210 101 2.215 101 2.222 101

As we can see, the results obtained in the validation are 
very close to the expected ones. The worse identification was 
obtained by MLP network with noises data. 

VI. NEW PARAMETER IDENTIFICATION

After the neural networks training and respective 
validations, new parameters were simulated by the FEM, for 
posteriori identification by the networks. Table 2 shows the 
values of electromagnetic parameters, and the obtained values, 
by the neural networks. 

TABLE II
SIMULATION RESULTS FOR NEW PARAMETERS

Parameter Relative magnetic 
permeability Electrical conductivity 

 Expected Obtained Expected Obtained 
  0 % Noise 5 % Noise  0 % Noise 5 % Noise
1 87.00 87.11 86.18 6.410 101 6.415 101 6.506 101

2 214.00 214.20 213.14 2.750 102 2.767 102 2.773 102

3 368.00 368.27 367.20 2.230 106 2.254 106 2.258 106

4 476.00 476.31 475.19 4.160 105 4.179 105 4.182 105

As we can see, the results obtained in the identification of 
new parameters, obtained by the neural networks agree very 
well with the expected ones. 
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VII. CONCLUSION

In this paper we presented an investigation on the use of the 
FEM and MLP neural network for the identification of 
parameters in metallic walls. This study indicates the good 
and stable predictive capabilities of MLP neural network in 
the presence of noise.

The association of FEM and ANN techniques seems to be a 
useful alternative for identification of parameters trough 
inverse analysis. Future works are intended to be done in this 
field, such as the use of more realistic FEM, computer parallel 
programming, in order to get quickly solutions. 
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