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An Incomplete Factorization Preconditioner For
LMS Adaptive Filter
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Abstract—In this paper an efficient incomplete factorization pre-
conditioner is proposed for the Least Mean Squares (LMS) adaptive
filter. The proposed preconditioner is approximated from a priori
knowledge of the factors of input correlation matrix with an incom-
plete strategy, motivated by the sparsity patter of the upper triangular
factor in the QRD-RLS algorithm. The convergence properties of
IPLMS algorithm are comparable with those of transform domain
LMS(TDLMS) algorithm. Simulation results show efficiency and
robustness of the proposed algorithm with reduced computational
complexity.

Keywords—Autocorrelation matrix, Cholesky’s factor, eigenvalue
spread, Markov input.

I. INTRODUCTION

THE least mean squares (LMS) algorithm , proposed by

Widrow and Hoff in 1960, is the most widely used

adaptive filtering algorithm in practice [1]. It has been ex-

tensively applied in adaptive signal processing and adaptive

control because of its simplicity in implementation and its

O(N)computational complexity[2]. The LMS algorithm and

its variants are proven to be computationally simple and

numerically robust, but have a drawback of converging slowly

especially when the input autocorrelation matrix has high

condition number. The eigenvalue spread of the autocorre-

lation matrix is a measure of the condition number [3],

[4], and controls the convergence rate of the LMS based

algorithms[1]. Preconditioning is a good remedy for to reduce

the affect of correlated input signals on the performance of

the algorithm[5].

A class of preconditioned adaptive filtering algorithms

known as transform domain adaptive filters, introduced by [6],

presented transform domain LMS (TDLMS) algorithm using

data-independent orthogonal transforms. Afterwards Francoise

Beaufays [3] designed an analytical demonstration to explain

the effect of unitary data-independent transformation followed

by power normalization on input autocorrelation matrix and

then Farhang [1] presented thorough study of transform do-

main adaptive filters including its convergence behavior as

well as efficient implementation, and described its resemblance

with LMS-Newton algorithm. LMS- Newton and Normalized

LMS (NLMS) are improved versions of conventional LMS

algorithm and have better convergence properties than that

of conventional algorithm. Mean square error and tap-weight

error (misalignment) behavior of improved NLMS type algo-

rithm is discussed in [7] by setting a trade off between fast

convergence and low final misadjustment.
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In this paper we propose an incomplete factorization pre-

conditioner for the LMS adaptive filtering algorithm. The

preconditioner is formed by applying an incomplete strategy

to the Cholesky’s factor of an optimized autocorrelation matrix

of the input signals. Our purpose is to design an efficient

preconditioner at negligible computational cost, which should

be able to take the convergence rate of conventional LMS

adaptive filter to one of its modified variations, like TDLMS,

or Newton-LMS etc. Analytical development of the precondi-

tioner from first order Markov signals, and its application on

the autocorrelation matrix is presented. The eigenvalue spread

of transformed autocorrelation matrix, after application of

preconditioner and power normalization, is an exact measure

of the asymptotic eigenvalue spread of autocorrelation matrix

transformed by DFT in TDLMS algorithm. Simulation results

show better robustness of IPLMS adaptive filter at fairly low

computational cost.

The paper is organized as follows: The LMS adaptive filter

and its variants are presented in §II, incomplete factorization

with preconditioning techniques and power normalization is

described in §III. §IV shows the motivation and design of

incomplete factorization preconditioner and the IPLMS algo-

rithm followed by evaluation of exact eigenvalue spread of

preconditioned autocorrelation matrix. Simulation results and

comparison with TDLMS algorithm are given in §V, while

concluding remarks are in last section.

II. LMS ADAPTIVE FILTER

Consider an FIR filter of length N with a tap-weight

vector wn, at instant n. The LMS algorithm minimizes the

instantaneous objective function (MSE),

J (n) = e2 (n)

where e (n) = s (n)−wT
n an. The vectors ai ∈ RN are formed

by input signals u (i) in such a way that

ai =
[
u (i) u (i− 1) · · · u (i−N + 1)

]T
; 1 ≤ i ≤ n

Using input signals we can define the n × N data matrix

An as:

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u (1)
u (2)

.

.

.
u (N)

0
u (1)

.

.

.
u (N − 1)

· · ·
· · ·
. . .

· · ·

0
0

.

.

.
u (1)

u (N + 1) u (N) · · · u (2)

.

.

.
.
.
.

. . .
.
.
.

u (n − 1) u (n − 2) · · · u (n − N)
u (n) u (n − 1) · · · u (n − N + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Define X = E
[
ana

T
n

]
as the autocorrelation matrix of

input vector an, and p = E [an sn] as the crosscorrelation
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vector.

The mean square error J (n) is minimized by continuously

updating the weight vector wn as each new input signal is

received, according to the equation:

wn+1 = wn + 2μe (n) an (1)

where μ is a positive constant that controls the rate of

convergence. To ensure the stability of the adaptive process,

value of μ must satisfy the condition:

0 < μ <
1

λmax
(2)

λmax is the largest eigenvalue of the autocorrelation matrix

X = E
[
ana

T
n

]
and is given by the maximum of the power

spectrum of input signal an.

For stationary input and an appropriate choice of μ, the min-

imum value of e (n) generates a Cauchy sequence {wn}∞n=1

from (1) in RN . But since RN is a Banach space [8],

there exists an optimum weight vector wo ∈ RN , such that

wn → wo as n → ∞. Value of wo, as given by Wiener- Hopf

equation [1], is:

wo = X−1p (3)

Let us define the misalignment vector mn [7] , as :

mn = wn − wo

Then mn = ‖mn‖2 = ‖wn − wo‖2 → 0 as n → ∞.

It is not difficult to show that under independence assump-

tion[1],

E [mn+1] = (I − 2μX)E [mn] (4)

This relation is used in literature [1],[2] to show that

convergence behavior of the LMS algorithm is directly linked

to the eigenvalue spread of X . For highly correlated input, X
has high eigenvalue spread, and convergence of the algorithm

can be extremely slow. To improve the convergence speed ,

we need to reduce eigenvalue spread of X by using some

decorrelation techniques. We may overcome this problem

by employing preconditioning theory from numerical linear

algebra . Here we briefly describe some algorithms which

have been derived from conventional LMS algorithm by using

techniques similar to that theory.

A. The LMS-Newton Algorithm
In this algorithm the input vector an, in error term

μ e (n) an of (1), is preconditioned by an estimate X−1
n of the

inverse X−1 of input correlation matrix. The modified update

equation is:

wn+1 = wn + 2μe (n)X−1
n an (5)

It can be shown that the convergence characteristics of

the LMS-Newton algorithm are independent of the eigenvalue

spread of X . But it has an increased complexity of computing

the inverse of input correlation matrix.

B. Normalized LMS Algorithm

The normalized LMS (NLMS) algorithm, which was devel-

oped as a constrained optimization problem [2], can be consid-

ered as a preconditioned LMS algorithm. The preconditioner

(ψI+ana
T
n )

−1 is a regularized inverse of ana
T
n , where ψ ≈ 0.

The update equation is given by:

wn+1 = wn + μe (n) (ψI + ana
T
n )

−1an

Using matrix inversion lemma, we have

wn+1 = wn +
μ

ψ + aTnan
e (n) an (6)

where ψ is selected to be small enough when compared with

aTnan. NLMS has fast convergence as compared with the

conventional LMS algorithm, but has a drawback of increased

misadjustment.

C. TD-LMS Algorithm

Transform domain LMS algorithms is a class of robust

preconditioned algorithms having good tracking capabilities

in non stationary environments. Application of an orthogonal

transform , followed by a power normalization step, has the

ability to reduce the eigenvalue spread of input correlation

matrix, which results in an increase of convergence speed of

the algorithm [1]. Here we give a brief description of the TD-

LMS algorithm.

The input vector an, and weight vector wn are transformed

to ân = Tan and ŵn = Twn respectively, through an orthog-

onal transform T. With error estimatee (n) = s(n) − ŵT
n ân ,

and power normalization

σ2
n (i) = β σ2

n−1 (i) + (1− β) â2n (i) ; i = 0, 1, · · · , N−1,

where 0 < β < 1 , the weight vector update equation is:

ŵn+1 = ŵn + 2μD−1e (n) ân (7)

with D = diag
[
σ2
n (0) , σ

2
n (1) , · · · , σ2

n (N − 1)
]

.

An analytical approach [3] has shown significant decrease

in the eigenvalue spread of the input correlation matrix of a

first order Markov signal after application of discrete fourier

(DFT) and discrete cosine (DCT) transforms, followed by

power normalization.

The preconditioning technique, presented in the next

section, uses an approximate Cholesky’s factor of input

correlation matrix as a preconditioner for the conventional

LMS algorithm.

III. INCOMPLETE FACTORIZATION PRECONDITIONER AND

POWER NORMALIZATION

The input autocorrelation matrix X plays an important role

in convergence of the LMS algorithm. For stationary input

and small μ, the convergence rate of the algorithm depends

on eigenvalue spread of X . To overcome the problem of

slow convergence, we would make use of a factorization

preconditioner. Clearly the best preconditioner is the inverse

of X , but it is computationally expensive.
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Computing a factorization of a matrix A and using the

factors as preconditioners for linear system Aw = b is a

common practice [9]. When dealing with a large system, com-

plete factorization is expensive and requires a large amount

of storage. Incomplete factorization helps to reduce these

problems.

Consider the linear least squares problem of the form:

min
w∈RN

‖b−Aw‖22

where A is an m× n(m ≥ n) full rank matrix. It is possible

to find a solution of the above equation by implicitly solving

the normal equation:

ATAw = AT b (8)

Since the condition number of the correlation matrix X =
ATA is the square of that of A, therefore a slight increase

in condition number of A can make the normal equation

highly ill-conditioned. In such a situation, preconditioning is

necessary for robustness. Incomplete factorization provides

a good factorization preconditioner to reduce the condition

number and improve the convergence speed of the system.

Incomplete QR factorization of A is an approximation of

complete QR factorization of the form:

A = QR+ E

where Q ∈ Rm×n may not have perfectly orthonormal

columns, R ∈ Rn×n is an upper triangular matrix and

E ∈ Rm×n is the error matrix that can be made as sparse

as we please. If A ≈ QR, then ATA ≈ RTR and matrix R
becomes an incomplete Cholesky’s factor of the correlation

matrix X . This Incomplete Cholesky’s factor R can be used

as a preconditioning matrix for the normal equation(8), that

is,

(R−TATAR−1)Rw = R−TAT b

or

X̃w̃ = b̃ (9)

Where

X̃ = R−TATAR−1 = (AR−1)T (AR−1)

w̃ = Rw

b̃ = R−TAT b = (AR−1)T b

The closer the incomplete Cholesky’s factor of X = ATA
to its complete Cholesky’s, the closer the condition number of

X̃ is to 1. Since preconditioned normal equation (9) is obtained

by premultiplying equation (8) by R−T , therefore complexity

O(n2) of inversion of nonsingular upper triangular matrix R
has great importance in the computation of the preconditioner.

A. Power Normalization

Power normalization is another tactic to reduce the eigen-

value spread of input data. This step is performed in TD-

LMS algorithm to normalize the input signals to the power

of unity . We perform this step in our preconditioned LMS

algorithm for the same purpose. For power normalization step,

let D = diag(X̃), and transform (9) into:

(D−1/2X̃D−1/2)D1/2w̃ = D−1/2b̃

The associated autocorrelation matrix is:

X̃N = D−1/2X̃D−1/2 (10)

It can easily be verified that the mean-square values of the

transformed signals as well as the diagonal values of X̃N are

all clustered to unity [1].

IV. PRECONDITIONED LMS ALGORITHM

Starting with preconditioned Weiner Hopf equation

R−T
(
XR−1

)
Rwo = R−T p

The filter update equation for preconditioned system is:

w̃n+1 = w̃n + 2μe (n) ãn

where

e (n) = s (n)− w̃T
n ãn

with filter output

w̃T
n ãn = (Rwn)

T (
R−Tan

)
= wT

n an = y (n) (11)

showing invariance of filter output under transformation R−T .

Applying power normalization step on (11),

D1/2w̃n+1 = D1/2w̃n + 2μe (n)D−1/2ãn

After simplification, it becomes

w̃n+1 = w̃n + 2μe (n)D−1ãn (12)

Defining a transformed misalignment as m̃n = w̃n − w̃o,

the convergence behavior can be studied by examining

E [m̃n+1] =
(
I − 2μX̃

)
E [m̃n] =

(
I − 2μR−TXR−1

)
E [m̃n]

Thus we can get fast convergence for the input vectors

having correlation matrix X close to RT R , in which case

the eigenvalue spread of matrix R−TXR−1 clusters around

1. But for systems with large filter order, computation of

complete Cholesky’s factor become expensive, and is not a

good choice for preconditioner. An incomplete factorization ,

however, provides a better option by using certain dropping

strategies to have a trade off between convergence speed and

computational cost of the preconditioner.
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A. Design and Motivation of Preconditioner

The preconditioner , presented here, is obtained by using

a priori knowledge of the autocorrelation properties of input

signals. As discussed earlier the convergence speed of LMS

algorithm depends on the eigenvalue spread of the autocorre-

lation matrix X . For the Preconditioned algorithm, presented

here, the convergence speed is determined by the eigenvalue

spread of R−TXR−1 . Clustering of the eigenvalue spread

closed to 1 is made without compromising too much on

the computational cost of the preconditioner. We propose a

fixed Cholesky’s factor R, that is a fairly good approximation

of the Cholesky’s factor of all the autocorrelation matrices

of input signals until time instant n. Moreover , to reduce

computational cost, we split R in to sub-blocks and form

an incomplete upper triangular matrix by zeroing out all its

elements except those in the upper triangular sub-blocks along

the main diagonal. The motivation of the strategy is explained

below.

Motivation comes from the sparsity patter of the Cholesky’s

factor obtained in the QRD-RLS algorithm [2]. The Cholesky’s

factor, Rn at instant n, is such that diagonals are almost

constant, except the first element in each diagonal band.

Moreover as we go away from the main diagonal, the elements

reduce in magnitude and don’t contribute much in further

computations. Our incomplete factorization preconditioner R
is a fixed approximation of Rn with a dropping strategy. For

our dropping strategy, partition the block diagonal of Rn into

p upper triangular sub matrices R
(Li)
n ; (1 ≤ i ≤ p) , of size

(Li × Li) such that

N =

p∑
i=1

Li

and

R = lim
n→∞

⎛
⎜⎜⎜⎜⎝

R
(L1)
n O

R
(L2)
n

. . .

O R
(Lp)
n

⎞
⎟⎟⎟⎟⎠

Here not all Li are equal in general. It is important to

note that R is more sparse and require less computation for

inversion as compared with Rn.

B. Eigenvalue and Eigenvalue spread

To understand the effect of our preconditioner R on

the eigenvalue spread of input correlation matrix, we con-

sider the first order Markov signals, which are a very

broad but simple class of signals. A Markov-1 input signal

an =
[
u (n) u (n− 1) · · · u (n−N + 1)

]T
of param-

eter α ∈ [0, 1] has an autocorrelation matrix equal to

M(N) =

⎛
⎜⎜⎜⎜⎜⎝

1 α α2 · · · αN−1

α 1 α · · · αN−2

α2 α 1
...

...
. . .

...

αN−1 αN−2 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

It is a symmetric toeplitz matrix having Cholesky’s factor

R(N) =

⎛
⎜⎜⎜⎜⎝

1 α α2 · · · αN−1

0
√
1 − α2 α

√
1 − α2 · · · αN−2

√
1 − α2

0 0
√
1 − α2

. . . αN−3
√
1 − α2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · √
1 − α2

⎞
⎟⎟⎟⎟⎠

In order to obtain an incomplete Cholesky’s factor R̃(N),
split R(N) in two sub-blocks of sizes L1 and L2. In that case

filter order N is L1+L2. Choosing triangular blocks of size L1

and L2 along the diagonal of R(N), the 2-block incomplete

Cholesky’s factor becomes:

R(N) =

(
R(L1) O(L1×L2)

O(L2×L1) R(L2)

)

where

R(L1) =

⎛
⎜⎜⎝

1 α α2 · · · αL1−1

0
√
1 − α2 α

√
1 − α2 · · · αL1−2

√
1 − α2

0 0
√
1 − α2 · · · αL1−3

√
1 − α2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · √
1 − α2

⎞
⎟⎟⎠

R(L2) =

⎛
⎜⎜⎝

√
1 − α2 α

√
1 − α2 α2

√
1 − α2 · · · αL2−1

√
1 − α2

0
√
1 − α2 α

√
1 − α2 · · · αL2−2

√
1 − α2

0 0
√
1 − α2 · · · αL2−3

√
1 − α2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 · · · √
1 − α2

⎞
⎟⎟⎠

It can easily be verified that inverse of R(N) is:

R−1(N) =

(
R−1(L1) O(L1×L2)

O(L2×L1) R−1(L2)

)

where,

R−1(L1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −α√
1−α2

0 · · · 0

0 1√
1−α2

−α√
1−α2

· · · 0

.

.

.
.
.
. . . .

. . .
.
.
.

0 0 · · · 1√
1−α2

−α√
1−α2

0 0 · · · 1√
1−α2

⎞
⎟⎟⎟⎟⎟⎟⎠

R−1(L2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
1−α2

−α√
1−α2

0 · · · 0

0 1√
1−α2

−α√
1−α2

· · · 0

.

.

.
.
.
. . . .

. . .
.
.
.

0 0 · · · 1√
1−α2

−α√
1−α2

0 0 · · · 1√
1−α2

⎞
⎟⎟⎟⎟⎟⎟⎠

Clearly the R−1(N) is very sparse having nonzero entries

in the main diagonal and upper band only. Now transform

the toeplitz autocorrelation matrix M(N) by its incomplete

Cholesky’s factor R(N) to get the preconditioned matrix
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M̃(N) = R−T (N)M(N)R−1(N).

M̃(N) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αL1√
1−α2

0 · · · 0

I
L1

αL1−1 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

α 0 · · · 0
αL1√
1−α2

αL1−1 · · · α 1
1−α2 0 · · · 0

0 0 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

. I
L2−1

0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using D = diag(M̃(N)) in (10), the normalized autocor-

relation matrix of the form

M̃N (N) = D−1/2(M̃(N))D−1/2

is obtained. This action normalizes the filter input as well as

diagonal of M̃N (N) to unity. Note that

EigenvaluespreadofM̃N (N) =
1 + α

1− α

It is straightforward to see that for all N , eigenvalue spread

of preconditioned and power normalized input correlation

matrix M̃N (N) remains equal to 1+α
1−α . Exactly the same value

results while computing the asymptotic eigenvalue spread after

the application of DFT and power normalization on Markov-

1 autocorrelation matrix in [3]. Hence we have the following

result:

Theorem: The convergence behavior of 2-block incomplete

factorization Preconditioned LMS (IPLMS) algorithm is sim-

ilar to that of DFT based TDLMS algorithm.

V. SIMULATION RESULTS

For simulation, consider an adaptive system identification

experiment involving a finite impulse response (FIR) filter of

order N . A white Gaussian input signal of variance σ2 = 1 is

passed through a coloring filter with frequency response [1]:

H (z) =

√
1− α2

1− αz−1

where |α| < 1 , α is the correlation parameter and controls the

spectral condition number of the autocorrelation matrix. α = 0
corresponds to the case when condition number is close to 1.

An output noise of SNR 30dB is added to the desired signal

s (n) of the unknown filter of length N = 8. Setting L1 = 5
and L2 = 3 , we compute the learning curves of mean squares

error and misalignment for our 2-block IPLMS algorithm and

compare the results with that of DFT based TDLMS algorithm.

Since transformed autocorrelation matrices exhibit same eigen

behavior in both cases, therefore, we can have same value of

stepsize parameter μ for the two algorithms, let it be 0.02 for

both algorithms. Taking average of 100 independent runs, we

find that both the algorithms exhibit almost same convergence

behavior for correlated input signals with α = 0.75 in figure-

1, and α = 0.85 in figure-2. But if we look at the learning

curve of misalignment of the two algorithms in figure-3, we

find better robustness of IPLMS algorithm as compared with

TDLMS algorithm.
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Fig. 1. Mean square error of IPLMS and TDLMS algorithm for α = 0.75.
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Fig. 2. Mean square error of IPLMS and TDLMS algorithm for α = 0.85.
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Fig. 3. Misalignment of IPLMS and TDLMS algorithm for α = 0.85.

VI. CONCLUSION

We have developed an incomplete factorization precondi-

tioner based LMS adaptive filtering algorithm. The precon-

ditioner is formed by applying an incomplete strategy to the

Cholesky’s factor of an optimized autocorrelation matrix of the

input signals. An efficient preconditioner is designed at negli-

gible computational cost, which is able to take the convergence

rate of conventional LMS adaptive filter to one of its modified

variations, the TDLMS algorithm. Analytical development and
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application of preconditioner at the autocorrelation matrix of

Markov-1 typed input signals gives exact eigenvalue spread of

transformed autocorrelation matrix after power normalization,

which is an exact measure of the asymptotic eigenvalue spread

of autocorrelation matrix transformed by DFT and power

normalization in TDLMS algorithm.
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