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Abstract—Breast carcinoma is the most common form of cancer
in women. Multicolour fluorescent in-situ hybridisation (m-FISH) is
a common method for staging breast carcinoma. The interpretation
of m-FISH images is complicated due to two effects: (i) Spectral
overlap in the emission spectra of fluorochrome marked DNA probes
and (ii) tissue autofluorescence. In this paper hyper-spectral images of
m-FISH samples are used and spectral unmixing is applied to produce
false colour images with higher contrast and better information
content than standard RGB images. The spectral unmixing is realised
by combinations of: Orthogonal Projection Analysis (OPA), Alterat-
ing Least Squares (ALS), Simple-to-use Interactive Self-Modeling
Mixture Analysis (SIMPLISMA) and VARIMAX. These are applied
on the data to reduce tissue autofluorescence and resolve the spectral
overlap in the emission spectra. The results show that spectral unmix-
ing methods reduce the intensity caused by tissue autofluorescence by
up to 78% and enhance image contrast by algorithmically reducing
the overlap of the emission spectra.

Keywords—breast carcinoma, hyperspectral imaging, m-FISH,
spectral unmixing

I. INTRODUCTION

B reast carcinoma is the most common form of cancer

in women. Almost 10% of malignancies in women are

diagnosed as a breast carcinoma, which represents 22% of

all cancer cases in women [1]. 5% to 10% of these breast

carcinoma are genetically conditioned. The risk for women,

whose mother or sister had a breast carcinoma, is twice

that of women without a positive family anamnesis. This

risk increases by a factor of between four and six if two

family members developed cancer [2].Hence methods for a

reliable diagnosis of breast carcinoma during routine checks

are required.

Fluorescent in-situ hybridisation (FISH) is a technology that

is used to stage breast carcinoma. FISH marks different cell

components (e.g. nucleus, cytoplasm, proteins) as well as

specific DNA positions or entire DNA sequences with fluo-

rescently labeled DNA probes. Fluorochromes are substances

that emit light, when excited by a specific wavelength. The

emitted light has a longer wavelength than the excitation light.

Martin De Biasio works as a R&D engineer in the field of spectral
imaging for the Carinthian Tech Research AG, Villach, Austria, email:
martin.debiasio@ctr.at

Raimund Leitner works as a program manager for spectral imaging
systems at the Carinthian Tech Research AG, Villach, Austria, email:
raimund.leitner@ctr.at

Sergey Verzakov works as a R&D engineer for Prime Vision, Delft,
Netherlands, email: s.verzakov@primevision.com

Franz Wuertz works as a senior general pathologist at Klagenfurt hospital,
Austria, email: Franz.Wuertz@lkh-klu.at

Pierre Elbischger is a professor of image processing and pattern recognition
at Carinthian University of Applied Sciences, Klagenfurt, Austria, email:
p.elbischger@cuas.at

Fluorescence microscopy can be used to measure fluorescence

and acquire images of FISH samples. It uses bandpass filters

to measure the emission of the fluorochromes.

FISH samples marked with multiple fluorescently labeled

DNA probes are termed multicolour-FISH (m-FISH). Analysis

of (m-FISH) images is complicated by two problems: spectral

overlap of the emission spectra and tissue autofluorescence.

The spectral overlap is caused by the broad banded emis-

sion spectra of the fluorochromes, see fig. 1, which can not

be resolved completely by emission filters or fluorochrome

selection. Tissue autofluorescence originates from substances

such as collagen or elastin. The substances show an unspecific

broad-band fluorescence emission which overlaps the wanted

signal and thus causes a decrease of the image quality.

Currently, pathologists use RGB colour images of m-FISH

samples to make their diagnosis. However, the quality of the

images makes diagnosis difficult and requires much experience

for a reliable diagnosis. The quality of these images can be

enhanced with spectral unmixing (SU) methods. A hyper-

spectral imaging system, e.g. a tuneable filter mounted on a

camera, measures the spectrum at each pixel in an image. The

information content of these hyper-spectral images is higher

than in standard colour images, enabling SU methods to unmix

the overlapping emission spectra efficiently.

In this paper the following semi-supervised spectral unmixing

methods are applied on hyper-spectral images of m-FISH

samples: Principle Component Analysis (PCA), Orthogonal

Projection Analysis (OPA), Alterating Least Squares (ALS),

Simple-to-use Interactive Self-Modeling Mixture Analysis

(SIMPLISMA) and VARIMAX. Results show a reduction of

tissue autofluorescence by 78% and a contrast enhancement

over standard RGB images.

II. RELATED WORK

This section gives an brief overview of the related work in

spectral imaging, detection of HER-2/neu status and spectral

unmixing.

A. Spectral Imaging

Spectral imaging (SI) acquires spatially resolved images

at different wavelengths and combines them into a three

dimensional image cube. The two main approaches for the

acquisition of hyper-spectral image data are wavelength scan-

ning and spatial scanning.

Wavelength scanning methods take images for a certain wave-

length range and both spatial axes at once. The spectral infor-

mation is generated sequentially. Wavelength scanning systems
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Fig. 1. Crosstalk in the emission spectra of three common fluorochromes
DAPI (blue), FITC (green) and SpectrumOrange (red). The red rectangles
represent an ideal filter curve of the emission filter. Even with ideal filters
there is a crosstalk in the wavelength region between 500nm and 550nm

where the fluorochromes DAPI and FITC heavily overlap. In the wavelength
range from 600nm to 620nm the emission spectra of the fluorochromes
FITC and SpectrumOrange overlap. The brown emission spectrum represents
tissue autofluorescence. It is present over all wavelengths and reduces image
quality.

can be built up using discrete optical filters or tunable filters.

Filter based spectral imaging techniques use bandpass filters

which are placed in front of a camera. By acquiring images,

using different filters infront of the camera the hyper-spectral

image data is acquired. The spectral resolution of the filter

system is limited by the number of filters used. Liquid Crystal

Tunable Filters (LCTF) or Acousto-Optical Tunable Filters

(AOTF) are other wavelength scanning approach. Both are

electronically tunable bandpass filters. The advantage of these

components is that no mechanical motion during acquisition

is involved.

Spatial scanning techniques such as imaging spectrographs

are optical components that enable spatial scanning of mea-

surement samples. Prism-grating-prism combinations disperse

incident light of a single line of an object into its spectra and

project it to a two dimensional sensor array. Spatial informa-

tion is mapped to the x-axis, while spectral information is

mapped on the y-axis. Hyper-spectral image data is generated

by scanning the measurement sample linewise and combining

the spectra of each line to a hyper-spectral image cube. When

using imaging spectrographs, the spectral resolution is limited

by the width of the entrance slit and the camera resolution.

The advantage of this method is that each image pixel always

contains the spectrum of the same object pixel. This is an

important advantage over wavelength scanning approaches,

where movements of the object during an acquisition cause

the mixing of spectra of different objects in one image pixel.

B. Spectral Unmixing

A common way to resolve crosstalk in the emission spectra

and reduce tissue autofluorescence of fluorescence measure-

ments is spectral unmixing (SU). The method assumes that

every pixel consists of a linear combination of overlapping

emission spectra. There have been several implementations of

spectral unmixing methods in the last years.

Munoz-Barrutia et. al. used Non-Negative Matrix Factor-

ization (NMF) to blindly estimate spectral contributions in

m-FISH spectral imaging data to correct the spectral overlap.

Results showed, that this method outperforms approaches with

prior knowledge about the spectra [7].

The HER-2/neu to CEP-17 ratio is an important factor for stag-

ing breast carcinoma. Raimondo et. al. developed an algorithm

to determine HER-2/neu status for the classification of FISH

images from breast carcinomas. The algorithm segments cell

nuclei and FISH dots in two stages. For dot segmentation it

uses a top-hat filtering stage followed by a template matching

to separate real signals from noise[12]. For morphological

analysis the authors use geometric rules to distinguish between

holes within a nucleus and holes between neighboring nuclei.

For overall case classification the algorithm calculates FISH

signal ratio per cell nucleus and combines the results from

multiple images from a slice [12].

III. BACKGROUND

A brief introduction to breast carcinoma and the methods

for classification and diagnostics of this life threatening disease

are given here.

A. Epidemiology of breast Carcinoma

Breast carcinoma is caused by a malfunction in the cellular

mechanisms which regulate growth [1]. Proto-oncogenes are

normal genes that are responsible for the development and

differentiation of cells. Mutations, such as point mutation,

chromosome translocation and gene-amplification, can cause

these proto-oncogenes to change their behaviour and become

hyperactive and even non-physiological. HER-2/neu is a proto-

oncogene belonging to the family of tyrosine kinasis receptors

which has four subtypes HER-1, HER-2/neu, HER-3 and

HER-4 [2]. These receptors are involved in the growth and the

differentiation of cells. HER-2/neu is one of the few evidence-

based features for the diagnosis of breast carcinoma [1].

Normal breast epithelial cells have two HER-2/neu gene copies

and between 20,000 and 40,000 HER-2/neu receptors. In the

early stages of 20% of breast carcinomas the HER-2/neu is

overexpressed because of gene-amplification [3], [4], [5]. This

increases the number of HER-2/neu receptors on the surface

relative to normal breast epithelial cells [6]. The two steps for

the detection and analysis of breast carcinoma are described

in following paragraphs.

1) Fluorescent in-situ hybridisation (FISH): This is a com-

mon method to detect a HER-2/neu gene-amplification, dele-

tions and translocations in tumour tissue [8]. The technique

is based on the ability of single DNA strands to replicate

themselves by recombining with a complementary base se-

quence to form a double strand (hybridisation). This double

strand is then split into two single strands using temperature

ranging from 70◦ to 95◦ [10]. This hybridisation is performed

at the point where the probe and the DNA of the sample are

complementary. A commercially available DNA probe, which

is conjugated with a fluorochrome, is hybridised to a spe-

cific DNA sequence. Various companies provide special DNA

probes for staining human tumour cells. These kits include
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No analysis possible. Cell nuclei
overlap

No analysis possible. Cell nucleus
contains only two HER-2/neu signals
and no CEP-17 signal.

Two HER-2/neu signals and one
CEP-17 signal. One HER-2 signal is
split.

Two HER-2/neu signals and two
CEP-17 signals

HER-2/neu signal CEP17 signal

Fig. 2. Exemplary counting criterions for analysis of m-FISH samples
recommended by the company Abbott [11].

the fluorochromes SpectrumOrange to hybridise HER-2/neu

receptors, SpectrumGreen to hybridise chromosome No. 17

(CEP 17) and DAPI to counterstain the cell nucleus.

2) Analysis of breast carcinoma: The analysis of breast

carcinoma samples is done with fluorescence microscopes,

which are equipped with fluorescence filter combinations (e.g.

DAPI, FITC and SpectrumOrange) to discriminate between

different fluorochromes. The fluorescence emission peaks of

HER-2/neu, CEP 17 and the cell nucleus are filtered with the

excitation/emission filter combinations listed in Table I.

TABLE I
BANDPASS FILTER COMBINATIONS FOR FLUOROCHROMES

Cell component Excitation filter Emission filter
CWL(FWHM) CWL (FWHM)

Cell nucleus 395nm (17nm) 461nm (15nm)

CEP 17 488nm (14nm) 523nm (19nm)

HER-2 562nm (24nm) 600nm (30nm)

For the analysis of the fluorescence samples the fluorescent

signals of CEP 17 and HER-2/neu are of importance. The

medical expert has to count the number of signals of 20

morphologically intact non-overlapping tumor cell nuclei with

a clear fluorescence signal spot [11]. All cell nuclei need to

have at least one CEP 17 and one HER-2/neu signal spot to

be counted. Two signal spots of the same size must have a

distance of at least the single fluorescence spot diameter to be

counted as a single signal spot [10], compare fig. 2. Lympho-

cytes, granulocytes, macrophages, fibroblasts, epithelial cells,

signals with low intensity, as well as tumor cells with no clear

border or a high background signal need to be excluded from

the analysis [10]. These are just exemplary criterion out of a

huge range.

IV. METHODS

The evaluated spectral unmixing (SU) methods are dis-

cussed in this section.

A. Spectral Unmixing

The following notation of the variables for the explanation

of the SU methods is used. X is a M × N matrix with M

rows and N columns. Each row contains a spectrum and each

column represents a wavelength. The rows of X are denoted

by xT
i = (xi,1xi,2 . . . xi,N ) and represent distinct spectra. Y is

a matrix containing K reference spectra xref,k. The reference

spectra xref,k are L2 normalised and are stored along the rows

of the matrix Y. K is defined by the user.

Y =

⎛

⎜

⎜

⎜

⎝

xT
ref,1

xT
ref,2

...

xT
ref,K

⎞

⎟

⎟

⎟

⎠

(1)

The dispersion matrix

Yi =

(

Y

xT
i

)

(2)

contains all normalised reference spectra of Y and the i-th

spectrum xi in the last row.

1) Orthogonal projection analysis (OPA): Orthogonal pro-

jection analysis (OPA) was proposed in [14]. The method iter-

atively determines reference spectra that optimise dissimilarity.

The dissimilarity of a given Yi is defined as:

di = det(YiY
T
i ) = (‖xref‖‖xi‖ sinαi)

2, i = 1, . . .M. (3)

.T is the transpose operator and the Euclidean norm is denoted

by ||.||. The reference spectrum and all spectra xi in Yi are

normalised to unit length.

There are two ways to initialise the first reference spectrum

xref,1 of OPA. The first possibility is to pick a reference

spectrum of the rows of X randomly. The second way is to

calculate the mean spectrum x of X by

xref,1 = xm =
1

M

M
∑

i=1

xi (4)

and use it as the first reference spectrum xref,1.

Thus, Y is initially xref,1. di for all spectra xi in X are

calculated. The reference spectrum xref and each spectrum

xi span up a parallelogram in the N-dimensional space. The

area of the parallelogram is equal to the determinant of the

dispersion matrix Yi. The value of the dissimilarity depends

on the size of the area. The greater the value, the higher the

dissimilarity.

The spectrum

xref,2 = xj , j = arg max(di) (5)

with the largest dissimilarity from the reference spectrum

xref,1 is selected and replaces the initial estimate for xref,1
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as a new reference spectrum into Y. In the next iteration the

determinant of Yi is recalculated and the spectrum xref,2 that

yields the highest dissimilarity to Yi is selected and added as

the second reference spectrum to Y.

In the next iteration, di of the dispersion matrix Yi for xi

with respect to xref,1 and xref,2 is calculated. The procedure

adds reference spectra to Y until the K predefined spectra

are found or the relative mean squared error of the selected

spectra as basis is smaller than a user defined threshold τ .

2) Simple-to-use interactive self-modeling mixture analysis

(SIMPLISMA): Simple-to-use interactive self-modeling mix-

ture analysis originates from [15]. Initially, when no spectrum

has been selected wT
i = (wi,1wi,2 . . . wi,N ) is initialised with

ones. Normalisation of each spectrum by

zi =
xi

√

N(µ2
i + (σi + α)2)

. (6)

causes that the length of the spectra containing a signal will

be close to one. Spectra with low mean intensities i.e. noise

spectra will be down weighted to zero. In equ. 6 σi and µi

represent the standard deviation and mean of the i-th spectrum

xi.

In contrast to OPA, SIMPLISMA does not use the mean

spectrum x to start the iterations but instead the ’most pure’

spectrum. The purity pi of the i-th spectrum xi is defined by

pi = wi

σi

µi + α
(7)

The offset value α is a small fraction of the largest spectral

intensity of the whole dataset. The most pure spectrum is by

definition the spectrum xref,1 that maximises purity. When the

first pi has been selected

wi = det(YiY
T
i ) (8)

is equal to the determinant of the dispersion matrix Yi. In

case of SIMPLISMA Yi consists of the selected pure spectra

zi.

In principle SIMPLISMA has the same stopping criteria as

OPA. The difference is that SIMPLISMA substitutes the

dissimilarities by purities. Thus, SIMPLISMA differs from

OPA only by specific scaling (normalisation) and the way

how it starts iterations (initialisation).

3) VARIMAX: Another unmixing algorithm is VARIMAX

[16], [17]. Instead of selecting the most dissimilar or pure

spectra it extracts them, i.e. the reference spectra are linear

combinations of all spectra from the dataset. The methods

starts with principal component analysis (PCA) and retains

the specified number of eigenvectors (loadings) V. Loadings

are also called abstract factors, because they are usually

completely different from the real factors – pure spectra. The

value s called ’simplicity’ can be used to estimate how close

this particular factor is to the pure spectrum. Simplicity si of

the i-th spectrum is calculated by

si =
1

N











N
∑

i=1

x′
i

4

(

N
∑

i=1

x′
i
2

)2

N











. (9)

VARIMAX iteratively performs planar rotations of the loading

matrix V by

X’ = VX (10)

to maximise simplicity for the calculation of abstract

loadings. The optimisation algorithm does not guarantee a

global maximisation and thus has to be repeated several

times.

There is a relative and absolute stopping criterion for

VARIMAX. The absolute value is the difference si − si+1.

The relative criterion is that the value which is optimised does

not change at the next iteration more than some percentage

of the previous value (si − si+1)/si < ǫ.

4) Alterating least squares (ALS): Alterating least squares

(ALS) is a purification algorithm. It is based on the assumption

that spectral values and abundances are positive. Assumed a

set of pure candidate spectra Y0 can be obtained e.g. by OPA.

If they were definitely pure spectra then abundances could be

found by solving the least squares problem

X = Z1 Y0. (11)

Z1 is the pure concentration of a component and is calculated

by

Z1 = XYT
0 (Y0YT

0 )−1. (12)

However, in practice one has to deal with imperfect candidate

spectra. Simple factors are orthogonal and usually contain

positive and negative values, leading to the situation that some

abundances obtained by the least squares solution will be

almost for sure negative. In ALS they are clipped to zero Z1,c

and used again to recompute spectra candidates with Eqn. (12).

X can also contain negative spectral values. With

X = Z1,cY1 (13)

and

Y1 = ZT
1,cX(ZT

1,cZ1,c)
−1. (14)

they are clipped to zero resulting in Y1,c. The algorithm is

iterated until the convergence criterion

dY1 = Y1,c − Y0 < ǫ (15)

is met. If the algorithm converged or the number of defined

iterations is reached then Y is set to Y1,c and Z is set to Z1,c.

Otherwise Y0 is set to Y1,c and iterations go on.
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V. DATA ACQUISITION

For the evaluation of the SU methods described in sec-

tion IV-A, hyper-spectral images of m-FISH samples were

acquired. An Axio Imager A1m (Carl Zeiss, Germany) fluores-

cence microscope, in combination with a triple bandpass filter

combination no. 40 DAPI/FITC/Cy3
TM

(Chroma, USA), was

used to acquire m-FISH data sets. A liquid crystal tuneable

filter (LCTF) (Varispec
TM

, CRi, MA, USA) was used to acquire

images from 400nm to 720nm with a step width of 5nm.

The samples were excitated with a metal halide lamp X-

Cite 120PC (EXFO R©, Canada). A high sensitivity 14 bit

EMCCD camera iXon (Andor, Ireland) with a pixel resolution

of 1004 × 1002 pixels was used to acquire the images.

A spatial two-point calibration for offset and sensitivity of each

pixel of the camera was done with a dark image (closed aper-

ture) and a white reference. This calibration model corrects the

spatial and spectral characteristics of the measurement setup

with a linear model.

a b

c d

Fig. 3. Reconstructed colour image from the wavelengths 470nm, 530nm
and 625nm from hyper-spectral image data of a breast carcinoma sample
marked with m-FISH probes (a). The sample shows HER-2/neu gene am-
plifications in all cell nuclei. (b), (c) and (d) show the fluorescent spots of
HER-2/neu genes, CEP 17 genes and the cell nuclei. The red polygon in
(a) represents the user defined ROI for the analyse of tissue autofluorescence
reduction.

Data acquisition was carried out in two steps. First, regions

with a sufficient number of unconnected cell nuclei were

identified with a magnification of 100 fold. Second, images of

these regions were acquired at a magnification of 1,000. Focal

distance varies with wavelength, hence the focus was adjusted

for the three emission wavelength ranges (400nm-500nm,

500nm-600nm, 600nm-720nm). Images were acquired for

each wavelength region separately.

For data analysis eight m-FISH data sets with 64 single

images each were acquired. Fig. 3a shows a reconstructed

pseudo colour image from the wavelengths 470nm, 530nm
and 625nm from hyper-spectral imaging data of a breast car-

cinoma sample hybridised with m-FISH probes. The image can

be compared with a standard colour image which is routinely

used by pathologists for the detection of breast carcinoma.

Fig. 3b and 3c show fluorescence spots of HER-2/neu genes

and CEP 17 genes. The faint regions that surround the bright

fluorescent spots correspond to the overlapping fluorescence

signal of DAPI marking the cell nuclei, see Fig. 3d. This

effect is caused by the overlapping emission spectrum of

the fluorescent probes for the cell nuclei, with the ones of

HER-2/neu genes and CEP 17 genes.

VI. RESULTS

The SU algorithms introduced in section IV-A were used to

reduce tissue autofluorescence and enhance image contrast. In

practice combining the single SU methods gives better results

than using the methods separately. The following combinations

were used to unmix hyper-spectral m-FISH images:

• OPA/ALS

• SIMPLISMA/ALS

• PCA/VARIMAX/ALS

In case of the combination OPA/ALS, OPA is applied first.

The results of OPA are then the starting point for ALS. All

of these algorithms are semi-supervised; i.e. whereby the user

has to set the maximum number of components to be unmixed.

A. Reduction of tissue autofluorescence

Tissue autofluorescence degrades image quality. It has a

nonspecific emission spectrum that adds to the intensity in

every channel. It falsifies the wanted signal information and

is therefore disturbing.

For a given region of interest (ROI) N the mean tissue

autofluorescence is calculated by

AFN (λN) =
1

|N |

∑

x∈N

AF(xk, yk, λN), (x, y)ǫN (16)

The equation takes every pixel xk, yk in a given ROI N and

calculates the mean and standard deviation of intensity for

each of the channels λn of the image.

Table II lists the mean values of tissue autofluorescence for

each channel achieved with the different SU methods. The

results of the three SU combinations are compared with

standard RGB images. Standard RGB images were generated

by summing up all images in the specific wavelength range

and dividing it by the number of images. The blue channel

consists of wavelengths from 450nm to 480nm, the green

channel contains wavelengths between 515nm and 555nm and

the red channel ranges between 595nm and 660nm.

The combination PCA/VARIMAX/ALS gave the best results.

Compared to the standard RGB image a reduction of tissue

autofluorescence of 80% for HER-2/neu spots, 64% for CEP

17 spots and 90% for cell nuclei spots was achieved.

B. Enhancement of image contrast

Overlapping emission spectra of fluorochromes can not be

completely resolved with the used emission filter. Due to their
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TABLE II
MEAN VALUES OF SIX IMAGES FOR EACH COLOUR CHANNEL OF USER

DEFINED ROIS.

Tissue autofluorescence for used
camera channel

Dataset Red Green Blue
Mean (Std) Mean (Std) Mean (Std)

Standard RGB Image 0.15 (0.01) 0.14 (0.01) 0.1 (0.03)
OPA/ALS 0.08 (0.04) 0.11 (0.04) 0.03 (0.02)

SIMPLISMA/ALS 0.11 (0.02) 0.11 (0.02) 0.02 (0.01)
PCA/VARIMAX/ALS 0.03 (0.01) 0.05 (0.01) 0.01 (0.01)

spectral overlap of the fluorochromes each pixel in an hyper-

spectral image cube can be interpreted as being either the cell

nuclei hybridised with DAPI; CEP 17 genes hybridised with

FITC; HER-2/neu genes hybridised with SpectrumOrange or

tissue autofluorescence.

Fig. 4a shows a 3D plot of a standard RGB image routinely

used by pathologists. It is obvious that there is a large overlap

of the four point clouds (cell nuclei, CEP 17, HER-2/neu,

background) of the fluorescence spots. Fig 4b shows a 3D

plot of an unmixed image achieved with the combination

PCA/VARIMAX/ALS. In this case the point clouds of cell

nuclei, CEP 17, HER-2/neu and background pixels are better

separated. There is just a small percentage of overlapping

pixels.

For the enhancement of image contrast, a standard RGB

image was compared with the results of the SU methods

combinations. A fixed intensity value threshold of greater 0.5

for cell nuclei, CEP 17 and HER-2/neu pixels was used. For

the background the threshold was set to an intensity value

lower 0.3. For the analysis all pixels in the image, which were

ambiguously assigned as cell nuclei, CEP 17 or HER-2/neu

pixels were counted.

TABLE III
PIXEL MISCLASSIFICATION FOR THREE M-FISH DATASETS.

Unmixing result DS I DS II DS III Overall
% % % mean (std)

Standard RGB Image 44.1 6.94 14.33 21.79 (19.67)
OPA/ALS 0.04 5.3 2.37 2.57 (2.64)

SIMPLISMA/ALS 0.18 4.69 2.04 2.3 (2.27)
PCA/VARIMAX/ALS 0.039 1.96 1.23 1.08 (0.97)

Table III lists the results of the analysis of three m-FISH

images. In a standard RGB image in mean 21.79% of all

pixels can not be assigned uniquely to one class. When using

SU methods the percentage of ambiguously assigned pixels is

reduced. The combinations OPA/ALS and SIMPLISMA/ALS

reduce the number to 2.57%. The similar results for both

combinations can be explained by the small differences be-

tween the two SU methods SIMPLISMA and OPA. The

best result with 1.08% is achieved with the combination

PCA/VARIMAX/ALS.

The high variances in the three analysed images is caused

by the differences of the fluorescent signal intensity of the

fluorescent probes. Some of the fluorescently labeled m-FISH

images were already bleached before the experiment.

VII. CONCLUSION

Spectral unmixing methods have been applied to hyper-

spectral m-FISH data. The objective of the analysis was to

reduce tissue autofluorescence and to enhance image contrast.

The unmixing results were compared with standard RGB

images using both of these criteria. It was shown that the com-

bination SIMPLISMA/ALS reduced tissue autofluorescence

by 80% for HER-2/neu fluorescence spots, 64% for CEP 17

fluorescence spots and 90% for cell nuclei fluorescence spots.

For the enhancement of image contrast the percentage of pixels

which were ambiguously assigned to be rather HER-2/neu,

CEP 17 or cell nuclei pixels were analysed. In a standard

RGB image 21.8% of all pixels were ambiguously assigned.

This value was reduced to 1.08% with the combination

PCA/VARIMAX/ALS.

This overall enhancement of image quality simplifies auto-

mated fluorescence spot counting algorithms and thus enables

a more reliable detection of breast carcinoma using m-FISH

stained histological preparations.
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