International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:5, No:3, 2011

Nickel on Inner Surface and Stainless Steel on
Outer Surface for Functionally Graded
Cylindrical Shell
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Abstract—Study is on the vibration of thin cylindrical
shells made of a functionally gradient material (FGM)
composed of stainless steel and nickel is presented. The
effects of the FGM configuration are studied by studying the
frequencies of FG cylindrical shells. In this case FG
cylindrical shell has Nickel on its inner surface and stainless
steel on its outer surface. The study is carried out based on
third order shear deformation shell theory. The objective is to
study the natural frequencies, the influence of constituent
volume fractions and the effects of configurations of the
constituent materials on the frequencies. The properties are
graded in the thickness direction according to the volume
fraction power-law distribution. Results are presented on the
frequency characteristics, the influence of the constituent
various volume fractions on the frequencies.
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1. INTRODUCTION

TAINLESS STEEL are often used as load bearing structures

for aircrafts, ships and buildings. Understanding of
vibration behavior of cylindrical shells is an important aspect
for the successful applications of cylindrical shells.
Researches on free vibrations of cylindrical shells have been
carried out extensively [1-5]. Recently, the present authors
presented studies on the influence of boundary conditions on
the frequencies of a multi-layered cylindrical shell [6]. In all
the above works, different thin shell theories based on Love—
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hypothesis were used. Vibration of cylindrical shells with
ring support is considered by Loy and Lam [7]. The concept of
functionally graded materials (FGMs) was first introduced in
1984 by a group of materials scientists in Japan [8-9] as a
means of preparing thermal barrier materials. Since then,
FGMs have attracted much interest as heat-shielding
materials. FGMs are made by combining different materials
using power metallurgy methods [10]. Vibration study of FG
cylindrical shell structures is important. This cylindrical shell
considered are composed of stainless steel and nickel where
the volume fractions follow a power-law distribution.

I1. FUNCTIONALLY GRADED MATERIALS

For the cylindrical shell made of FGM the material
properties such as the modulus of elasticity E, Poisson
ratiov and the mass density o are assumed to be functions of
the volume fraction of the constituent materials when the
coordinate axis across the shell thickness is denoted by z and
measured from the shell’s middle plane. The functional
relationships between E,v and p with z for a stainless

steel and nickel FGM shell are assumed as:

E-(E, - EZ)(zz +th VE, 1)
2h

v:(vl—vz)(ZZJrh] +v, )
2h

p:(pl—pz)(%j +p, 3)

The third- order theory of Reddy used in the present study is
based on the following displacement field:

Uy = (o, )+ s h(cn, ) + il o)+ 05 Bl es, 1)
Uy = Uylan, )+ o dolon, a0+ A prolen, ) + 0. ol e, )
Us =Ug(a, )

(4)

These equations can be reduced by satisfying the stress-free
conditions on the top and bottom faces of the laminates, which

are equivalent to g ;=e ,=0at 7 = ih Thus
2
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Uy =Up(a, a) + azy (01, 07) — Crag (-2 + gy +——2)
R, Ao,

Uz =Us(ay, 7)

I1l. FORMULATION
Consider a cylindrical shell is shown in Fig.1. R is the
radius, L is the length and h is the thickness. The reference
surface is chosen to be the middle surface of the cylindrical
shell where an orthogonal coordinate system X, 8,z is fixed.
The deformations of the shell with reference to this coordinate
system are denoted byU;,U, and Uj in the X, and z

directions, respectively.

Fig. 1 Geometry of a cylindrical shell

For a thin cylindrical shell, plane stress condition can be
assumed. The constitutive relation for a thin cylindrical shell
is consequently given by the tow-dimensional Hook's law as

fo}=1Ql} (6)

where, {o} is the stress vector, {¢} is the strain vector and

[Q] is the reduced stiffness matrix. The stress vector for plane
stress condition is

{O'}T ={on oy o1 o153 O )

where oy is the stress in Xdirection, o5, the stress in the 8
direction and oy, is the shear stress on the X6 plane and
o313 Is the shear stress on the Xz plane and o3 is the shear
stress on the @ z plane. The strain vector is defined as

(4" 41 5,45 43 54 (®)

where ;1 is the strain in Xdirection, &,, the strain in the 8

direction and &;, is the shear strain on the x& plane and

&13 Iis the shear strain on the Xz plane and &,3 is the shear

strain on the 6z plane. The reduced stiffness [Q] matrix is
given as

Qll QlZ 0 0
QIZ Q 22 0

0 0 Qu 0

0 0 0 Qg
0 0 0 0

©)

[Q]

O © o o o

66

For an isotropic cylindrical shell the reduced stiffness Qij (i,
j=1, 2 and 6) are defined as

E
Qu=Qx» = - (10)
vE
= 11
Qo 1,2 (11)
E
Qa4 =Qs5 = Qg6 = 20+7) (12)

where E is the Young's modulus and v is Poisson's ratio.
For a thin cylindrical shell the force and moment results are
defined as

Ny o1 My o1
h h
N2, =E oppdag, (Mgpr= i o2 p@5day 49
2 2
N, 012 M, 012
P o11 PR3 013
Py =.r2h O tadar = gh a3doy (14)
2 2
P2 O12 Pos 023
Qa| n|ois Ra| nlois
[ fda .y (=[a) el 9)
Qs 2(mm Ra 2|os

The constitutive equation is obtained as

N} =[s] e} (16)

where {N} and {s} are, respectively, defined as

IN=INNNMMM, B: By o R B Qs Qs RaRg  (17)
{éT:{ﬁ:(L) &2 G K kookoK1Koko183 13 795 13 %3 }133} (18)

and [S] is defined as
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[S] _ [F] [H (19)

[o] [F] [6]
where A, B, E, D, F, H and G are the extensional, coupling
and bending stiffness matrices and Qj; are functions of z for

functionally gradient materials. Here Aij denote the

extensional stiffness, D-- the bending stiffness,B-- the

ij» Fij» Gijy Hjj
are the extensional, bending, coupling, and higher- order

stiffness. Defining

bending-extensional coupling stiffness and E;

By Oy By R G HI QL o el s (20)

The strain energy and kinetic energy of a cylindrical shell can
be defined as

u :% [[[tef o} av (21)

2 2 2 2 2
I GTGTE G e
2 a a a a a
where, p is the mass density, {g} is the strain vector and

{U} is the stress vector. By substituting from Eq. (6), the
strain and kinetic energies can be written as

U =%LLL2{’£}T [S]{z} RdAdx (23)

I ORGRGRHR e

The displacement fields for a cylindrical shell can be written
as:

u, = A 22 ) cos(n@)cos(wt)
Ox
u, = B ¢(x) sin(n@)cos(wt) (25)
= C ¢(x) cos(n) cos(wt)
¢ = 8¢(x) cos(né)cos(wt)

¢, = E4’5(X) sin(n@) cos(wt)

where, A,B,C ,D and E are the constants denoting the
amplitudes of the vibrations in the X,6 and z directions,
¢(x) is the axial function that satisfies the geometric

boundary conditions, n denotes the number of circumferential
waves in the mode shape and @ is the natural angular
frequency of the vibration. The axial function ¢(X) is chosen
as the beam function as:

d@:qcos@w@co@—;m(%sinl@wg‘sin@) (26)

where a; (i =1,...,4) are some constants with value 0 or 1
chosen according to the boundary conditions. A,,, are the
roots of some transcendental equations and &, are some

parameters dependent onA,,. The energy functional II
defined by the Lagrangian function as

= Tmax -U max (27)

With minimizing the energy functional TT with respect to the
unknown coefficients as follows,

an_on_n_en_en_, -
A 0B oC oD ¢cE

Tmax @nd Upax are the maximum kinetic energy and strain
energy, respectively. In Eqg. (28), the five governing
eigenvalue equations can be obtained. These five governing
eigenvalue equation can be expressed in matrix from as

Cu G Gz Cy G
Ca Cp Cp Cy Cy
Ca Cip GCi3 Gy Css
Cs Ca2 Cg3 Cyy Cgs
Coi GCs2 Gsz3 Gy Cos |

(29)

m g O W >
I
O O O O o

The eigenvalue equations are solved by imposing the non-
trivial solutions condition and equating the determinant of the
characteristic matrix [Cj] to zero. Expanding this

determinant, a polynomial in even powers of @ is obtained

B+ Lo’ + Bocd® + oo + fha” + s =o (30)

where f;(i=012,3,4,5) are some constants. Eq. (30) is
solved five positive and five negative roots are obtained. The
five positive roots obtained are the natural angular frequencies
of the cylindrical shell in thex , € and z directions. The
smallest of the five roots is the natural angular frequency
studied in the present study.

VI. RESULTS AND DISCUSSION
In this paper studies are presented on the vibration of
functionally graded (FG) cylindrical shell. The functionally
gradient material (FGM) considered is composed of stainless
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steel and nickel and its properties are graded in the thickness
direction according to the volume fraction power-law
distribution. The influence of constituent volume fractions is
studied by varying the volume fractions of the stainless steel
and nickel. This is carried out by varying the value of the
power law exponent N . The effects of the FGM configuration
are studied by studying the frequencies of FG cylindrical
shells. Type FG cylindrical shell has Nickel on its inner
surface and stainless steel on its outer surface. The material
properties for stainless steel and nickel, calculated
atT =300K , are presented. Tables 1 and 2 show the

variations of the volume fractions V; of Nickel and Stainless
Steel, respectively, in the thickness direction z for a FG
cylindrical shell. the volume fraction for Nickel Vg
decreased from 1 at z=-0.5hto 0 atz=0.5h and the
volume fraction of Stainless Steel V¢ increased from 0 at
z=-0.5htolatz=0.5h.

TABLE |
VARIATIONS OF THE VOLUME FRACTIONSV fss » IN THE THICKNESS DIRECTION

Z FOR A FG CYLINDRICAL SHELL

Z \ fss
N=05 N=07 N=1 N=2 _ N=5 N=15

05 0 0 o o0 0 0
04h 03162 01995 01 001 000001 1015y
.03h 04472 03241 02 004 0.00032 o
02h 05477 04305 03 009 000243 107 x3.27
.01h 06324 0525 04 016 001024 10°°x1.43

0 0707 06155 05 025 003125  0.00000107
0ah 07745 06993 06 036 007776  0.00003051
02h 08366 07790 07 049 01680 00004701
03h 08944 08553 08 0.64 03276 0004747
04h 09486 09289 09 081 05904 0.03518
0.5h 1 1 11 1 0.20589

1
TABLE Il

VARIATIONS OF THE VOLUME FRACTIONS V fN » IN THE THICKNESS DIRECTION

Z FOR A FG CYLINDRICAL SHELL

[1]

[2]

[3]
[4]

[5]
(6]

[71
(8]
[9]

[10]

Vin

A T e A T R e
-05h 1 1 1 1 1 1
04h 06837 08004 09 099 09999 1
03h 05527 06758 08 096 09996 1
02h 04522 05694 07 091 09975  0.9999
01h 03675 04734 06 084 09897  0.9999

0 02928 03844 05 075 09687  0.9999
0.h 02254 03006 04 064 09222 09995
02h 01633 02209 03 051 08319 09952
03h 01055 01449 02 036 06723 09648
04h 00513 00710 01 019 04095 07941
0.5h 0 0 0 0 0 0
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