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Abstract—Environmental awareness and the recent 

environmental policies have forced many electric utilities to 
restructure their operational practices to account for their emission 
impacts.  One way to accomplish this is by reformulating the 
traditional economic dispatch problem such that emission effects are 
included in the mathematical model.  This paper presents a Particle 
Swarm Optimization (PSO) algorithm to solve the Economic-
Emission Dispatch problem (EED) which gained recent attention due 
to the deregulation of the power industry and strict environmental 
regulations.  The problem is formulated as a multi-objective one with 
two competing functions, namely economic cost and emission 
functions, subject to different constraints.  The inequality constraints 
considered are the generating unit capacity limits while the equality 
constraint is generation-demand balance.  A novel equality constraint 
handling mechanism is proposed in this paper.  PSO algorithm is 
tested on a 30-bus standard test system.  Results obtained show that 
PSO algorithm has a great potential in handling multi-objective 
optimization problems and is capable of capturing Pareto optimal 
solution set under different loading conditions. 
 

Keywords—Economic emission dispatch, economic cost 
dispatch, particle swarm, multi-objective optimization.                            

I. INTRODUCTION 
LOBAL warming is partially blamed for some of the 
natural catastrophes that are taking places in many parts 

of the world like hurricane Katrina in the USA and the recent 
floods that hit parts of Asia.  The rapid increase in greenhouse 
gas concentrations is one the main factors that led to global 
warming.  To reduce the effects of such unfortunate 
phenomena, a special attention must be made to pollution 
sources.  Thermal power generation plants are major 
contributors to air pollution.  Their main gaseous pollutants 
are carbon oxides (COx), sulfur oxides (SOx), and nitrogen 
oxides (NOx) [1].  In the past few decades, environmental 
awareness led to impose rigid environmental policies on 
power utilities to minimize their emissions.  The emissions of 
air pollutants came under US federal regulation in 1963 when 
the Clean Air Act law was enacted [2].  Consequently, power 
utilities had to re-adjust their operational practices to meet the 
new laws.  Many solutions were proposed to reduce power 
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plant emissions like installing post-combustion cleaning 
equipment, changing fuel type to fuel with less pollutants, or 
dispatching with emission considerations [1].  The latter 
option is preferred in many cases due to economical reasons 
since no capital cost is needed and its immediate availability 
for short term operation. 

The electric power industry restructuring has created a 
highly vibrant and competitive market that altered many 
aspects of the industry.  A new operation philosophy has 
emerged to cope with these changes.  Economic Cost Dispatch 
(ECD) is one of the areas that was greatly impacted as a result 
of power industry deregulation.  The main goal of ECD is to 
allocate the optimal power outputs from different generating 
units at the lowest cost possible while meeting all system 
constraints.  Emission Dispatch (ED) is similar to ECD with 
the objective to be minimized being emission instead of cost.  
The two functions are conflicting in nature and they both have 
to be considered simultaneously to find overall optimal 
dispatch.  Emission-Economic Dispatch (EED) optimization 
problem is formed by combing the two objective functions.  In 
multi-objective optimization there is no single optimal 
solution to any problem unless exact preference or “weight” 
of all objectives is known.  This gives rise to finding a set of 
compromise solutions known as Pareto optimal solutions.  
When optimizing all objectives simultaneously, Pareto 
optimal solutions show the tradeoffs among conflicting 
objective functions.   

Different techniques were proposed to solve the EED 
problem.  In [3], the author utilized evolutionary algorithms to 
solve the EED problem.  The authors of [4] used probability 
security criteria to compute the solution of EED problem.  
Nanda et al. approached the same problem by employing 
linear and non-linear programming in [5].  It is important to 
note that in all the literature found in [3-5], the EED problem 
was tackled considering only one loading condition for a 
given system.  The impact of different loading conditions on 
the shape of Pareto optimal set was not addressed in the 
reported literatures. 

In this paper, Particle Swarm Optimization (PSO) technique 
is proposed to solve the EED multi-objective problem by 
generating the Pareto optimal solution set under different 
loading conditions.  The performance of the proposed 
technique is validated using a standard test system. 
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II. PROBLEM FORMULATION 
 EED problem is composed of mainly two types of objective 
functions, ECD and ED subject to equality and inequality 
constraints.  Each problem is detailed as follows [6]: 
 

A.  ECD Problem 
The input/output fuel cost function of all generating units is 

typically modeled as a quadratic function as follows: 
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where 
− ai, bi, and ci represent to the cost function coefficients of the 
i-th generating unit. 
− Pi is the generating unit real power output. 
− N is number of generating units.  
 
The ultimate goal of the ECD problem is to minimize the 
overall fuel cost function subject to the following constraints: 
1. Generating unit capacity limits as inequality 
 constraints  

  min maxi i iP P P≤ ≤                            (2) 
2. Generation-demand balance as an equality constraint 
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where  
− PL is the overall system real power losses. 
− PD is the total system real power demand. 
 
Note that the system loss function is approximated by  
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where 
-  Bij are elements of the B-coefficients loss matrix. 
 
Equation (3) states that the total units generation shall meet 
system load demand and losses. 
 

B.  ED Problem 
Different mathematical  models were proposed to represent 

the emission function of thermal generating units [7;8]. In this 
study, the following emission function will be considered to 
model the total emissions of all generating units [3]:  
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where 
-  αi, βi, γi,ζi, and λi are the emission function coefficients of 
the i-th generating unit. 
 

The aim of ED problem is to minimize total emission of all 
thermal units such that constraints (2) and (3) above are 
satisfied. 
 
 
 

C.  EED Multi-Objective Optimization Problem 
The EED is formulated as a multi-objective optimization 

problem as follows: 
 Min z = [ ( ), ( )]F P E P                          (6) 

subject  to    
 ( ) 0ig P =                                   (7) 

 ( ) 0ih P ≤                                  (8) 
One way to deal with multi-objective optimization problem is 
by assigning different weights for each objective.  Then, 
weights are changed such that the entire set of Pareto optimal 
set is computed.  Mathematically, the overall objective can be 
stated as follows: 

1 2( ) ( )Min z w F P w PE= +                    (9) 

Subject to equations (2) and (3).  Note that
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III. PARTICLE SWARM OPTIMIZATION 
Traditional optimization methods such as those described in 

references [9;10] are by far the most common optimization 
tools used in the industry.  However, these techniques can 
encounter some difficulties such as getting trapped in local 
minima, increasing computational complexity, and being not 
applicable to certain objective functions.  This led to the need 
of developing a new class of solution methods that can 
overcome these limitations.  Heuristic optimization techniques 
are fast growing tools that can overcome most of the 
shortcomings found in derivative-based techniques.  

Two scientists, Kennedy and Eberhart, first introduced 
Particle Swarm Optimization (PSO) in 1995 as a new heuristic 
method [11;12].  The original objective of their research was 
to graphically model the social behavior of bird flocks and 
fish schools.  As their research progressed, they discovered 
that with some modifications their social behavior model can 
serve as a powerful optimizer.  The first version of PSO was 
intended to handle only nonlinear continuous optimization 
problems.  However, many advances in PSO development 
elevated its capabilities to handle a wide class of complex 
optimization problems involved in engineering and science.  
Summaries of recent advances are presented in [13] and [14].  

Various versions of PSO algorithms were proposed but the 
most standard one is the one introduced by Shi and Eberhart 
[15].  Key attractive feature of PSO is its simplicity as it 
involves only two model equations.  In PSO, the coordinates 
of each particle represent a possible solution associated with 
two vectors, the position (xi) and velocity (vi) vectors.  The 
size of vectors xi and vi is equal to the problem space 
dimension.  A swarm consists of number of particles “or 
possible solutions” that proceed (fly) through the feasible 
solution space to explore optimal solutions.  Each particle 
updates its position based on its own best exploration; best 
swarm overall experience, and its previous velocity vector 
according to the following model: 

 
 1
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where  
− c1 and c2 are two positive constants 
− r1 and r2 are two randomly generated numbers with a range 
of [0,1] 
− μ is the inertia weight and it is defined as a function of 
iteration index i as follows: 
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                  (12) 

− pbesti is the best position particle i achieved based  on its 
own experience 
− gbesti is the best particle position based  on overall swarm 
experience 
The PSO algorithm can be best described, in general, as 
follows: 
 
1. For each particle, the position and velocity vectors are 
randomly initialized with the same size as the problem 
dimension. 
2. Measure the fitness of each particle (pbest) and store the 
particle with the best fitness (gbest) value. 
3. Update velocity and position vectors according to equations  
(10) and (11) for each particle. 
4. Repeat steps 1-3 until a termination criterion is satisfied. 
 

A.  Constraints Handling Mechanism 
There are two types of constraints associated with the EED 

problem; equality and inequality constraints.  The equality 
constraints in particular represent a challenge to most 
stochastic optimization algorithms since it is often hard to 
satisfy throughout the optimization process.  In the context of 
PSO, constraints are handled as follows: 
 

1.  Equality Constraints 
A novel mechanism is proposed in this paper to handle this 

type of constraints for the EED problem.  At each iteration, 
equation (3) is satisfied by following the simple yet effective 
algorithm:   
1. Ignore network losses at first and randomly generate all 
unit’s power levels within their bounds except for the last unit, 
i.e. [ ]1 2 1, , ....., NP P P − . 
2. Calculate the last unit’s power level according to equation 
(13).    
 [ ]1 2 1.....N D NP P P P P −= − + + +  (13) 
3. Calculate the network losses in accordance with equation 
(4). 
4. Incorporate losses into power generation by adjusting the 
last unit’s power level as follows: 
 [ ]1 2 1.....N D L NP P P P P P −= + − + + + (14) 
 

2.  Inequality Constraints 
Particle’s position (i.e. power level) is checked after each 

iteration to ensure its compliance with bounds in equation (2).  
If any particle flies outside its bounds, its current position will 
be restored to its previous best position (pbest). 

IV. SIMULATION RESULTS AND DISCUSSION 
The PSO program was written using Matlab and 

simulations were performed utilizing HP desktop with AMD 
Athlon 64 X2 dual core processor.  Extensive testing was 
conducted to tune the parameters of the proposed approach in 
order to reach acceptable convergence characteristics.  The 
selected tuned parameters are:  
− Maximum velocity: 2. 
− Population size: 20 particles. 
− C1=C2=1.25. 
The Inertia weight was kept between 0.4 and 0.9. 
 

The PSO technique was tested on the 30-bus standard test 
system with six generating units and 41 interconnected 
transmission lines. Economical and environmental 
characteristics of all generation units are tabulated in Tables I 
and II respectively [3].  Four different loading conditions, 
namely PD1 = 283.4 (base load), PD2 = 340.08 MW, PD3 = 
396.76 MW, and PD4 = 453.44 MW, were selected to test its 
impacts on the trade-off curves.  Note that the selected loading 
conditions are spaced at 20% increments from the base load.  
 

TABLE I 
COST FUNCTION COEFFICIENTS AND UNIT LIMITS 

Generator a b c Pmin(p.u.) Pmax(p.u.)
1 10 200 100 0.05 0.50
2 10 150 120 0.05 0.60
3 20 180 40 0.05 1.00
4 10 100 60 0.05 1.20
5 20 180 40 0.05 1.00
6 10 150 100 0.05 0.60  

 
TABLE II 

EMISSION FUNCTION COEFFICIENTS  

Generator α β γ ζ λ
1 0.04091 -0.05554 0.06490 0.000200 2.857
2 0.02543 -0.06047 0.05638 0.000500 3.333
3 0.04258 -0.05094 0.04586 0.000001 8.0
4 0.05326 -0.03550 0.03380 0.002000 2.0
5 0.04258 -0.05094 0.04586 0.000001 8.0
6 0.06131 -0.05555 0.05151 0.000010 6.667  

 
The two extreme points of Pareto front were computed first 

by minimizing each objective separately for each loading 
condition. Table III shows the optimization results for each 
loading condition. 

 
TABLE III 

MINIMIZATION OF EACH OBJECTIVE SEPARATELY 

Loading (MW) Fuel Cost ($/hr) Emission (ton/hr)

PD1 = 283.40 600.1118 0.19420
PD2 = 340.08 729.2915 0.19656
PD3 = 396.76 865.2600 0.20542
PD4 = 453.44 1008.9449 0.22355  

 
Fig. 1 shows the convergence characteristics of the 

proposed optimizer. It seems that PSO tends to have steady 
convergence characteristics as it approaches the optimal 
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solution or near optimal within reasonable number of 
iterations. 
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Fig. 1 PSO Convergence Characteristics 

 
Then, the PSO Algorithm was used to handle the EED 

multi-objective problem by adopting the weighting method.  
Note that each given weight provides a single solution in 
Pareto optimal set.  Fig. 2 shows the trade-off curves for all 
loading conditions.  It is clear that Pareto fronts maintained 
similar patterns regardless of the loading conditions.  This 
pattern seems to change somewhat proportionally among 
loading conditions.  This indicates that dispatchers in power 
utilities might be able to forecast the shape of Pareto front for 
any intermediate loading condition other than those 
considered previously in early studies.  
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Fig. 2 Pareto Fronts for Different Loading Conditions 

V. CONCLUSION 
This paper presents a new solution method of the economic 

dispatch problem while accounting for the environmental 
impacts of generating units.  The problem is formulated as a 
multi-objective optimization problem with two competing 
objectives.  PSO based approach is developed to efficiently 
solve the problem with special emphasis on studying the 
impact of loading conditions on the shape of the trade-off 
curves.  Results indicate that trade-off curves maintained their 
pattern regardless of the system loading conditions.  This 
observation gives indication that Pareto fronts can be 
interpolated from base loading condition.  
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