
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

946

On Method of Fundamental Solution for
Nondestructive Testing

Jieer Wu, Zheshu Ma,

Abstract—Nondestructive testing in engineering is an inverse
Cauchy problem for Laplace equation. In this paper the problem
of nondestructive testing is expressed by a Laplace’s equation with
third-kind boundary conditions. In order to find unknown values on
the boundary, the method of fundamental solution is introduced and
realized. Because of the ill-posedness of studied problems, the TSVD
regularization technique in combination with L-curve criteria and
Generalized Cross Validation criteria is employed. Numerical results
are shown that the TSVD method combined with L-curve criteria is
more efficient than the TSVD method combined with GCV criteria.
The abstract goes here.
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L-curve, Generalized Cross Validation.

I. INTRODUCTION

DETECTING the domain of corroding materials is an
important topic in engineering and was introduced by

Santosa[1]. In this study this mathematical model adopted is
as follows[2]:

Let Ω be a metallic body with constant conductivity and
∂Ω be its boundary. Suppose that the corroding portion Γ2 is
an inaccessible part of and portion Γ1 is an accessible portion
of ∂Ω . For simplification we restrict Ω to the rectangular
domain, where ’a’ is a small constant, See Fig.1. This model
was considered by Dario[2] .

Fig. 1. domain Ω

If the domain Ω is considered as the electrostatic field, the
electric potential u satisfies the Laplace’s equation in Ω, i.e.,

Δu = 0, (x, y) ∈ Ω. (1)
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ux(0, y) = ux(1, y) = 0, y ∈ [0, a], (2)

uy(x, 0) = −ϕ(x), x ∈ [0, 1], (3)

uy(x, a) + γ(x)u(x, a) = 0, x ∈ [0, 1]. (4)

Note that the non-negative function γ(x) in the third-kind
boundary condition (4) is related to the corrosion rate at point
x [2,3].

The forward problem of solving Laplace’s equation is to get
the potential u from the known data (2)-(4).

The inverse problem we discuss here is to recover the
unknown function γ(x) from the known Cauchy data ϕ(x)
and u(x, 0) on the accessible boundary Γ1 [2]. The inverse
problem can be solved according to the following two steps:

Step 1 Get the Cauchy data uy(x, a) and u(x, a) on Γ2

from Cauchy problem for Laplace’s equation:⎧⎨
⎩

Δu = 0, (x, y) ∈ Ω,
u(x, 0) = ϕ1(x), x ∈ Γ1,
un(x, 0) = ϕ2(x), x ∈ Γ1.

(5)

where the un(x, 0) is the outward normal derivative of u along
Γ1. The data ϕ1(x) ,ϕ2(x) can be obtained by measurements.

Step 2 Recover the non-negative function γ(x) by (4). For
such an inverse problem there exists a unique solution[4].
As shown in [2], the Galerkin method based on Fourier
coefficients is proposed and tested. In order to get the pos-
itive approximations the maximum entropy principle is also
discussed. The ideals of recovering corrosion can be viewed
as a thermal imaging problem[5].

In this paper the MFS(The Method of Fundamental Solu-
tion) and regularization techniques are used to recover the non-
negative function γ(x) in (4). It is well known that Cauchy
problem (5) is typically ill-posed in the sense of Hadamard[6]
. Most existing numerical methods such as finite element and
finite difference often fail to produce an acceptable solution of
(5). The reason of this phenomenon is that the Cauchy problem
for Laplace’s equation is very sensitive to the occurrence of
measurement errors. Compared with the FEM and FDM, the
MFS does not require the meshing of the domain W and is
easy to be operated. One disadvantage of MFS is that the
resulting linear system is always ill-conditioned and some
regularization techniques are needed.

This paper is organized as follows. In section 2 we establish
a linear system by MFS and point out the necessary of
regularization. In section 3 the TSVD regularization is used
to solve the resulting ill-conditioned system. The truncated
number of the SVD decomposition, which can be regarded
as regularization parameter, can be determined by L-curve
criteria and the GCV function. In section 4 we will give some
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examples to show the efficiency of MFS combined with TSVD
regularization. In section 5 we give the conclusion.

II. MFS AND REGULARIZATION

The MFS is a boundary-type radial basis function(RBF)
collocation scheme. It was originally formulated by Kupradze
and Aleksidze[7] and has been developed by numerous math-
ematicians and scientists over the past three decade. It poses
integration-free,easy-to-use and meshfree merits. Denote

G(P, Q) =
1
2π

ln ||P − Q||

=
1
2π

ln
√

(x − xQ)2 + (y − yQ)2 (6)

to be the fundamental solution of Laplace operator Δu = 0
, where the points P (x, y) and Q(xQ, yQ) ∈ R2 . Particularly
the source point Q(xQ, yQ) ∈ R2 is located outside the
domain Ω . The method of fundamental solution (MFS) can
be expressed as follows.

On the accessible boundary Γ1 , we choose n collocation
points Pi(i = 1, 2, ..., n) to fit the Dirichlet data and m points
Pi(i = n + 1, n + 2, ..., n + m) to fit the Neumann data. The
requirement on these collocation points are pairwisely distinct.
These nodes can be viewed as measure points and the measure
data at these nodes may be affected by error. We also select
a fictitious circle R containing Ω in its interior and L source
points Qj(j = 1, 2, ..., L) on R. See Fig.2.

Fig. 2. collocation points . and *

The method of fundamental solutions is based on the fact
that an approximation ũ to the solution of (1) can be expanded
by the basis functions G(P, Qj), j = 1, 2, ..., L as follows:

ũ =
L∑

j=1

ajG(P, Qj), (7)

where aj(j = 1, 2, ..., L) are unknown coefficients. Note
that the approximation solution ũ satisfies Laplace’s equation
(1) automatically but not the boundary conditions in (5). The
unknown coefficients aj of ũ must be selected carefully so
that they exactly satisfy

L∑
j=1

ajG(Pi, Qj) = ϕ1(Pi),

L∑
j=1

aj
∂G(Pi,Qj)

∂n

∣∣∣
P=Pi

= ϕ2(Pi).
(8)

where i = 1, 2, ..., n and n + 1, ..., n + m. The equation (8)
can be written as a linear algebraic system equation

(
G(Pi, Qj)
∂G(Pi,Qj)

∂n

)
(n+m)×L

⎛
⎜⎝

a1

...
aL

⎞
⎟⎠ =

(
ϕ1(Pi)
ϕ2(Pi)

)
(n+m)×1

,

(9)
or in the form of

Ax = b (10)

where the unknown vector x contains the coefficients aj

(j = 1, 2, ..., L). It should be noted that in order to uniquely
determine the vector x, the number m + n must be greater or
equal to the number of source points L. In this situations, The
solution x of (10) can be determined by solving the following
least squares problem

min
x∈RL

‖b − Ax‖2 (11)

If we get the solution of (11), the function ũ(x, y) can be
viewed as an approximation of the electric potential u(x, y).
The value of u(x, y) in the domain Ω or along its boundary
can be calculated from ũ(x, y) . Especially the Cauchy data
can be obtained by ũand the non-negative function γ(x) can
be determined by (4).

As mentioned in section 1, the matrix A of (9) is ill-
conditioned and the (9) is called discrete linear ill-posed
system[8]. Because of the badly ill-conditioning of A, the
solution of (11) is very sensitive to errors in b caused by
measurement and the location of the source points. Most
common methods such as LU- or QR-factorizations fail to
produce an acceptable solution of (10). In order to compute
a meaningful approximation x, regularization methods are
required. The Tikhonov approach[9] is a well known method,
i.e. replace the least squares problem (11) by

min
x∈RL

{‖b − Ax‖2 + λ2 ‖x‖2} (12)

where λ ∈ R is regularization parameter. In this paper
we concentrate on the TSVD method[10] combined with
GCV and L-curve criteria to solve (10). Numerical examples
show that this method can produce an acceptable non-negative
function γ(x).

III. TSVD REGULARIZATION

In this section we will discuss how to recover the function
γ(x). Supposed that the matrix A is decomposed into

Anm = UnnΣnmV T
mm =

m∑
i=1

uiσiv
T
i , (13)

where Unn = (u1, u2, ..., un) and Vmm = (v1, v2, ..., vm) are
column orthogonal matrices, Σ = diag(σ1, σ2, ..., σm) is a
diagonal matrix where the singular values, σi(i = 1, 2, ..., m)
, are arranged in descending order. The solution x∗ of (10)
using the SVD can be expressed as

x∗ =
m∑

i=1

uT
i b

σi
vi. (14)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

948

When the vector b is contaminated by measure errors, it is
obvious that the solution x∗ may be blown up by small singular
value σi and the measure errors in b. Some regularization
techniques should be introduced to filter out the parts of the
solution corresponding to all the small singular values. By
dropping off the small singular values, the Truncated SVD
solution(TSVD) is defined as follows:

xreg =
r∑

i=1

uT
i b

σi
vi. (15)

In (15) the truncated parameter r(r ≤ m) is called regular-
ization parameter and it plays a major role in regularization.
The so-called generalized cross validation (GCV)[11] and L-
curve criteria[12] are two different ways of choosing the
truncated parameter r. The advantage of these methods is
that they do not require any knowledge about the noise lever
presented in the right-hand side vector b. For completeness,
we simply outline the GCV and L-Curve criteria.

A. GCV criteria

Let xreg = A#b denote the solution computed by means
of (15), the regularization parameter r lets the following GCV
function

GCV (r) =
||(I − AA#)b||2

[trace(I − AA#)]2
, r = 1, 2, ..., m (16)

minimize with regard to r . It is easy to rewrite the GCV
function in terms of the SVD of A as follows[13]:

GCV (r) =
m∑

i=r+1

∣∣uT
i b

∣∣2/(n − r)2, r = 1, 2, ..., m.

B. L-curve criteria

The L-curve criteria is an other popular method for choosing
a suitable value of the parameter r . When the 2-norm of
the solution xreg and the residual b − Axreg are known, the
curve (log ||xreg||, log ||b−Axreg||), r = 1, 2, ..., m is usually
referred to the L-curve. The generic shape of the L-curve is
shown in Fig.3.

Fig. 3. L-curve for a continuous regularization parameter

The L-curve criterion defines the optimal value of the
regularization parameter r to be at the corner of the L-curve.

If the optimal regularization parameter r is determined by
L-curve criterion or GCV criterion, then the approximation

ũ =
L∑

j=1

ajG(P, Qj) can be obtained by solving (11) and the

non-negative function γ(x) can be recovered by (4).
The complete algorithm for recovering γ(x),including deter-

mination of the regularization parameter λ , takes the following
form:

Algorithm (TSVD for recovering γ(x))
(1) Set n,m, L and the radius of the fictitious circle R;
(2) Form linear system (10) by fundamental solution (6);
(3) Solve (10) by TSVD method, where the regularization

parameter r is determined by GCV criteria or L-Curve criteria;
(4) Use (7) to calculate the Cauchy data uy(x, a) and u(x, a)

along the inaccessible boundary Γ2 ;
(5) recover γ(x) from (4).

IV. NUMERICAL RESULTS

In this section two examples are tested to illustrate the
performance of the algorithm described above. For simplicity,
we assume that the coefficient ′a′ of domain Ω is 0.1. The
Neumann data φ(x) in (3) is equal to 1. For numerical error
estimation ,we define the relative error between the recovered
γ̃(x) and the exact γ(x) by the following formula

ε =
‖γ(x) − γ̃(x)‖

‖γ(x)‖ .

In order to test the influence of the noise, we add the sim-
ulated random white noises, i.e. normally distributed random
entries with zero mean and the variance is chosen to be δ ,
to the Cauchy data along Γ1 . Different proportional noise
lever δ will be considered here. We hope that the noises
can be effectively filtered out by regularization method. In
the following figures, ”TSVD+L-Curve” represents that the
corrosion rate γ̃(x) is computed by L-Curve criteria and
”TSVD+GCV” represents that the γ̃(x) is computed GCV
criteria. The solid line represents the exact γ(x) and the dotted
line represents the approximation γ̃(x) .

Example 1[2] Let

γ(x) =
{

106

2 (x − 0.2)4(x − 0.6)4, 0.2 ≤ x ≤ 0.6;
0, other.

be the exact recovered solution of problem (1)-(4). The
Cauchy data ϕ1(xi) = un(xi, 0)(i = 1, 2, ..., m) and
ϕ2(xj) = un(xj , 0)(j = 1, 2, ..., m) along Γ1 can be obtained
from problem (1)-(4). Here n = m = 100, L = 50 and the
radius of the fictitious circle R is 5.5. See Fig.2. The function
γ(x) can be recovered from (4). For different error lever δ
, the comparison between the recovered γ̃(x) and the exact
γ(x) are listed in the following figures.

Example 2 Consider the harmonic function u(x, y) = y3 −
3yx2 + x2 − y2 + 6. The method of simulating Cauchy data
along Γ1 is the same as Example 1. For different error lever
δ, the comparison between the recovered γ̃(x) and the exact
γ(x) is plotted in the following figures.

From these examples we find that the curves of recovered
γ̃(x) are almost the same as that of the γ(x), except for the
curve computed by GCV criteria in Fig.13. The efficiency of
L-Curve method is better than the GCV’s because its relative
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(a) ”TSVD+L-Curve”,ε = 0.24 (b) ”TSVD+GCV”,ε = 0.26

Fig. 4. The results of applying the algorithm to example 1 with δ = 10−4 ,

(a) ”TSVD+L-Curve”,ε = 0.23 (b) ”TSVD+GCV”,ε = 0.25

Fig. 5. The results of applying the algorithm to example 1 with δ = 10−3 ,

(a) ”TSVD+L-Curve”,ε = 0.242 (b) ”TSVD+GCV”,ε = 0.26

Fig. 6. The results of applying the algorithm to example 1 with δ = 0 ,

(a) ”TSVD+L-Curve”,ε = 0.000394 (b) ”TSVD+GCV”,ε = 0.0576

Fig. 7. The results of applying the algorithm to example 2 with δ = 10−3 ,

errors for different δ are relatively smaller than those of the
GCV’s.

V. CONCLUSION

In this paper the MFS combined with regularization was
introduced to recover the γ(x) from the Cauchy problem of

(a) ”TSVD+L-Curve”,ε = 0.000394 (b) ”TSVD+GCV”,ε = 0.0576

Fig. 8. The results of applying the algorithm to example 2 with δ = 10−3 ,

(a) ”TSVD+L-Curve”,ε = 0.000064 (b) ”TSVD+GCV”,ε = 0.0085

Fig. 9. The results of applying the algorithm to example 2 with δ = 10−4 ,

Laplace’s equation. The limited numerical experience demon-
strated that the developed method is numerically stable. Nu-
merical results also showed that the TSVD combined with
L-curve criteria was slightly better than the method combined
with GCV criteria.
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