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Abstract—A semi-active control strategy for suspension 
systems of passenger cars is presented employing 
Magnetorheological (MR) dampers. The vehicle is modeled with 
seven DOFs including the, roll pitch and bounce of car body, and 
the vertical motion of the four tires. In order to design an optimal 
controller based on the actuator constraints, a Linear-Quadratic 
Regulator (LQR) is designed. The design procedure of the LQR 
consists of selecting two weighting matrices to minimize the energy 
of the control system. This paper presents a hybrid optimization 
procedure which is a combination of gradient-based and 
evolutionary algorithms to choose the weighting matrices with 
regards to the actuator constraint. The optimization algorithm is 
defined based on maximum comfort and actuator constraints. It is 
noted that utilizing the present control algorithm may significantly 
reduce the vibration response of the passenger car, thus, providing 
a comfortable ride.

Keywords—Full car model, Linear Quadratic Regulator, 
Sequential Quadratic Programming, Genetic Algorithm

I. INTRODUCTION

EDUCING the ride vibration in passenger cars with 
effective suspension systems has been one of the main 

challenges in the automobile industry since it  has a direct 
influence  on the safety and comfort of  passengers. The 
suspension system in a passenger car consists of tires, 
springs and dampers which may be modeled as linear 
elements. One of the strategies to improve ride quality is to 
control the damping force in suspension systems [1], as in 
semi-active systems. Many schemes have been proposed in 
order to increase the damping and in turn to increase the 
amount of dissipated energy.  The aim of ride control is to 
reduce the vehicle vibrations produced by the bumpy road 
and consequently to minimize the energy per each cycle of 
vehicle body oscillations. Ride control can be defined as 
full-active (active) or semi-active depending on whether an 
actuator is used in the suspension system or not.  
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In other words, if the suspension system consists of only 
an active part (no passive elements such as damper and 
spring) ride control is called full-active [2]. But if the 
suspension system consists of an actuator, which can 
continuously vary the rate of the energy dissipation (without 
adding energy) using a controllable damper, it is called 
semi-active system [3]. The semi-active suspension system 
was developed by Karnopp [1], who applied it to a quarter-
car model with a variable damping force and a combination 
of variable damping force and load leveling. Karnopp [1] 
derived the state space equations of the system   using the 
bond graph method. The quarter car model has been used by 
other researchers who continued the study of Karnopp [1]. 
The present paper focuses on the research on semi-active 
models with the effect of the actuator (MR damper) 
dynamics. Magnetorheological (MR) oil is a smart material 
whose viscosity changes with applied magnetic field. This 
property of MR oil makes it favorable in smart shock 
absorbers in industrial applications. There are many 
analytical and experimental studies on the application of MR 
dampers. For instance, Du et al. [4] studied the application of 
MR damper as an actuator in the quarter-car models both 
theoretically and experimentally. Based on their 
experimental results, they suggested a polynomial force for 
the MR damper as a function of current. This research shows 
the margin of desired force for a medium size passenger car 
(weight: 2000 kg, wheelbase: 4.6 m, and track: 1.8 m) is 
around 2000 N for a current around 1 A. Fallah et al. [5]
suggested a force control strategy for a quarter-car model 
including the kinematics of the Macpherson suspension 
system. They studied the hysteretic behavior of the MR 
damper theoretically and conducted a series of experiments 
similar to those of Du et al. [4]. In this research, the authors 
studied the response of the system by applying the velocity 
to one end of the MR damper based on the simulation 
analysis of the damper. They examined the response of the 
simulation (state variables and the input current of MR 
damper). Fallah et al. [5] used an inverse method to find the 
force of the MR damper (around 800 N) and compared it 
with the desired force. The results obtained from the 
simulation showed that the damper can approximately 
follow the desired force.  

Studies of Du et al. [4] and Fallah et al. [5] are a 
combination of experiment and theory, which are based on 
the quarter-car model.   

Ride Control of Passenger Cars with Semi-
active Suspension System Using a Linear 

Quadratic Regulator and Hybrid Optimization 
Algorithm

Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat

R



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:7, 2012

1209

Hence, they could study only the bounce motion of the 
vehicle, and neglected the effect of roll and pitch. However, 
the real dynamic motion of the vehicle consists of roll, pitch 
and bounce which are coupled. Therefore, by neglecting the 
effect of roll and pitch motion in the quarter-car model the 
bounce motion will be unrealistic and possibly 
overestimated. 
 Full-car model of a suspension system will have at least 
seven DOFs: roll, pitch and bounce of the body, and four 
DOFs for the tires.  Cheng et al. [6], and Jahromi and 
Zabihollah [7] studied the semi-active suspension system by 
using a linear full-car model with seven DOFs. They 
investigated the effectiveness of the MR damper on reducing 
the vibrations of the vehicle body. The results include the 
effect of semi-active suspension system on the ride quality 
and the reduction of the roll and pitch motions due to the 
bumpy road in straight motion of the vehicle.   
 Guclu [8] studied the semi-active suspension system 
considering the effect of passenger seat motion by using a 
full-car model with eight DOFs. The effect of dry friction in 
the suspension mechanism was considered in this work, and 
an electric motor was used under the passenger seat as an 
extra actuator. The dry friction makes the dynamic equations 
of the full-car model nonlinear; therefore, Guclu [8] selected 
a non-model based control strategy (PID) to improve the ride 
quality. The results show that the controller totally absorbs 
the vibration of all the DOFs of the system. However, the 
study did not report the required force and therefore it is not 
clear whether the force is in the feasible region.
  Linear Quadratic Regulator (LQR) and Linear Quadratic 
Gaussian [10] (LQG) methods are optimal control strategies 
which can be used in the linear Multi-Input Multi-Output 
(MIMO) control system. The suspension system in most of 
the studies was modeled using a linear formulation; 
therefore, LQR controller as a state feedback control strategy 
was utilized to improve the ride quality of the passenger car 
[7], [9], [10]. The LQR control gain is an optimal pole 
placement gain which is achieved based on the minimization 
of the actuation energy, and guarantees the stability of the 
system. The mathematical procedure to find the LQR gain 
strongly depends on two weighting matrices Q and R whose 
size is related to the number of inputs and state variables; 
therefore, the matrices can have any elements to satisfy the 
positive semi definite condition for Q and positive definite 
condition for R, [7], [9], [10]. Although the Q and R matrices 
are important in the efficiency of the controller, none of the 
above studies in [7], [9], [10] present a method to identify 
these matrices. 
 The Q and R matrices can be found using the Sequential 
Quadratic Programming (SQP) method and linear equality 
and inequality constraints [11], [12]. However, the SQP 
method cannot guarantee finding the global optimum point 
since the optimization procedure depends on the initial point. 
In order to select the initial point near the global optimum 
point, the Genetic Algorithm (GA) [13] is utilized.  
 In the present study the hybrid optimization algorithm is 
developed in order to identify the optimal Q and R matrices 
for LQR controller for ride control of passenger cars with 
MR damper. This algorithm is a combination of the 

gradient-based (SQP) and evolutionary methods (GA) which 
uses the advantages of both algorithms. 
 In the following sections of this paper, first, the dynamic 
modeling of the passenger car is presented in the dynamic 
analysis of semi-active suspension system. Then, the control 
algorithm is discussed in the optimal control section, and the 
optimization methods are presented with respect to the 
required parameters for optimal control design. The response 
of the control system using a hybrid optimization method is 
presented and discussed in the results. Finally, this study is 
summarized in the conclusion. 

II. DYNAMIC ANALYSIS OF SEMI-ACTIVE SUSPENSION 

SYSTEM 

 The full-car model consists of springs, passive and 
variable damping components, tires with coupling dynamic 
effect of the passenger car suspension system. The effect of 
roll, pitch and bounce of the vehicle model have seven 
DOFs: four for the tires and three for the body (two for roll 
and pitch and one for the bounce).The MR damper of the 
present model has a static viscosity and variable force, and 
therefore, the damping force of the car dampers is divided 
into passive and variable forces. The vehicle is schematically 
shown in Figs.(1- 2). 

Fig.  1 Full-car model with 7 DOFs 

Fig.  2 Distance between wheels and the center of gravity of the 
body 

The kinematic relations among the DOFs are defined in 
(1)-(4). While (5) defines the tire dynamic motion, (6) 
describes bounce of the vehicle body and the equations for 
the pitch and roll motions are presented in (7)-(8). The roll 
center is defined based on the type of the suspension system, 
and is usually different from the center of gravity of the 
vehicle. The kinematics of the suspension system is 
considered in the modeling of the vehicle by (8) which 
presents the effect of the difference between the position of 
the roll center and center of gravity on body motion. 
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(7) 
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where M, m1, m2, m3 and m4 stand for the mass of the car 
body and the four wheels, respectively. Ix and Iy are the 
moments of inertia of the car body about the roll and pitch 
axes, respectively.  The terms k1, k2, k3 and k4 are the 
stiffnesses of the front and rear springs of the suspension 
system. The terms kt1, kt2, kt3 and kt4 are the stiffnesses of the 
tires. B1, B2, B3 and B4 are the damper coefficients. While 
x1, x2, x3 and x4 indicate the DOFs of the tires, x5, � and �
are the DOFs of the car body, and xi1, xi2, xi3 and xi4 denote 
the road disturbance (displacement). The numerical values 
of these variables are presented in Table I. 

TABLE I
NUMERICAL VALUES FOR THE FULL-CAR MODEL

Symbol Quantity Value 
m5 Mass of car body 1400 (kg) 
Iz Inertia around pitch axis 1271.1 (kg.m^2)
Iy Inertia around roll axis 2745.6 (kg.m^2) 

m1-4 Mass of one wheel 40 (kg) 
K1-4 Stiffness of the car springs 18000 (N/m)
Kt1-4 Stiffness of the tires 150000 (N/m) 
B1-4 Viscosity of the shock absorber 1100 (Ns/m) 

R1-2 1
The distance between the front 

wheels and center of gravity 
1.1 (m) 

R3-4 1
The distance between the rear 
wheels and center of gravity

1.6 (m) 

R1-2 2
The distance between the right 
wheels and center of gravity 

0.85 (m) 

R3-4 2
The distance between the left 
wheels and center of gravity 

0.85 (m) 

hs
The distance between the center of 

gravity of the body and ground 
0.505 (m) 

III. OPTIMAL CONTROL

 The LQR is employed as an optimal pole placement 
method which uses a state feedback control strategy.  

The Control objective is to minimize the bounce velocity, 
and roll and pitch rates of the body. This method can be 
implemented in the state space representation of the system. 
The full-car model is a mass-spring system with seven 
DOFs. The (9) presents the dynamic equations of motion in 
matrix form, and the state space equations are shown in (10).  

(9) 

(10) 

where matrices M, B, K, FMR and FRoad show mass, damping, 
stiffness, actuating force and disturbance force due to the 
road profile, respectively, matrices A, BMR and W represent 
the dynamic properties of the system, the effect of the 
actuator, and the effect of road profile, respectively, matrix 
C is identity matrix of size 14×14 which defines the output 
of the system, and matrix D is the static effect which is zero 
in this model. The vectors u and v are input of the system 
and disturbance of the road and parameter Y represents the 
output of the system. The vector xs presents the variables for 
each DOFs. The matrices and state variables are given by: 

(11) 

(12) 

(13) 

(14) 

  
The LQR responds by changing the location of poles of 

the system to the optimal place. Time response, overshoot 
and steady-state depend on the location of the system poles. 
The LQR controls the system by a matrix gain, which is 
obtained from (15). To solve the power equation of the 
system, Riccati equation, shown in (16), was used. In this 
equation, Q is a symmetric positive semi-definite matrix and 
R is a symmetric positive definite matrix. The matrices Q
and R are very effective in the controller performance and 
actuator energy. Therefore, these parameters should be 
selected based on the controller desired and the maximum 
energy of the actuator. Finally, the LQR gain can be 
achieved from Eq. 17 to change the location of system poles 
by changing A matrix as shown in (18). The mathematical 
procedure of the LQR design guarantees the stability of the 
control system. However, it cannot minimize the amount of 
the required actuator energy by selecting the Q and R
matrices as arbitrary matrices.  

(15) 
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(16) 

(17) 

(18) 

IV.  OPTIMIZATION ALGORITHMS

 In order to achieve optimal values of the Q and R
matrices, the objective function is chosen as the bounce 
velocity, roll and pitch rate. This problem is a multi-input 
multi-output (MIMO) control problem. The bounce velocity, 
roll rate and pitch rate must be minimized based on the 
effect of each MR damper on them. As a result, the system 
has twelve objective functions which are mathematically 
shown in (19) and (20). The objective is to minimize the 
surrounding area of the response of the control system to 
bounce velocity, pitch and roll rates with respect to the 
actuation of each MR damper. Fig. 3 shows the objective 
function of bounce velocity due to the actuation of the MR 
damper in the front left of vehicle body. 

�
(19) 

�
(20) 

where j is the number of the LQR gain  matrix rows and i is 
the number of the input matrix columns which show the 
effect of each MR damper.  

Fig.  3 The surrounded area for the objective function 

 The constraint involved in the optimization procedure 
should be defined based on the actuator specifications. The 
regular MR damper for a normal passenger car can produce 
a force up to 2200 N. Therefore, the main constraint for the 
optimization algorithm is to find Q and R matrices to obtain 
the force in the feasible region of the actuator. In order to 
define this constraint for the system, the abovementioned 
condition for each MR damper should be considered. The 
mathematical definitions of the inequality constraints are 
defined in (21) and (22).  

(21) 

(22) 

 The other constraint for optimizing the Q and R matrices 
is the controller performance; these matrices have direct 
effect on the efficiency of the controller. When the 
coefficient of Q is greater than that of R, a larger force is 
achieved; however, the energy of the system is not 
minimized under these conditions. In order to find the best 
performance with minimum energy, the coefficients of the Q
matrix should be always smaller than that of the R matrix 
(23). The goal of LQR in this study is to control the response 
of the system with the best performance in the feasible 
region of the actuator. 

(23) 

where Qc and Rc are coefficients of the matrices Q and R.

 The objective and constraint functions to optimize the Q
and R matrices are nonlinear expressions (19)-(23). 
Therefore, Quadratic Programming (QP) as an optimization 
method for problems with nonlinearity in the objective 
or/and constraint functions is utilized to find the optimum 
value of the Q and R matrices.  The QP changes the 
objective and constraint functions into linear observations. 
The mathematical procedure for these functions are shown 
in (24)-(26) [14].  

(24) 

(25) 

(26) 

where the constant e is a value used in equality conditions 
which do not exist in the present problem. The constant b is 
a value that represents inequality constraints and is set equal 
to 2200 N in this study. The Ain and N matrices are 
coefficient matrices in the equality and inequality equations, 
respectively. The vector d is the direction vector and Dc is 
the derivative matrix defined as:  

(27) 

 The SQP method models a nonlinear problem in the 
current point by defining a quadratic sub-problem. The 
solution of the sub-problem is then used to find a new point. 
The Karush-Kuhn-Tucker (KKT) necessity conditions are an 
optimization method which can be employed to solve the QP 
sub-problem (linear objective and constraints) by Newton’s 
method [14]. The KKT conditions define the linear objective 
and constraint functions as multiple equations with multiple
variables which should be solved together to satisfy the KKT 
conditions in order to reach to the optimal point. 
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Mathematical procedure of the KKT is presented in (28)-
(31). Equation (28) is the Lagrangian function, and (29)-(31) 
are gradient conditions [14].

�

(28) 

�

(29) 

�
(30) 

�
(31) 

 where h and g are equality and inequality functions, and k
and r are the number of equality and inequality equations. 
The u parameter is the Lagrangian multiplier for equality 
constraint, and s is an additional variable to make equality 
from inequality equations. The derivative function, v, is 
defined as: 

�
(32) 

Where the Q*
c and R*c are initial points to start the 

optimization procedure for the Q and R coefficient matrices. 

In optimization problems, if the objective functions have 
only one optimum point with respect to the constraints, the 
optimization algorithm will be independent of the starting 
point. The present optimization problem can have infinite 
local optimum points corresponding to the constraints. The 
gradient based methods find the first optimum point near the 
initial point. As a result, the KKT method in this problem 
depends on the initial point to search for the optimal point, 
and the algorithm cannot guarantee finding a global 
optimum point. Therefore, in order to choose the initial point 
near the global optimum point, the GA is utilized. 
 The GA is an optimization method for multi variables, 
linear or nonlinear objective functions and unconstrained or 
constrained problems [14]. This optimization method is a 
popularity search algorithm which avoids local minimum 
area. Therefore, the results of this method are independent of 
the selected initial point. However, the result of this 
algorithm cannot guarantee finding a global optimum point. 
However, the results are usually found near the global 
optimum point. Therefore, the GA can be utilized to find the 
initial point near the global optimum point, and then the SQP 
can find the optimal point based on these initial points. The 
GA is designed based on identified objective and constraint 
functions (19), (20) and (21)-(23).  

The results of the GA by using Matlab Optimization 
Toolbox and defining 30 populations are presented below. 

(34) 

(35) 
 In this study, the initial values for the SQP algorithm to 
find the optimum points, Qc and Rc, are equal to 27464 and 
0.029, respectively. The results of SQP based on the answers 
of the GA as initial points using Matlab Optimization 
Toolbox are shown in Table II. 

TABLE II
THE SQP RESULTS BASED ON THE GA INITIAL POINTS 

Symbol Value 

Qc 28289 

Rc .000711 

V. RESULTS OF THE LQR USING A HYBRID OPTIMIZATION 

ALGORITHM

In order to show the performance of the LQR with 
optimized Q and R matrices, white noise disturbance is 
applied to the system to simulate the effect of the road 
profile disturbance. Also a LQR with non-optimized Qc and 
Rc (Qc = 10000 and Rc = .001) is designed to show the effect 
optimization in the coefficient of the LQR. The white noise 
is applied for 5 sec and maximum amplitude of 7 cm under 
the passenger car tires. The response of the optimized and 
non-optimized LQR, and passive car for the linear velocity 
of the body, and pitch and roll rates are shown in Figs. (4-6).  

Fig.  4 The body velocity along the vertical vehicle axis excited by 
white noise 

Fig.  5 The body pitch rate excited by white noise
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Fig.  6 The body roll rate excited by white noise

 The aim of the LQR controller is to absorb the vibration 
of the vehicle to make the linear and angular velocity of the 
body equal to zero.  Figs. (4-6) show the ability of the 
controller to absorb the vibration of the body. In order to 
numerically show the performance of the LQR optimized by 
a hybrid method, Root Mean Square Error (RMSE) for 
bounce velocity, and roll and pitch rates are presented in 
Table III. The results show that the RMSE values for the 
semi-active system are significantly less than those of the 
passive system and semi-active system with non-optimized 
LQR. 

TABLE III 
THE RMSE OF PASSIVE AND SEMI-ACTIVE SYSTEM

Parameters 

RMSE 

Passive 
system 

Semi-active 
system with 

non-optimized 
LQR 

Semi-active 
system with 
optimized 

LQR
Bounce 0.0185 0.0047 0.0024 

Pitch 0.0114 0.0037 0.0019 
Roll 0.08 0.042 0.0021 

The aim of the present research is to achieve the best 
performance of the system with the minimum energy of the 
actuator in the working region. The applied forces to the 
suspension system by MR dampers are shown in Figs. (7-
10). The figures show the maximum required force for 
vibration control of the vehicle is less than 2000 N, which 
satisfies the defined constraint for the system in the 
simulation.  

Fig.  7 The force of the MR damper located in the front left of the 
vehicle 

Fig.  8 The force of the MR damper located in the front right of the 
vehicle 

Fig.  9 The force of the MR damper located in the rear left of the 
vehicle 

Fig.  10 The force of the MR damper located in the rear right of the 
vehicle 

VI. CONCLUSION

 In the present study, the suspension system of a passenger 
car was modeled by the full-car model with seven DOFs.
Based on the dynamic equations of the vehicle, the LQR was 
implemented in the system simulation. Matrices Q and R in 
the design procedure of the LQR were found by a hybrid 
optimization algorithm which consists of the SQP method 
and GA based on the maximum performance of the 
controller and feasibility of the actuators force. The GA in 
the hybrid algorithm was utilized to find the initial point and 
avoid the local optimum point. Then, the response of this 
method was used by SQP to find the nearest optimum point 
to the initial point. The results of the suspension system 
simulation show that the implemented LQR optimized by 
the hybrid method can absorb the vehicle vibration by 
utilizing available industrial MR dampers. 
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