
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

434

Abstract—A generalised relational data model is formalised for

the representation of data with nested structure of arbitrary depth. A
recursive algebra for the proposed model is presented. All the
operations are formally defined. The proposed model is proved to be
a superset of the conventional relational model (CRM). The
functionality and validity of the model is shown by a prototype
implementation that has been undertaken in the functional
programming language Miranda.

Keywords—nested relations, recursive algebra, recursive nested
operations, relational data model.

I. INTRODUCTION
number of researchers have made proposals to relax the
First Normal Form (1NF) assumption using the Non-First

Normal Form (N1NF) relations to solve problems in
applications such as text processing, engineering design
systems and office automation and thus, overcome a number
of limitations imposed by the apparently reasonable restriction
that 1NF causes.

The use of a N1NF model eliminates many problems since
it enables data about an object to be represented within one
relation rather than distributing it over several relations. One
major advantage is the fact that join operations which are
substantially expensive in terms of execution time can be
avoided.

The N1NF relational database model, or more simply the
nested relational model, allows relations to have attributes
which can have non-atomic values i.e., the latter are
themselves relations, subrelations of the relation to which they
belong. The N1NF model provides the basis for the object-
oriented database model. Many models [1]-[6] have been
defined since 1977, when Makinouchi [7] proposed, for the
first time, the relaxation of the 1NF assumption. A list of
relevant references can be found in [8].

In spite of the large number of N1NF models, only a few
query languages have been proposed for the management of
N1NF relations (e.g., [9]-[11]) by reason of its difficulty.
These are extensions of existing query languages, SQL and
Query by Example; an example is QBEN [9], a Query by
Example language for nested tables which allows the
formulation of complex queries.

The N1NF database models that have been developed so far
can be divided into two categories. Models of the first

Manuscript received May 28, 2007.
G. Garani is with the Computer Science and Telecommunications

Department, Technological Educational Institute, Larissa, 41110, Greece,
(phone: +30 2410 684344, fax: +30 2410 684387, e-mail: garani@teilar.gr).

category are called non-recursive models (e.g., [3], [6], [12])
and those of the second category are called recursive models
(e.g., [1], [4], [5], [13]-[15]). The two approaches are
distinguished by the recursive or non-recursive nature of the
operators that have been defined by the distinct researchers.
The difference is that recursive operators can be applied
repeatedly to the subrelations at the different levels of a
relation, whereas the non-recursive operators cannot. In
section II of this paper the superiority of the recursive models
compared to the non-recursive ones is explained and justified.

A Nested Relational Model (NRM) is formalised in this
paper for the representation of nested data. A nested recursive
algebra (NRA) for the NRM is proposed. All the operations
are formally defined, including also the rename operation for
nested relations. NRM is proved to be a superset of the CRM.

The rest of the paper is organised as follows. In section II a
survey of the most important N1NF recursive models is
presented. The running example of the paper is presented in
section III. The basic concepts and terminology which are
used in this paper are given in section IV. The NRA is
presented in section V. In section VI the ease of use of the
NRA is demonstrated by a number of examples. The
components of the NRM are described in section VII. In
section VIII the NRM is proved to be a superset of the CRM.
Finally, conclusion is presented in section IX. Appendices I
and II are provided with the formal syntax of the NRA and a
sample code of the prototype implementation.

II. LITERATURE SURVEY
Recursive algebraic definitions in nested models are

undoubtedly preferable to the corresponding non-recursive
ones. This is based on the following facts:

1) The non-recursive algebras allow operations only on
entire tuples. In contrast, recursive algebras allow the direct
manipulation of tuples either at the top level or at lower levels
of the nested relations.

2) When an attribute at a lower nesting level of the nested
relation needs to be accessed, because it participates in an
operation expressed in a non-recursive algebra, one or more
unnesting operations need to be applied resulting in the
creation of many additional tuples. The non-recursive
operation can then be performed and finally the relation is
nested again. However, one of the main motivations for a
model consisting of nested relations is the reduction in the
number of tuples processed.

3) In the non-recursive algebras, queries can become long
and complicated, whereas in the recursive algebras queries

A Generalised Relational Data Model
Georgia Garani

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

435

will be shown to be compact, simpler and more naturally
expressed.

4) Restructuring operations are not required with recursive
algebras unlike non-recursive ones.

5) Traditional query optimisation techniques can be used
with recursive algebras. In contrast, nest and unnest
operations which have to be used frequently in non-recursive
algebras, are not, in general, inverse operations. Therefore,
traditional query optimisation techniques can be applied to
queries which are expressed using recursive algebras since
recursive operations can be performed at any nesting level
without using nest or unnest operations [14].

However, it has been shown that the recursive and non-
recursive algebras are equivalent in expressive power [13].

Previous research work dealing with N1NF recursive
models includes Abiteboul and Bidoit’s model [1] who
proposed a Non-First Normal Form database model called the
Verso model which allows data restructuring. Arbitrary
projections can be achieved but they usually require a
restructuring of the original relation. Two versions of the
selection operation are defined, a simple version of the
selection operation, the Verso-selection and an extension of
the selection, called the “super-selection” which can be
expressed by the Verso-selection, projection, and join
operations. The restriction operation is itself restricted in that
it can be applied only to the “root” of the format. The
Cartesian product operation requires the first operand to be an
instance over a flat relation and this is again a significant
weakness. Furthermore, the key feature of their model, the
restructuring operation, cannot reconstruct entirely the
structures of the relations without loss of information, even
when using a combination of all three transformations, root
and branch permutations, compactions and extensions. As a
result, the potentiality of the operation is limited to a restricted
spectre of cases.

In Roth, Korth and Silberschatz’s model [4] the Partitioned
Normal Form (PNF) property is defined for nested relations.
A relation R is in PNF if all the atomic attributes of R form a
key for the relation and recursively, each relation-valued
attribute of the relation is also in PNF. The simplicity and
clarity of relations in PNF is apparent, as well as the fact that
relations in PNF have some good properties compared to other
relations. However, in general, relations in PNF impose two
important restrictions, that there is at least one atomic attribute
at every nesting level of the relation and also that relation-
valued attributes cannot be part of the key. Two new
operators, nest and unnest, are added to the basic set of
operators. This approach has a number of limitations as
presented in [16], [17]. Furthermore, the algebraic operators
are defined in such a way that works within the class of PNF
relations and therefore, they are closed only under PNF
relations. In addition, projection, selection, join and Cartesian
product operations cannot be applied to subrelations of nested
relations.

A recursive algebra for nested relations is defined by Colby
in [13]. Nest and unnest operations can be applied to

subrelations directly, without transforming any other attribute
of the relation by the assistance of a nest and an unnest list.
The PNF assumption is not made. Arbitrary algebraic
expressions in lists (select lists, project lists etc.) of the
operators, such as comparisons of values of compatible
attributes situated at different nesting levels in a relation
cannot be supported.

An improved version of the algebra proposed by Schek and
Scholl in [5] is presented by Deshpande and Larson in [18].
Two new operators, the subrelation constructor which
transforms the interior of a nested relation and the PNF-
Transformer which transforms recursively a nested relation
into a nested relation in PNF are defined. Clearly, the
invocation of the subrelation constructor one or more times in
the formulation of queries increases the execution time to
answer queries. The operators of the algebra are defined in
such a way to preserve PNF property. Aggregate functions are
also included in their algebra. Comparisons in the selection
operation can only take place if the attributes that participate
in the selection predicate are in the path starting at the root of
R and ending at the subrelation identified by the pathname.

Levene in [14] presents the nested Universal Relation (UR)
Model which forms an extension of the classical UR model to
nested relations in order to solve the problem of incomplete
information. One of the main features that his algebra
provides, is the fact that the user does not need to know the
structure of the nested relations in order to express a query in
that algebra. Null values are also taken into consideration in
the formalised proposed model. All the basic operators of the
algebra are defined extensively. The problem of defining the
join operation of two nested relations is solved with the
insertion of empty nodes.

Liu and Ramamohanarao present also an algebra for nested
relations in [19]. However, their algebra provides a restricted
and complicated approach to the problem, since the following
constraints must be satisfied: i) the selection operator
considers only selection-comparable nodes, ii) the join
operator can be performed only between two relations that
have atomic attributes at the top levels.

Further interesting work by Buneman, Naqvi, Tannen and
Wong [20] simplifies Colby’s algebra and easily allows one to
express all the recursive operations. Particularly, they present
a language for structures in which nested relations and
complex objects may be freely combined. They proved that
their language coincides in expressive power with the nested
relational languages proposed by [5], [6] and [13]. However,
it has to be noted that only the semantics of the constructs that
could be used in the language are studied and not the practical
aspects of the design of syntax for query languages.

III. THE RUNNING EXAMPLE OF THE PAPER
The running nested database example of the paper consists

of five nested relations TRAINING, DEPT, LOCATION,
CASH-POINT and COURSE (Fig. 1).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

436

TRAINING

 TRAINER

COMPANY TRN COURSE

 CODE C

 CN Y

 Jack xx0 1 75

Apple 2 76

 xy1 1 82

 Mark 3 82

 xy2 2 79

 xy1 3 82

IBM Tim xx2 5 79

 4 82

Microsoft Karen xx1 2 77

 2 81

DEPT
 UNIT

D DN UN UD COURSE_DETAILS

 TRN COMPANY C

 CN Y

 511 Software 1 75

 Engineering Mark Apple 2 76

 5 79

1 Research 1 82

 552 Basic Research Karen Microsoft 2 79

 Tim IBM 5 79

 2 76

 678 Planning Mark Apple 4 82

 650 Design Karen Microsoft 1 75

2 Development 780 Maintenance Tim IBM 3 82

 Mark Apple 2 76

 2 81

 981 Planning Jack Apple 3 82

 5 79

LOCATION
COMPANY ANNEX

 BUILDING ADDRESS

TOSHIBA North Building Porchester Rd.

IBM Maple House Kendal Av.

 Main Building Danebury Rd.

Microsoft Pegasus House Ashford St.

 Queen’s Building Park Rd.

COURSE
 C COURSE_DURATION TITLE SUBJECT

 CN Y TOPICS

 1 75 Access

 2 77 80 Computer Skills Word

 Excel

 2 82 120 Multimedia Power Point

 3 82 Internet

 2 79 20 Programming C++

 JAVA

CASH-POINT
BANK BRANCH

 SORT_CODE ADDRESS

Barclays 386600 Ashford St.

NatWest 560045 Park Rd.

 560038 Porchester Rd.

Lloyd’s 478202 Ashford St.

 478210 Park Rd.

Fig. 1 The running nested database example

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

437

Relation TRAINING holds data about courses and trainers
provided by IT companies. Semantically, the attributes of the
TRAINING relation have the following meaning: COMPANY
- company name, TRN - trainer name, CODE - course code,
CN - course number Y - year in which the course was taken.
A specific course can be identified uniquely by both course
number (CN) and year (Y); a specific course consists of a
number of different topics (see rel. COURSE) which can be
given by different trainers belonging to different companies.

Relation DEPT holds data about departments of a company
as well as trainers who have given courses to the staff of these
departments. The semantics of the attributes of relation DEPT
are: D - department number, DN - department name, UN –
unit number, UD – unit description, TRN – trainer name,
COMPANY – company name, CN - course number and Y -
year in which the course was taken. Relation DEPT is a
modified version of relation DEPT in [5].

Relation LOCATION contains data about branches of
different companies. The attributes of relation LOCATION
have the following semantics: COMPANY –company name,
BUILDING – building name and ADDRESS – street name.

Relation CASH-POINT has data about cash-points that
different banks own. The semantics of the attributes of
relation CASH-POINT are: BANK – bank name,
SORT_CODE – sort code of the branch and ADDRESS –
street name.

Relation COURSE contains data about the different courses
that took place. Semantically, the meaning of the attributes of
relation COURSE is: CN - course number, Y - year in which
the course was taken, COURSE_DURATION – course
duration (number of hours), TITLE – course title and TOPICS
– course topics.

IV. BASIC CONCEPTS AND TERMINOLOGY
In order to introduce the Nested Relational Model (NRM)

in the next section it is necessary to present firstly the basic
concepts and terminology that are going to be used. Some of
the following definitions have been used before by the
database community. However, a repetition of these
definitions at the present point is necessary for completeness.
Moreover, some terms and notation are introduced for the first
time in the present paper in order to provide the essential
formalisation of the presented model.

Definition 1 (Atomic or flat attributes and relation-valued
or nested attributes) Let U be the set of elementary values
(i.e., reals, integers etc.) and the value null. An attribute A is
atomic or flat if DA ⊆ U, where DA is the domain of the
attribute A. If DA ⊆ P(U) where P is the power set, then A is a
relation-valued or nested attribute.

Relation-valued attributes or nested attributes can be
considered as subrelations of the relations to which they
belong.

Definition 2 (Non-first normal form relations or nested
relations) Non-first normal form relations or nested relations
are relations which contain relation-valued attributes or nested

attributes.
In this paper, relations with atomic attributes only will be

called flat relations, whereas relations that contain relation-
valued attributes or atomic attributes will be referred to as
nested relations. In other words, flat relations are considered
as special cases of nested relations.

Attr(R) is the set of attributes of relation r with scheme
name R i.e., Attr(R) = {R1, R2, ..., Rn}, where n ≥ 1 and R1,
R2, ..., Rn are the attributes of R, either atomic or nested.

Definition 3 (Tree structure) Every nested relation r with
relation scheme R can be represented as a tree with root node
R. All the nested attributes of the relation are the non-leaf
nodes of the tree and all the atomic attributes form the leaf
nodes of the tree.

The tree structure is a very useful representation of a nested
relation since the scheme of a nested relation can become
complex and so, the tree offers a clear graphical representation
of the nested structure.

Example 1: The tree structure of the TRAINING relation
(Fig. 1) is shown in Fig. 2.

Definition 4 (Nesting levels of a relation) The number of

nesting levels of a relation is equal to the maximum number of
nodes to be passed through starting from the root to reach any
atomic attribute in the tree representation. The root of the
relation is by definition at nesting level 0.

Example 2: The nesting levels of relation TRAINING (Fig.
1) are 4.

Consequently, the nesting level of an attribute in a relation
can be computed by counting the number of nodes which must
be passed through from the root node to get to that attribute.
For example, atomic attribute TRN of relation TRAINING is
at nesting level 2.

Definition 5 (Common attributes between two relations)
Two (flat or nested) relations have an atomic attribute in
common if they both contain an atomic attribute which has the
same name and domain in both relations. Two nested relations
have a nested attribute in common if they both contain a
nested attribute which has the same name and the same
scheme (the same atributes with the same names defined over

 TRAINING

COMPANY TRAINER

TRN COURSE

CODE C

CN Y

Fig. 2 Tree representation of relation TRAINING

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

438

the same domains).
The above definition can be applied recursively for nested

attributes containing one or more nested attributes.
Definition 6 (Path) Let LAn→Aj

 be the path of nested or
atomic attribute Aj belonging to nested attribute An, which is a
child of the root of relation R. Then, LAn→Aj

 is defined as
follows:

i) LAn→Aj
 = An, where Aj = An

ii) LAn→Aj
 = An(LAn+1→Aj

), where An+1 is an attribute of An
either equal to or containing Aj.

Then, the set of all attributes (atomic and nested) of R can
be defined as Attr(R) = {Ra1, Ra2, …, Rap, Rn1, …, Rni, …, Rnq}

= {Ra1, Ra2, …, Rap, Rn1, …, ∪
m

k 0=

LRni → Rni
k

, …, Rnq} where:

 Ra1, Ra2, …, Rap are atomic attributes at nesting level
1 of relation R (p ≥ 0),

 Rn1, …, Rni, …, Rnq are nested attributes at nesting
level 1 of relation R (1 ≤ i ≤ q),

 R
ni

 for k = 0

 R
ni k

=

R
ni k

 for k ≠ 0 (i.e., an attribute that has

nested attribute R
ni

 as its ancestor)
m is the number of descendants’ attributes of nested

attribute Rni.
The path is used for the definition of an attribute in a nested

relation, in contrast to flat relations, since the whole path of an
attribute is needed in order to identify that specific attribute.

Example 3: The path of the atomic attribute CN of the
nested relation TRAINING (Fig. 1) with tree structure in Fig.
2 is LTRAINER→CN = TRAINER(LCOURSE→CN) =
TRAINER(COURSE(LC→CN)) =
TRAINER(COURSE(C(LCN→CN))) =
TRAINER(COURSE(C(CN))).

From the above example, it is apparent that the name of an
attribute by itself is not enough in general to uniquely identify
the attribute, since in nested relations an attribute is fully
defined by reference to both its name and its position in the
tree structure of the relation in which it belongs. In addition,
there are cases in which two common attributes belong in the
same relation but in different subrelations, as for example in
the result relation of a join operation. Consequently, the only
way for the two attributes to be distinguished from one
another is by their paths. Therefore, the path of an attribute
shows whether the attribute belongs to a nested attribute or
not, as well as the nesting level of it. The path of an attribute
identifies the attribute uniquely.

Definition 7 (Two nested relations having the same
scheme) Two nested relations have the same scheme if they
contain only common attributes (atomic and/or nested) -see
Definition 5.

An attribute or set of attributes whose values uniquely
identify each entity in an entity set is called a key for that

entity set [21]. For the case of a nested database model, entity
sets are nested relations and the definition of the key must be
expanded in order to support nested attributes as well.

Informally, a nested relation can have either atomic or
nested attributes or even a combination of atomic and nested
attributes as a key. Semantically, a nested attribute is a key of
a nested relation, when each set of values of the nested
attribute that belongs to the same tuple, uniquely identifies
that tuple. That implies that each of these set of values of the
nested attribute distinguishes, as an entirety, solely the tuple in
which it belongs.

Formally, the definition of a key of a nested relation is
given below:

Definition 8 (Key of a nested relation) The key of a nested
relation r with relation scheme R, can be a set K consisting of
atomic and/or nested attributes of R such that for any two
tuples ti and tj in the relation the following constraint is valid
at all times: ti[K] ≠ tj[K], where i ≠ j and with the additional
property that removing any attribute from K leaves a set of
attributes that is not a key of R.

Example 4: The key of relation COURSE (Fig. 1) is the
nested attribute C.

It is considered that an approach where nested attributes are
allowed to be part of key attributes is an important benefit for
a nested model. Nested models, where nested attributes are not
allowed to be part of key attributes, have a significant
limitation, since relations, as the one presented in Fig. 1,
cannot be supported. Therefore, there are cases that are not
covered by such an approach.

The PNF assumption presupposes that nested attributes
cannot form part of a key in a nested relation, a significant
restriction of a nested database model, as explained in section
II.

Consequently, in the nested model defined in the present
paper, the relaxing of the restriction that other nested models
impose, to allow nested attributes as part of the key, is a
considerable extension and thus, an important benefit that the
NRM offers.

V. THE NESTED RELATIONAL ALGEBRA (NRA)
A new nested relational algebra is defined in this chapter,

called the Nested Relational Algebra, NRA. Relations in NRA
can be nested to any finite depth.

A. Operations in the NRA
Union, difference, intersection, projection, selection,

unnest, nest, rename, Cartesian product, natural join and Θ–
join operations are formally defined using recursive
definitions for nested relations. The “base case” of each
recursive operator has the same definition as the non-recursive
one; i.e., the recursive definition can be reduced to the non-
recursive one when relations do not contain any nested
attributes. For each definition, an example is presented in
order to make it more comprehensive. The recursive rename
operation for nested relations is also formally defined for the
first time.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

439

For the recursive nested union, difference and intersection
operations let r and q be two nested (in general) relations with
relation schemes R and Q respectively. Let also, the two
relations have the same relation scheme i.e., R = Q = {S(R),
R1, R2, …, Rn} where S(R) is the set containing all the key
nested attributes and all the atomic attributes of R and Q (the
same for the two relations) and {R1, R2, …, Rn} are the non-
key nested attributes of R and Q. Assume also that Attr(R) is
the set of all attributes (atomic and nested) of the two
relations, tr is a tuple in relation r, tq is a tuple in relation q and
t is a tuple in the result relation.

The Recursive Nested Union Operation (∪∪)
The union of the two relations r and q, r ∪∪ q, is defined as

follows:
Definition 9 (Recursive Nested Union)
i) Non-recursive union for flat relations (r ∪ q)

r ∪ q = { t| ((∃ tr ∈ r) (t[Attr(R)] = tr[Attr(R)]))
 ∨ ((∃ tq ∈ q) (t[Attr(R)] = tq[Attr(R)]))}
ii) Recursive union for nested relations (r ∪∪ q)
r ∪∪ q = { t| ((∃ t ∈ r) ∧ (∀ tq ∈ q) (t[S(R)] ≠ tq[S(R)]))
∧ ((∃ t ∈ q) ∧ (∀ tr ∈ r) (t[S(R)] ≠ tr[S(R)]))
∧ ((∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] = tq[S(R)])
∧ (t[R1] = tr[R1] ∪∪ tq[R1]) ∧…∧ (t[Rn] = tr[Rn] ∪∪

tq[Rn])))}
Example 5: Let relations TRAINING_1 and TRAINING_2

(Fig. 3) be two modified versions of relation TRAINING (Fig.
1) having the same scheme. In both relations, TRAINING_1
and TRAINING_2, S(TRAINING_1) = S(TRAINING_2) =
COMPANY.

The union of the two relations, according to the above
definition, is shown in Fig. 3.

The Recursive Nested Difference Operation (--)

 TRAINING_1 ∪∪ TRAINING_2
 TRAINER

COMPANY TRN C

 CN Y

 1 75

Apple Jack 2 76

 6 82

 1 82

 Mark 3 82

 2 79

 3 82

IBM Tim 5 79

 4 82

 5 84

Microsoft Karen 2 77

 2 81

Toshiba Tim 5 84

TRAINING_2
 TRAINER

COMPANY TRN C

 CN Y

 Jack 6 82

Apple 2 76

 Mark 3 82

 2 79

Toshiba Tim 5 84

Microsoft Karen 2 77

 2 81

TRAINING_1 -- TRAINING_2
 TRAINER

COMPANY TRN C

 CN Y

Apple Jack 1 75

 Mark 1 82

 3 82

IBM Tim 5 79

 4 82

TRAINING_1 ∩∩ TRAINING_2
 TRAINER

COMPANY TRN C
 CN Y

Apple Jack 2 76

 Mark 3 82
 2 79

Microsoft Karen 2 77
 2 81

TRAINING_1
 TRAINER

COMPANY TRN C

 CN Y

 Jack 1 75

Apple 2 76

 1 82

 Mark 3 82

 2 79

 3 82

IBM Tim 5 79

 4 82

Microsoft Karen 2 77

 2 81

Fig. 3 Examples of the recursive nested union, difference and intersection operations

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

440

The difference of the two relations r and q, r -- q, is defined
as follows:

Definition 10 (Recursive Nested Difference)
i) Non-recursive difference for flat relations (r - q)
r - q = { t| (∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(R)] = tr[Attr(R)])
∧ (t[Attr(R)] ≠ tq[Attr(R)]))}
ii) Recursive difference for nested relations (r –- q)
r -- q = { t| ((∃ tr ∈ r) (∀ tq ∈ q)
((t[S(R)] = tr[S(R)] - tq[S(R)]) ∧ (t[R1] = tr[R1]) ∧…∧ (t[Rn]

= tr[Rn])))
∨ ((∃ tr ∈ r), (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] = tq[S(R)])
∧ (t[R1] = tr[R1] -- tq[R1]) ∧…∧ (t[Rn] = tr[Rn] -- tq[Rn])))}
Example 6: The difference of the two relations

TRAINING_1 and TRAINING_2 is shown in Fig. 3.

The Recursive Nested Intersection Operation (∩∩)
The intersection of the two relations r and q, r ∩∩ q, is

defined as follows:
Definition 11 (Recursive Nested Intersection)
i) Non-recursive intersection for flat relations (r ∩ q)
r ∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) (t[Attr(R)] = tr[Attr(R)] =

tq[Attr(R)])}
ii) Recursive intersection for nested relations (r ∩∩q)
r ∩∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] ∩

tq[S(R)])
 ∧ (t[R1] = tr[R1] ∩∩ tq[R1]) ∧ ... ∧ (t[Rn] = tr[Rn] ∩∩

tq[Rn]))}
Example 7: The intersection of the two relations

TRAINING_1 and TRAINING_2 is shown in Fig. 3.

The Recursive Nested Projection Operation (ππ)
Let r be a nested (in general) relation with relation scheme

R. Let also, {Ra1, …, Rak} be the subset of atomic attributes at
the top level of R which are going to be projected and {Rn1,
…, Rnm} the subset of nested attributes of R which are going
to be projected either fully or partially on attributes belonging
to these nested ones (k, m ≥ 0).

In order to define the projection operation, the term project
list needs to be defined firstly. In general, a project list is a list
of project paths. A project path of an attribute which is going
to be projected is the path of that attribute (see Definition 6).

Definition 12 (Project list) Lπ is a project list of R if
i) Lπ is empty (the project list of an atomic attribute is

empty).
ii) Lπ is of the form (Rn1Ln1, …, RnmLnm), where Ln1, …, Lnm

are project lists of nested attributes Rn1, …, Rnm respectively.

Then, the projection operation in a nested relation r,

ππ(rLπ), where tr is a tuple in relation r and t is a tuple in the
result relation, is defined as follows:

Definition 13 (Recursive Nested Projection)
i) π(r) = r
ii) ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)
 ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])

 ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] =
ππ(tr[Rnm]Lnm)))}

Example 8: Given relation TRAINING_1 (Fig. 3) consider
the following query: “Retrieve the course numbers for the
courses that each company has run”. The result relation is

shown in Fig. 4.

The Recursive Nested Selection Operation (σσ)
Let r be a nested (in general) relation with relation scheme

R and let Ra = {Ra1, …, Rak} and Rn = {Rn1, …, Rnm} be the
subsets of all atomic and nested attributes of R respectively
that participate in the selection operation, where k and m are
less than or equal to the number of atomic and nested
attributes at the top level in the relation R, respectively. Let
also, c be a set of conditions in R, which is of the form {ca, cn}
where ca={ca1, …, cak} is a set of conditions which must be
true for the atomic attributes Ra1, …, Rak of R respectively and
cn ={cn1, …, cnm} is a set of conditions that must hold for the
nested attributes Rn1, …, Rnm of R respectively. When both
sets of conditions are applied simultaneously then, the result is
obtained by computing the intersection of the two results. In
addition, the condition can be no matter complicated, as for
example equality of nested attributes. If two multi-valued
nested attributes are compared for equality, they are treated as
sets so, since each nested attribute is, in fact, a relation, equal
tuples are searched at the level of the nested relations.

In order to define the selection operation, the term select list
needs to be defined firstly. In general, a select list is a list of
select paths. A select path of an attribute that is going to
participate in the selection, is the path of that attribute (see
Definition 6). The select list is defined recursively.

Definition 14 (Select list) Lσ is a select list of R if
i) Lσ is empty (all the atomic attributes of relation r have

empty select lists).
ii) Lσ is of the form (Rn1Ln1, …, RnmLnm) where Ln1, …, Lnm

are select lists of nested attributes Rn1, …, Rnm respectively.
Then, a selection operation of the relation r, where tr is a

tuple in relation r and t is a tuple in the result relation, is

 TRAINER

COMPAN
Y

 C

 CN

 1
 2

Apple 1
 3
 2

 3
IBM 5

 4

Microsoft 2
 2

Fig. 4 ππ(TRAINING_1(COMPANY, TRAINER(C(CN))))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

441

defined as follows:
Definition 15 (Recursive Nested Selection)
σ(rca1, …, cak) = { t| (∃ tr ∈ r)
((t[Attr(R) - {Ra1, …, Rak}] = tr[Attr(R) - {Ra1, …, Rak}])
∧ ((t[Ra1] = tr[Ra1]) ∧ ca1 = true)
∧ … ∧ ((t[Rak] = tr[Rak]) ∧ cak = true))}
σσ(rcn1, …, cnmLσ) = { t| (∃ tr ∈ r)
((t[Attr(R) - {Rn1, …, Rnm}] = tr[Attr(R) - {Rn1, …, Rnm}])
∧ (t[Rn1] = σσ(tr[Rn1]cn1

Ln1) ≠ ∅)
∧ … ∧ (t[Rnm] = σσ(tr[Rnm]

cnm
Lnm) ≠ ∅))}

In the general case, the selection operation can be defined
as the intersection of the two previously defined cases as
follows:

σσ(rcLσ) = σσ(rca1, …, cak, cn1, …, cnmLσ) = σ(rca1, …, cak) ∩ σσ(rcn1,

…, cnmLσ)
Example 9: Given relation TRAINING_1 (Fig. 3) consider

the following query: “Find all the information of the
TRAINING_1 relation of those courses that have been given
by trainers Mark or Tim during the year 1982”. The result is
shown in Fig. 5.

The Recursive Unnest Operation (μμ)
Let r be a nested (in general) relation with relation scheme

R.
Definition 16 (Unnest list) Lμ is an unnest list of R if it is

of the form
Ri, where Ri is a nested attribute of R at the top level.
(RiLi) where Li is an unnest list of the nested attribute Ri.
Let Attr(R) be the set of all attributes of R and Ri a nested

attribute of R, at the top level of R. Let also, tr be a tuple in
relation r and t a tuple in the result relation. Then, the unnest
operation, μμ(rLμ), is defined as follows (see also [13]):

Definition 17 (Recursive Unnest)
i) μ(rRi) = { t| (∃ tr ∈ r) ((t[Attr(R) - Ri] = tr[Attr(R) - Ri]) ∧

(t[Ri] є tr[Ri]))}
ii) μμ(rRiLi) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) –

Ri])
 ∧ (t[Ri] = μμ(tr[Ri]Li)))}
Example 10: The result of unnesting relation TRAINING

(Fig. 1) on the COURSE attribute, i.e.,
μμ(TRAININGTRAINER(COURSE)), is shown in Fig. 6.

The Recursive Nest Operation (vv)
Let r be a nested (in general) relation with relation scheme

R.
Definition 18 (Nest list) Lv is a nest list of R if it is of the

form
i) (R1, …, Rn) where R1, …, Rn are attributes of R, either

atomic or nested at the top level of R.
ii) (RiLi) where Li is a nest list of the nested attribute Ri.
Let Attr(R) be the set of all attributes of R and An = {R1,

…, Rn} the set of attributes of R that are going to be nested to
form a new nested attribute A.

Let also, tr be a tuple in relation r, t a tuple in the result
relation and s a tuple of the new nested attribute A. Then, the
nest operation, vv(rLv→A), is defined as follows (see also [13]):

Definition 19 (Recursive Nest)

 TRAINER

COMPAN

Y

 TRN C

 CN Y

Apple Mar

k

 1 8

2

 3 8

2

IBM Tim 3 8

2

 4 8

2

Fig. 5 σσ(TRAINING_1((TRAINER(TRN) = ‘Mark’ OR ‘Tim’) AND

(TRAINER(C(Y)) = 82)))

 TRAINER

COMPAN

Y

TRN CODE

 CN Y

 Jack xx0 1 7

5

 2 7

6

Apple Mark xy1 1 8

2

 3 8

2

 Mark xy2 2 7

9

 Tim xy1 3 8

2

IBM Tim xx2 5 7

9

 4 8

2

Microsoft Karen xx1 2 7

7

 2 8

1

Fig. 6 μμ(TRAININGTRAINER(COURSE))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

442

i) v(rAn→A) = { t| (∃ tr ∈ r) ((t[Attr(R) - An] = tr[Attr(R) -
An])

∧ (t[A] = {s[An] | (s є r) (s[Attr(R) - An] = tr[Attr(R) -
An])}))}

ii) vv(r(RiLi) →A) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) –
Ri])

 ∧ (t[Ri] = vv(tr[Ri]Li→A)))}
Example 11: In order to return to relation TRAINING (Fig.

1) from the relation μμ(TRAININGTRAINER(COURSE)) of Fig. 6, a
nest operation needs to be performed, i.e.,
vv(μμ(TRAININGTRAINER(COURSE))TRAINER(CODE,C)→

TRAINER(COURSE)).

The Recursive Nested Rename Operation (ρρ)
The rename operation takes a specified relation and returns

another that is identical to the given one except that at least
one of its attributes has a different name ([22]). The rename
operation is useful before or after performing a number of
operations, as for example for cases when there are duplicate
names in the result relation after performing a join operation
of two relations, or when the Cartesian product operation is
performed between two relations having attributes with the
same name. When a rename operation takes place only the
heading of the relation changes, the body (instance) remains
the same.

Let r be a nested (in general) relation with relation scheme
R = {R1, R2, …, Ri, …, Rn, A, B,…, Z}, where R1, R2, …, Ri,
…, Rn are atomic attributes and A, B, …, Z are nested
attributes at the top level of relation R.

Then, the rename operation, ρρ, of relation r is defined as
follows:

Definition 20 (Recursive Nested Rename)
i) Rename of an atomic attribute Ri to Ri´ at the top level of

relation R
 ρ[Ri ← Ri´](R) = {R1, R2, …, Ri´, …, Rn, A, B, …, Z}
ii) Rename of a nested attribute A to A′ at the top level of

relation R

 ρ[A ← A′](R) = {R1, R2, …, Ri, ..., Rn, ∪
m

k 0=

LA´→Ak, B,

…, Z}
where m is the number of attributes that are descendants of

A and for m = 0, A′ = A0 (atomic attribute at the top level of
R) and case (ii) reduces to case (i).

iii) Rename of an atomic or nested attribute Ai to Ai′ at a
lower level of relation R

 ρρ[Ai ← Ai′](R) = {R1, R2, …, Ri, …, Rn, A, A1, …,

∪
m

k 0=

LA→Ai′k, B, …, Z}, where A1 is a child attribute of nested

attribute A, Ai is an attribute at a lower level of relation R
belonging to nested attribute A and m is the number of
descendants that Ai has (m = 0, when atomic, in which case
Ai′0 = Ai′).

When more than one attribute has to be renamed the
definition is recursive, as follows:

ρρ[Ra1←R′a1, …, Rak←R′ak, Rn1←R′n1, …, Rnm←R′nm,
Rl1←R′l1, …, Rlp←R′lp](R) =

(ρρ[Rlp←R′lp](…(ρρ[Rl1←R′l1](ρ[Rnm←R′nm](…(ρ[Rn1←R′
n1](ρ[Rak←R′ak](…(ρ[Ra1←R′a1](R))))))))))

where Ra1, …, Rak are atomic attributes at the top level of
relation R, Rn1, …, Rnm are nested attributes at the top level of
relation R and Rl1, …, Rlp are either atomic or nested attributes
at lower levels (different, in general) of relation R and k, m, p
≥ 0. The names of the attributes having primes denote the new
names that these attributes are going to be renamed.

Example 12: Consider the relation DEPT (Fig. 1) and let
attribute UD be renamed as UD′ and attribute C as C′. Then,
the rename operation is defined as follows:

ρρ[UD ← UD′, C ← C′](DEPT) = ρρ[C ← C′](ρρ[UD ←
UD′](DEPT)) =

ρρ[C ← C′]({D, DN, UNIT, UNIT(UN), UNIT(UD′),
UNIT(COURSE_DETAILS),
UNIT(COURSE_DETAILS(TRN)),
UNIT(COURSE_DETAILS(COMPANY)),
UNIT(COURSE_DETAILS(C)),
UNIT(COURSE_DETAILS(C(CN))),
UNIT(COURSE_DETAILS(C(Y)))}) =

{D, DN, UNIT, UNIT(UN), UNIT(UD′),
UNIT(COURSE_DETAILS),
UNIT(COURSE_DETAILS(TRN)),
UNIT(COURSE_DETAILS(COMPANY)),
UNIT(COURSE_DETAILS(C′)),
UNIT(COURSE_DETAILS(C′(CN))),
UNIT(COURSE_DETAILS(C′(Y)))}

The Recursive Nested Cartesian Product Operation (××)
Let R be a relation scheme of relation r.
Definition 21 (Join path) L is a join path of R if either:
(i) L is empty or
(ii) L = RiLi where Ri is a nested attribute of R and Li is a

join path of Ri. ([3])
The join path can be represented as a branch of the tree

structure of some nested relation R starting from a child of the
root of the tree and going down to some node of the tree that
represents either an atomic or nested attribute. In other words,
the join path consists of all the nodes that are passed in order
to reach a specific attribute.

Example 13: In relation DEPT (Fig. 1) an example of a
join path is UNIT(COURSE_DETAILS(TRN)).

Let r and q be two nested (in general) relations with relation
schemes R and Q respectively and let Attr(R) be all the
attributes (atomic and nested) of R, Attr(Q) all the attributes
(atomic and nested) of Q and L a join path of R. Let, also, Ri
be a nested attribute of R, Li a join path of Ri, tr a tuple in
relation r, tq a tuple in relation q and t a tuple in the result
relation. The Cartesian product operation can be applied either
at the top level of both relations or between a lower nesting
level of a relation and the top level of another relation. The
first case is exactly the same as the standard Cartesian product
for flat relations.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

443

So, the Cartesian product of two relations r and q is defined
as follows [13]:

Definition 22 (Recursive Nested Cartesian Product)
× (r, q) = { t ≡ (t[Attr(R)], t[Attr(Q)])|
 (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(R)] = tr[Attr(R)]) ∧

(t[Attr(Q)] = tq[Attr(Q)]))}
×× (rL, q) = ×× (r(RiLi), q) ≡ ×× (q, r(RiLi)) =
{ t| (∃ tr ∈ r) ((t[Attr(R) –{Ri}] = tr[Attr(R) – {Ri}]) ∧ (t[Ri]

= ×× (tr[Ri]Li, q)))}
The commutative property is satisfied, as is the case in the

CRM. Thus, it is always valid that
×× (rL, q) ≡ ×× (q, rL)
Example 14: The Cartesian product operation is performed

between the COURSE attribute of relation TRAINING and
the CASH-POINT relation (Fig. 1). Due to the large number
of tuples in the result relation, only a part of it is displayed in
Fig. 7.

The Cartesian product operation is not often a semantically
meaningful operation, as can be seen from the above example.
However, it helps in defining the join operation, since the join
is a special case of a Cartesian product operation and for this
reason it is included here.

The Recursive Nested Natural Join operation ()
The natural join operation is formally defined in [23]. The

main definition is given here for completeness reasons.
Definition 23 (Recursive Nested Natural Join)
Let r and q be two nested relations with relations schemes R

and Q respectively and let A ={A0, A1, …, Aj} be the set of all
common attributes that the two relations have, where A0, A1,
…, Aj are atomic or nested attributes either at the top or lower
levels in the two relations.

Then, the natural join of relations r and q, (r, q), is
defined as follows:

 (r, q) = (sjLsjAj, s′jLs′jAj)(…((s1Ls1A1,

s′1Ls′1A1)((rLrA0, qLqA0)))) where (rLrA0, qLqA0) =

x1, (s1Ls1A1, s′1Ls′1A1) = x2, …, (sjLsjAj, s′jLs′jAj) =

xj+1 and (s1, s′1),…, (sj, s′j) pairs, are subrelations of x1, …, xj
respectively with their root node being the first different nodes
along the paths to the common attributes A1, …, Aj
respectively.

The Recursive Nested Θ-Join Operation (Θ)

The Θ-join operation is a special case of the join operation
where the two relations are joined on the basis of some
comparison operator other than equality.

It can be expressed by applying a selection operation to the
result of the Cartesian product operation of two relations. The
Cartesian product is applied at the top levels of the two nested
relations and then, a recursive nested selection operation
follows which compares two attributes in the resulting
relation. The two attributes need not be at the same nesting

 (TRN (CODE C BANK BRANCH))

COMPAN

Y

 TRN (CODE C BANK BRANCH)

 CODE BANK BRANCH

 CN Y SORT_COD

E

ADDRESS

 xx0 1 7

5

 Barclay

s

 386600 Ashford St.

 2 7

6

 Jack xx0 1 7

5

 NatWes

t

 560045 Park Rd.

 2 7

6

 560038 Porchester

Rd.

 xx0 1 7

5

 Lloyd’s 478202 Ashford St.

 2 7

6

 478210 Park Rd.

 xy1 1 8

2

 Barclay

s

 386600 Ashford St.

Apple 3 8

2

 xy1 1 8

2

 NatWes

t

 560045 Park Rd.

 3 8

2

 560038 Porchester

Rd.

 xy1 1 8

2

 Lloyd’s 478202 Ashford St.

 3 8

2

 478210 Park Rd.

 Mar

k

 xy2 2 7

9

 Barclay

s

 386600 Ashford St.

 xy2 2 7

9

 NatWes

t

 560045 Park Rd.

 560038 Porchester

Rd.

 xy2 2 7

9

 Lloyd’s 478202 Ashford St.

 478210 Park Rd.

.

.

.

 .

.

.

 .

.

.

 .

.

.

.

.

.

 .

.

.

 .

.

.

.

.

.

Fig. 7 ×× (TRAINING(TRAINER(COURSE)), CASH-POINT)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

444

level in the resulting relation.
Let r and q be two nested (in general) relations with relation

schemes R and Q respectively. Let also, X and Y be two
atomic attributes belonging to relations R and Q respectively
and Θ the condition that they must satisfy. Assume, without
loss of generality, that Y belongs to a deeper nesting level
than X and LσY′→Y is the select path of Y starting at node Y′
which is at the same nesting level as X (when X and Y are at
the same nesting level the select path is empty). So, the
recursive nested Θ–join operation of the two relations r and q
is defined as follows:

Definition 24 (Recursive Nested Θ-Join)
r Θ q = σσ((r × q)X Θ Y Lσ Y′→Y)

B. Functions
Aggregate functions for nested relations have not been

discussed in any other model presented in section II, but in
[18]. Aggregate functions are redefined below.

Let f be a nested aggregate function (f є {N-MAX, N-MIN,
N-SUM, N-AVG, N-COUNT}, where N-MAX, N-MIN, N-
SUM, N-AVG and N-COUNT are the nested versions for the
corresponding aggregate functions MAX, MIN, SUM, AVG
and COUNT for flat relations), f′ an aggregate function for
flat relations (f′ є {MAX, MIN, SUM, AVG, COUNT}), r a
nested relation, X an atomic or nested attribute at a lower
nesting level of r, Par the parent attribute of atomic attribute Y
of r (Y is at the same or higher nesting level than X and it is
the attribute over which attribute X is summarised) and X/Y
denotes that attribute X is summarised over attribute Y. Then,
f[X/Y](r) is defined as follows:

Definition 25 (Nested Aggregate Function)
f[X/Y](r) = f′({ti[X] | ti є t, t є Par(Y) ∧ ti[X] ≠ null})
Note: Attribute X can be a nested attribute only when the

nested aggregate function f is N-COUNT. For all other cases,
X attribute must be an atomic attribute.

For an example see Query 6 in section VI.

VI. MANAGEMENT OF NESTED DATA
The nested algebra presented in section V, is a well-defined

and formalised nested algebra where data restructuring
operations are avoided. In this section, examples are provided
to show the ease of use of the NRA. Relations have no
restrictions on the number of nesting levels they can contain.
The nested model presented, provides a better way of
representing and querying complex data as demonstrated by
the queries that follow since they are compact and do not
require nest, unnest or any other restructuring operations for
the manipulation of nested data.

A number of examples are presented that contain only
operations on nested data, demonstrating how this model
works and functions. Queries refer to the nested database
example described in section III (Fig. 1). For some queries,
comparisons are made with other proposed models.

Query 1: What are the descriptions of the units that belong
to department 1 and who are the trainers who have given

courses to staff members of these units? Display also the value
for the department.

ππ((σσ(DEPTD = 1)) D, UD, TRN)
A projection operation on a selected part of the DEPT

relation is needed to answer the above query. Three attributes
of the relation are projected which can be found at different
nesting levels; attribute D at nesting level 1, attribute UD at
nesting level 2 and attribute TRN at nesting level 3. However,
the projection operation takes place as normal, without
changing the structure of the relation using unnest and nest
operations and thus, the nesting arrangement of the relation is
maintained in the resulting relation as well. Therefore, in the
resulting relation, D, UD and TRN are still at nesting levels 1,
2 and 3 respectively, as in the input relation DEPT.

Query 2: Find the tuples with course numbers equal to the
number of the department for the whole tuple.

σσ(DEPTD = CN)
The above query shows the advantage of the selection

operation proposed in section V that allows arbitrary
expressions to be specified in the select condition, as for
example equality of values of attributes that are not at the
same nesting level in the relation, without unnesting and
nesting the relation. The query is expressed algebraically in
exactly the same way as if the two compared attributes were at
the top level of the original relation.

Query 3: Find the names of the banks and the companies
that are situated at the same road.

νν((μμ(ππ((LOCATION CASH-POINT)

COMPANY,BANK,ADDRESS))(ADDRESS))(COMPANY,BANK)→(

COMPANY BANK))
In this example, and in similar cases, nest and unnest

operations are necessary since they can restructure the
relations and as a result, present the same data in a different
format that is required by the given query.

However, extra nest and unnest operations are avoided in
the above query since the natural join and projection
operations are defined recursively in the NRA.

In Abiteboul and Bidoit’s model [1] this query cannot be
performed since the two relations that participate in the natural
join operation do not have any common attributes at the top
level.

Query 4: Find the names of the trainers that have given the
“Computer Skills” training course.

ππ((σσ(TRAINING COURSE) TITLE= “Computer Skills”)
TRN)

One can easily see the advantage of joining subrelations
which are at different nesting levels (in this example, the
subrelation C at nesting level 3 in relation TRAINING and at
nesting level 1 in relation COURSE), without the need to
unnest and nest the data and without any other restructuring
operations assumed by other proposed models (e.g., [1], [13]).
The above example shows that NRA provides a simple way of
answering queries, since even just the algebraic solution of the
query can be translated naturally to the above well-phrased
query; moreover, the query does not distinguish between

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

445

nested and flat relations, as the query would be expressed in
the same way if the two relations, TRAINING and COURSE,
were flat relations. This is explained by the recursive nature of
the NRA operations.

In contrast, in Levene’s model [14] the natural join can be
applied only if relation COURSE is extended with two empty
nodes at levels 1 and 2 so that the common attribute C to
appear at the same nesting level 3 in both relations. Then, the
two relations are joinable, according to Levene’s definition
and therefore, can be joined.

Query 5: Find the names of the banks which are located on
the same road as the companies for which Tim or Karen have
worked for, together with the names of these companies.

ππ((((σσ(TRAINING(TRN= “Tim” OR TRN = “Karen”)))

LOCATION) CASH-POINT) COMPANY, BANK)
This query requires two natural join operations. However,

since the natural join defined in [23] can be performed
between any possible relations sharing common attributes, it
does not involve any preliminary checks to determine if the
two operand relations are qualified for the natural join. In
other models, for example in [1], [13], it is not certain if the
natural join operation can be performed between a nested
relation and the output of the natural join of two nested
relations, since, as explained in section II of this paper, for
each of these models the natural join operation is subject to
some restrictions. On the other hand, in NRA any possible
combination of relations, sharing at least one common
attribute, can be joined.

This query also demonstrates how complex queries can be
answered easily in the query language proposed in this paper.

Query 6: What is the title of the course that has the
maximum number of different topics? Display also the
number of different topics that this course has.

ππ(COURSE(TITLE, N-
COUNT[TOPICS/TITLE]←MTOPICS))

ππ(ππ(COURSE(TITLE, N-
COUNT[TOPICS/TITLE]←MTOPICS1))

(MAX(MTOPICS1)) ←MTOPICS)

Aggregate functions for nested attributes have been defined
in subsection B of section V.

The above query is expressed in the NRA using the
following steps:

1. In the original relation COURSE, the number of different
topics per title is computed, it is named MTOPICS1 and
projected on TITLE and MTOPICS1 attributes.

2. From the result of step 1, MAX (MTOPICS1) is
computed, named MTOPICS and projected.

3. In the original relation COURSE, the number of different
topics per title is computed, it is named MTOPICS and
projected on TITLE and MTOPICS.

4. The results of steps 2 and step 3 are joined together.
It is noteworthy that if the relation COURSE was a flat

relation then, the SUMMARIZE operation would be used to
produce the same result in combination with the traditional

aggregate functions COUNT and MAX.
It must be said that this query or any other query containing

aggregate functions on nested attributes cannot be expressed
in any other relational model discussed in section II apart from
[18] with the use of an additional operator, the subrelation
constructor, as follows:

π[TITLE, MAX[SUBJECT′]] (∮(C,
COURSE_DURATION, TITLE, SUBJECT, SUBJECT′);
SUBJECT′ := COUNT[TOPICS](SUBJECT)∮ (COURSE))
where ∮ is the subrelation constructor.

Query 7: Find all trainers who have given more courses
than Karen has.

ππ((σσ

(ππ((νν(μμ(πt
π(TRAINING(TRN,COURSE))COURSE)

(CODE, C)→COURSE))(TRN,N-COUNT[CN/TRN]←MCN))
×× ππ((σσ(TRAININGTRN= “Karen”))
(N-COUNT[CN/TRN]←MCN1))) MCN > MCN1) TRN)
Two copies of the TRAINING relation are needed for this

query in order to perform the Cartesian product operation
between them. However, to make the query simpler, a
projection operation is applied to the first copy of the relation
and an aggregate function is also used to count the number of
nested tuples which corresponds to the number of different
courses that each trainer (TRN) has given. Moreover, an
unnest and then a nest operation are also used to a projected
part of the original relation to convert the relation to the right
one, before the computation of the aggregate function. With
the second copy of the relation, a projection is performed on a
selection of the relation. The same aggregate function is also
used here, applied to the same attribute as before. The
Cartesian product is performed afterwards between a binary
relation and a unary one containing only one tuple.

Once again, the above query can demonstrate the
expressive power of the proposed nested model and the
facility in stating complex queries. This query, as the previous
one, cannot be expressed in any other nested relational model
presented in section II apart from [18], yet with the problem
discussed above.

VII. THE NESTED RELATIONAL MODEL (NRA)
The components of the NRM are described below.

A. Data types-Domains
Domains are data types of arbitrary internal complexity

([22]). Therefore, such domains can consist of relation-type
values. Attributes defined on that domains are relation-valued
attributes, that is, they contain values that are relations. The
domain of a nested attribute is defined recursively below.

Assume that Rn1, Rn2, …, Rnk are, in general, all the atomic
and nested attributes that belong to nested attribute Rn and P is
the powerset of a set S.

Definition 26 (Nested attribute domain) The domain of a
nested attribute Rn, DOM(Rn), is defined recursively as

i) DOM(Rn) ⊆ D, where D is the underlying database
domain, for the special case where Rn is an atomic attribute.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

446

ii) DOM(Rn1) × DOM(Rn2) × … × DOM(Rnk), for k ≥ 1,
where Rn1, Rn2, …, Rnk are atomic attributes of Rn.

iii) P(DOM(Rn1)) × P(DOM(Rn2)) × … × P(DOM(Rnk)), for
k ≥ 1, where Rn1, Rn2, …, Rnk are nested attributes of Rn, in
general.

B. Databases
In the NRM, databases are sets of nested relations. Nested

relations do not satisfy the 1NF assumption. A database
example in the NRM is shown in Fig. 1.

C. Structures
Definition 27 (Nested Relation Scheme) The scheme of a

relation R in the NRM is defined recursively as RS = R(R1S1,
R2S2, ..., RnSn), where n ≥ 1, R1, R2, ..., Rn are the attribute
names of R, either atomic or nested and

∅ (empty set) if Ri is an atomic attribute
Si =

(Ri1S i1, Ri2S i2, ..., RikSik) if Ri is a nested attribute
and k ≥ 1

where 1 ≤ i ≤ n.
Example 15: The scheme of relation TRAINING (Fig. 1) is

TRAINING (COMPANY TRAINER (TRN COURSE (CODE
C (CN Y)))).

D. Relational Operators
The set of conventional relational comparison operators of

the CRM, {=, ≠, <, ≤, >, ≥}, is also supported in the NRM.

E. Operations
The union, difference, intersection, projection, selection,

rename, Cartesian product, natural join and Θ-join recursive
operations of the NRM have been defined formally in section
V. Two additional operations, nest and unnest, have also been
defined in the NRM.

F. Functions
The set of functions in the CRM is also supported in the

NRM.

VIII. MAPPING THE CRM TO THE NRM
NRM is reduced to the CRM when restricted to support

only flat relations, in a way similar to the approach of
Paredaens and Van Gucht [24]. In this section, the
components of the CRM are going to be mapped to the NRM
that have been described in section VII, in order to prove that
the NRM is a proper superset of the CRM.

A. Data types - Domains
Proposition 1: The set of domains in the CRM is a proper

subset of the set of domains in the NRM.
Proof: The nested attribute domain is defined recursively

(Definition 26). Therefore, for the special cases i) where k=0
i.e., the attribute is atomic or ii) where k ≥ 1 i.e., the attribute
is nested consisting of atomic attributes only (which can be
considered as a flat relation), the nested attribute domain
definition of the NRM is reduced to the atomic attribute

domain definition of the CRM.
Consequently, since the set of domains in the NRM can be

reduced, for specific special cases, to the set of domains in the
CRM, the former is a proper superset of the set of domains in
the CRM.

B. Databases
Proposition 2: The set of databases in the CRM is a proper

subset of the set of databases in the NRM.
Proof: Databases in the NRM have been introduced in

order to relax the 1NF assumption that is satisfied in the
CRM. Thus, the 1NF assumption of flat relations is a special
case of the general N1NF assumption which characterises
relations in the NRM. By definition, a flat relation is also a
relation of the nested model. Therefore, the set of databases in
the NRM is a proper superset of the set of databases in the
CRM.

C. Structures
Proposition 3: The set of structures in the CRM is a proper

subset of the set of structures in the NRM.
Proof: The definition of the scheme in the NRM is given

recursively (Definition 27). For the special case, where Si, for
all i, is equal to the empty set, the definition is reduced to that
of the CRM, since all attributes of the relation are atomic.

D. Relational Operators
Proposition 4: The set of relational comparison operators

in the CRM is isomorphic to the set of relational operators in
the NRM (i.e., for every comparison operator in the CRM
there is a corresponding comparison operator in the NRM).

Proof: The proof is omitted for obvious reasons.

E. Operations
In the following, it is shown by a number of propositions

that each operation in the NRM is an extended operation of
the relevant operation in the CRM. Before this is done, some
preliminary discussion is necessary, regarding the effect of
relational operations to the key of relations.

Let Unary be a unary operation and let R1 = Unary(R0).
Then, the first obvious remark is that this operation does not
have any effect on the key of R0 i.e., the key of R0 remains the
same. The second one is that the key of R0 is not inherited to
R1. These observations apply to any data model, and to the
CRM as well. As an example of the second remark, consider a
flat relation R0 and assume that K is its primary key. Then, the
CRM select operation R1=σF(R0), also yields a flat relation,
R1. Since R1 is a subset of R0, it follows that it does not
contain two distinct tuples with identical values for K.
However, it is not implied by this fact that K is also the key of
R1, it is only the user who may specify what the key of R1 is.

As another example, let the scheme of R0 be R0(K, A, B),
where K is its key. If R1=πA,B(R0), it is known that R1 does not
contain duplicate tuples and, definitely, it is again the user
who may specify its key.

Hence, the conclusion is that a unary CRM operation does
not affect the key (if defined) of the input relation and it does

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

447

not propagate it to the result relation. This same conclusion
can also be drawn for binary operations of the CRM.
Subsequently, the same conclusion can be drawn for any
operation in any data model, therefore for all the operations of
the NRM as well.

Proposition 5: The union operation in the NRM is an
extended version of the union operation in the CRM.

Proof: The union operation in the NRM is defined
recursively (Definition 9). From the recursive definition, it is
deduced that for the special case where the relations are in
1NF format, the definition is reduced to the non-recursive
union definition for flat relations (case i), since the relations
do not contain any nested attributes. This definition then, is
the definition of the union operation in the CRM.

Proposition 6: The difference operation in the NRM is an
extended version of the difference operation in the CRM.

Proof: The proof is similar to that of Proposition 5.
Proposition 7: The intersection operation in the NRM is an

extended version of the intersection operation in the CRM.
Proof: The proof is similar to that of Proposition 5.
Proposition 8: The projection operation in the NRM is an

extended version of the projection operation in the CRM.
Proof: From Definition 13 (case ii):
ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)
((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])
 ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] =

ππ(tr[Rnm]Lnm)))}.
For the special case where relation r is flat, since all

attributes of relation r are atomic, RniLni = ∅, for all i (1 ≤ i ≤
m), and the definition of the projection operation is reduced
to:

ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = ππ(r(Ra1, …, Rak)) =
 { t| (∃ tr ∈ r) ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] =

tr[Rak]))},
which is the definition of the projection operation in the

CRM. So, the projection operation in the NRM is an extended
version of the projection operation in the CRM.

Proposition 9: The selection operation in the NRM is an
extended version of the selection operation in the CRM.

Proof: The proof is similar to that of Proposition 8. For the
special case where relation r is flat, since all attributes of
relation r are atomic, L is empty and Definition 15 is reduced
to σσ(rcLσ) = σ(rc) = σ(rca1, …, cak) which is the traditional
selection operation for flat relations in the CRM.

Proposition 10: The rename operation in the NRM is an
extended version of the rename operation in the CRM.

Proof: From Definition 20-case (ii), the rename of a nested
attribute at the top level of a relation is:

ρ[A ← A′](R) = {R1, R2, …, Ri, …, Rn, ∪
m

k 0=

LA′→Ak, B, …,

Z}.
This definition is reduced to:
 ρ[A ← A′](R) = {R1, R2, …, Ri, …, Rn, A′, B, …, Z}, for

the special case where the attribute to be renamed, A, is an

atomic attribute at the top level of relation R, since ∪
m

k 0=

LA′→Ak

= A′ (m=0 i.e., there are not any descendants of A). This is
equivalent to the rename operation in the CRM.

Proposition 11: The Cartesian product operation in the
NRM is an extended version of the Cartesian product
operation in the CRM.

Proof: Case (i) or case (ii) for L=Ø of Definition 22 is the
traditional Cartesian product operation for flat relations in the
CRM.

Proposition 12: The natural join operation in the NRM is
an extended version of the natural join operation in the CRM.

Proof: The natural join which operates for cases where the
common atomic or nested attributes belong to different
subrelations and at different nesting levels in the two
relations), (rL, qM), is defined in [23].

The natural join can be reduced to the conventional natural
join for flat relations if the special case is assumed, where the
common attributes are atomic attributes at the top level of the
two relations. Formally, the definition for L and M empty, is
reduced to:

 (rL, qM) = (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)
 ((t[Attr(Ri)] = tr[Attr(Ri)])
 ∧ (t[Attr(Qi)] = tq[Attr(Qi)])
 ∧ (t[Ri1] = tr[Ri1] = tq[Qi1]))}
which is the traditional definition of the natural join

operation in the CRM.

F. Functions
Proposition 13: The set of functions in the CRM is

isomorphic to the set of functions in the NRM.
Proof: The proof is omitted for obvious reasons.

G. Mapping Synopsis
Proposition 14: The NRM is a superset of the CRM.
Proof: This is a result of Propositions 1-13 since, as it has

been explained in subsection B of section VIII, in order to
prove that a database model is a superset of another database
model, it is necessary and sufficient to prove that every
property of the latter (data types, databases, structures,
operators, operations and functions) is also a property of the
former.

IX. CONCLUSION
In this paper, an algebra (NRA) and a database model

(NRM) have been defined for nested relations of arbitrary
nesting levels. All the operators have been recursively
defined. As a result, there is no need to flatten the nested
relations when a series of operations are executed and so the
data redundancy and duplication caused by unnesting relations
is avoided. Furthermore, the representation of the data is
claimed to be in a “natural form”. Thus, it is easier for users to
understand when working with the data, since even complex
objects can be modelled in one relation. A number of example
queries have been expressed in the NRA to demonstrate its

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

448

functionality. In addition, the model has been proved to be
consistent with the CRM.

In appendix I, a formal syntax of the NRA is given. In
appendix II, a sample code of the prototype implementation
can be found as well as a number of examples, presented in
this paper, coded in Miranda, which demonstrate the
functionality and validity of the model. It should be stated that
the prototype serves satisfactory as a proof of concept.
Specifically, the nested rename, projection, selection and
Cartesian product operations have been fully implemented.
The nested join operation has been partially implemented.
Particularly, only one nested column is allowed at each
nesting level and the join operator allows joining on only one
pair of columns; reasonable assumptions within the
framework of a prototype.

Future work includes the study of optimisation techniques
for the efficient evaluation of complex queries. The definition
of an extension of SQL to support the nested features of NRM
is also, another research direction. The incorporation of spatial
data to NRM is an additional challenge. The NRM can also be
used as a basis to build an algebra for supporting nesting
structures in XML (similarly to the FLWR expressions of
XQUERY).

APPENDIX I
Formal syntax of the NRA

expression
:: = one-relation-expression| two-relation-expression
one-relation-expression
:: = nested-renaming | nested-selection | nested-projection
two-relation-expression
:: = nested-projection binary-operation expression
nested-renaming
 :: = ρt

ρ [attribute-commalist1] (term)
attribute-commalist1
 :: = fattribute ← fattribute | fattribute ← fattribute,

attribute-commalist1
fattribute
 :: = attribute1 | function2(attribute1)
attribute1
 :: = attribute | nested-aggregate-attribute
attribute
 :: = basic-attribute | nested-attribute
basic-attribute
 :: = atomic-attribute
nested-aggregate-attribute
 :: = function1[attribute/basic-attribute]
function1
 :: = N-MAX | N-MIN | N-SUM | N-COUNT | N-AVG
function2
 :: = MAX | MIN | AVG | COUNT | SUM
term
 :: = relation | (expression)
nested-projection
 :: = πt

π (term (attribute-commalist2)) | term

attribute-commalist2
:: = fattribute | fattribute, attribute-commalist2
binary-operation
 :: = ∪ ∪ | ∩

∩ | −
− | ×

× | |
Θ

nested-selection
 :: = σ

σ (term comparison)
comparison
 :: = attribute-term | attribute-term logical-operator

comparison
logical-operator
:: = AND | OR | AND NOT | OR NOT
attribute-term
 :: = FAA θ FAA
FAA
 :: = constant | atomic-attribute | attribute-term | nested-

aggregate-attribute
θ
 :: = < | > | = | <= | >= | ≠

APPENDIX II
A sample of the prototype implementation

A small part of the code, that has been developed in
Miranda, is listed in this section which contains basic
functions for selection, projection and Cartesian product
operators.

|| isColumnTag: Simple method to identify a column using
its tag.

isColumnTag :: string -> columnType -> bool

|| resolvePath: Creates full path name for columns in a table.
resolvePath:: relationalTable -> relationalTable

|| resolvePath2: Creates full path names for a list of entries

given a string and a depth.
resolvePath2 :: string -> num -> [tableEntry] ->

[tableEntry]

|| resolvePath3: Creates full path names for a list of columns

given a string and a depth.
resolvePath3 :: string -> num -> tableEntry ->

tableEntry

|| resolvePath4: Creates full path names for a column given

a string and a depth.
resolvePath4 :: string -> num -> columnType ->

columnType

|| rpar: Generates a given number of closing parenthesis.
rpar :: num -> string

|| selectCol: Used to select a column recursively based on its

tag.
selectCol :: string -> columnType -> tableEntry

|| selectEntryByStr: Selects all columns from a list of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

449

columns using the given column tag.
selectEntryByStr :: string -> tableEntry -> tableEntry

|| selectEntryByStrLst: Selects a list of columns whose

names are provided by a list of string
|| tags.
selectEntryByStrLst :: [string] -> tableEntry ->

tableEntry

|| selectEntryLstByStrLst: Selects entries from a given entry

list
|| whose names are provided by a list of tags.
selectEntryLstByStrLst :: [string] -> [tableEntry] ->

[tableEntry]

|| tableProjection2: Selects a subset of table entries based on

given
|| column names after all recursive column names have been

resolved.
tableProjection2 :: [string] -> relationalTable ->

relationalTable

|| flattenRelTable: Flattens a relational table by calling

helper
|| function flattenEntryList.
flattenRelTable :: relationalTable -> relationalTable

|| flattenEntryList: Flattens a list of table entries by calling

helper function flattenColumnList.
flattenEntryList :: [tableEntry] -> [tableEntry]

|| flattenColumnList: Flattens a list of columns by calling

helper function flattenColumn.
flattenColumnList :: [columnType] -> [columnType]

|| flattenColumn: Flattens recursive columns.
flattenColumn :: columnType -> [columnType]

|| tableProduct2: Product of two relational tables at the top

level.
|| All possible combinations of table entries are included.
|| No recursive application involved.
tableProduct2 :: relationalTable -> relationalTable ->

relationalTable

|| tableProduct3: Product of a table with an inner table of

another table.
|| All possible combinations of table entries are included.
tableProduct3 :: relationalTable -> (string,

relationalTable) -> relationalTable

|| tableProduct4: Applies the product of a table to a list of

table entries
|| for recursive application.
tableProduct4 :: relationalTable -> string ->

[tableEntry] -> [tableEntry]

|| tableProduct5: Applies the product of a table to a list of

table columns
|| for recursive application.
tableProduct5 :: relationalTable -> string -> tableEntry

-> tableEntry

|| tableProduct6: Applies the product to a recursive column

which holds the
|| required inner table.
tableProduct6 :: relationalTable -> columnType ->

columnType

|| tableProduct7: Applies the product to a recursive column

if the inner table is
|| the one required.
tableProduct7 :: relationalTable -> string ->

columnType -> columnType

|| getRecTableNames: Gets the name of a table and calls

getRecTableNames2
|| to get the names of all recursive tables.
getRecTableNames :: relationalTable -> [string]

|| getRecTableNames2: Gets table names recursively for a

list of table entries.
getRecTableNames2 :: [tableEntry] -> [string]

|| getRecTableNames3: Gets table names recursively for a

list of columns.
getRecTableNames3 :: tableEntry -> [string]

|| getRecTableNames4: Gets the name of a table column if it

is an inner table.
getRecTableNames4 :: columnType -> [string]

Examples
The numbering of the queries below refers to the example

queries found in section VI.
Query 1:
selectFrom ["D", "DEPT(UNIT(UD))",

"DEPT(UNIT(COURSE_DETAILS(TRN)))"][("
D", NF ((=) 1))]d
Query 4:
selectFrom["COURSE/TRAINING(COURSE/TRAINER(T

RN))"][("COURSE/TRAINING(COURSE/TRAINER(COUR
SE/COURSE(TITLE)))", SF ((=) "Computer Skills"))]
(joinTables("C", t)("C", course))

Query 5:
A revised version of the query is given, due to the fact that

relevant implementation is missing (only for ‘Karen’, since
OR has not been implemented).

tableProjection["COMPANY","BANK"]
(joinTables("TRAINING/LOCATION(ANNEX(ADDRESS))
",

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

450

joinTables("COMPANY",selectFrom["COMPANY"][("TRAI
NING(TRAINER(TRN))",
SF((=)"Karen"))]t)("COMPANY",location))("CASH-
POINT(BRANCH(ADDRESS))", cashpoint))

REFERENCES
[1] S. Abiteboul, and N. Bidoit, “Non First Normal Form Relations: An

Algebra Allowing Data Restructuring,” Journal of Computer and System
Sciences, vol. 33, no. 3, pp. 361-393, 1986.

[2] P.C. Fisher, and S.J. Thomas, “Operators for Non-First-Normal Form
Relations,” in Proc. of the 7th IEEE International Conference on
Computer Software and Applications, Chicago, 1983, pp. 464-475.

[3] G. Jaeschke, and H.J. Schek, “Remarks on the Algebra of Non First
Normal Form Relations”, in Proc. of the ACM Symposium on Principles
of Database Systems, Los Angeles, 1982, pp. 124-138.

[4] M.A. Roth, H.F. Korth, and A. Silberschatz, “Extended Algebra and
Calculus for Nested Relational Databases,” ACM Transactions on
Database Systems, vol. 13, no. 4, pp. 389-417, 1988.

[5] H.-J. Schek, and M.H. Scholl, “The Relational Model with Relation-
Valued Attributes,” Information Systems, vol. 11, no. 2, pp. 137-147,
1986.

[6] S.J. Thomas, and P.C. Fischer, “Nested Relational Structures,”
International Journal of Artificial Intelligence, vol. 3, pp. 269-307,
1986.

[7] A. Makinouchi, “A consideration on Normal Form of Not-Necessarily-
Normalized Relations in the Relational Data Model,” in Proc. of the 3rd
International Conference on Very Large Data Bases, Tokyo, 1977, pp.
447-453.

[8] V. Tannen, “Tutorial: Languages for Collection Types,” in Proc. of the
13th ACM Symposium on Principles of Database Systems, Minneapolis,
1994, pp. 150- 154.

[9] N.A. Lorentzos, and A. Dondis, “Query by Example for Nested Tables,”
in Proc. of the 9th International Conference on Database and Expert
Systems Applications, Vienna, 1998, pp. 716-725.

[10] M.A. Roth, H.F. Korth, and D.S. Batory, “SQL/NF: A Query Language
for ¬1NF Relational Databases,” Information Systems, vol. 12, no. 1, pp.
99-114, 1987.

[11] L. Wegner, S. Thelemann, S. Wilke, and R. Lievaart, “QBE-like Queries
and Multimedia Extensions in a Nested Relational DBMS,” in Proc. of
the International Conference on Visual Information Systems, Melbourne,
1996, pp. 437-446.

[12] G. Özsoyoglu, Z.M. Özsoyoglu, and V. Matos, “Extending Relational
Algebra and Relational Calculus with Set-Valued Attributes and
Aggregate Functions,” ACM Transactions on Database Systems, vol. 12,
no. 4, pp. 566-592, 1987.

[13] L.S. Colby, “A Recursive Algebra for Nested Relations,” Information
Systems, vol. 15, no. 5, pp. 567-582, 1990.

[14] M. Levene, “The Nested Universal Relation Database Model,” Lecture
Notes in Computer Science 595, Berlin: Springer-Verlag, 1992.

[15] Hong-Cheu Liu, and K. Ramamohanarao, “Multiple Paths Join for
Nested Relational Databases.” in Proc. of the 5th Australian Database
Conference, 1994, pp. 30-44.

[16] M. Levene, and G. Loizou, “Correction to Null Values in Nested
Relational Databases by M.A. Roth, H.F. Korth and A. Silberschatz,”
Acta Informatica, vol. 28, pp. 603-605, 1991.

[17] A. Tansel, and L. Garnett, “On Roth, Korth, and Silberschatz’s Extended
Algebra and Calculus for Nested Relational Databases,” ACM
Transactions on Database Systems, vol. 17, no. 2, pp. 374-383, 1992.

[18] V. Deshpande, and P.A Larson, “An Algebra for Nested Relations with
Support for Nulls and Aggregates,” Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada, Tech. Rep. CS-91-
16, 1991.

[19] Hong-Cheu Liu, and K. Ramamohanarao, “Algebraic Equivalences
among Nested Relational Expressions,” in Proc. of the 3rd International
Conference on Information and Knowledge Management, Gaithersburg,
1994, pp. 234-243.

[20] P. Buneman, S. Naqvi, V. Tannen, and L. Wong, “Principles of
Programming with Complex Objects and Collection Types,” Theoretical
Computer Science, vol. 149, no. 1, pp. 3-48, 1995.

[21] J.D. Ullman, Principles of Database and Knowledge-Base Systems. New
York: Computer Science Press, 1995.

[22] C.J. Date, An Introduction to Database Systems, 2nd ed. New York:
Addison-Wesley, 2000.

[23] G. Garani, and R. Johnson, “Joining nested relations and subrelations,”
Information Systems, vol. 25, no. 4, pp. 287-307, 2000.

[24] J. Paredaens, and D. Van Gucht, “Converting Nested Algebra
Expressions into Flat Algebra Expressions,” ACM Transactions on
Database Systems, vol. 17, no.1, pp. 65-93, 1992.

 Georgia Garani received a BSc degree in
physics from Aristotle University of Thessaloniki,
Greece and MSc and Ph.D. degrees in computer
science from King’s College and Birkbeck College
respectively, University of London, UK. She
worked as a teaching assistant at Birkbeck College
and as a visiting lecturer at the University of North
London, UK. She is currently an assistant professor
at the Department of Informatics and
Telecommunications of the Higher Technological
Educational Institute of Larisa, Greece. She is
involved in a series of research projects. Her

research interests include temporal and spatial databases, image databases and
data mining.

