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Abstract—A generalised relational data model is formalised for 

the representation of data with nested structure of arbitrary depth. A 
recursive algebra for the proposed model is presented. All the 
operations are formally defined. The proposed model is proved to be 
a superset of the conventional relational model (CRM). The 
functionality and validity of the model is shown by a prototype 
implementation that has been undertaken in the functional 
programming language Miranda. 
 

Keywords—nested relations, recursive algebra, recursive nested 
operations, relational data model. 

I. INTRODUCTION 
number of researchers have made proposals to relax the 
First Normal Form (1NF) assumption using the Non-First 

Normal Form (N1NF) relations to solve problems in 
applications such as text processing, engineering design 
systems and office automation and thus, overcome a number 
of limitations imposed by the apparently reasonable restriction 
that 1NF causes.  

The use of a N1NF model eliminates many problems since 
it enables data about an object to be represented within one 
relation rather than distributing it over several relations. One 
major advantage is the fact that join operations which are 
substantially expensive in terms of execution time can be 
avoided. 

The N1NF relational database model, or more simply the 
nested relational model, allows relations to have attributes 
which can have non-atomic values i.e., the latter are 
themselves relations, subrelations of the relation to which they 
belong. The N1NF model provides the basis for the object-
oriented database model. Many models [1]-[6] have been 
defined since 1977, when Makinouchi [7] proposed, for the 
first time, the relaxation of the 1NF assumption. A list of 
relevant references can be found in [8]. 

In spite of the large number of N1NF models, only a few 
query languages have been proposed for the management of 
N1NF relations (e.g., [9]-[11]) by reason of its difficulty. 
These are extensions of existing query languages, SQL and 
Query by Example; an example is QBEN [9], a Query by 
Example language for nested tables which allows the 
formulation of complex queries. 

The N1NF database models that have been developed so far 
can be divided into two categories. Models of the first 
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category are called non-recursive models (e.g., [3], [6], [12]) 
and those of the second category are called recursive models 
(e.g., [1], [4], [5], [13]-[15]). The two approaches are 
distinguished by the recursive or non-recursive nature of the 
operators that have been defined by the distinct researchers. 
The difference is that recursive operators can be applied 
repeatedly to the subrelations at the different levels of a 
relation, whereas the non-recursive operators cannot. In 
section II of this paper the superiority of the recursive models 
compared to the non-recursive ones is explained and justified. 

A Nested Relational Model (NRM) is formalised in this 
paper for the representation of nested data. A nested recursive 
algebra (NRA) for the NRM is proposed. All the operations 
are formally defined, including also the rename operation for 
nested relations. NRM is proved to be a superset of the CRM. 

The rest of the paper is organised as follows. In section II a 
survey of the most important N1NF recursive models is 
presented. The running example of the paper is presented in 
section III. The basic concepts and terminology which are 
used in this paper are given in section IV. The NRA is 
presented in section V. In section VI the ease of use of the 
NRA is demonstrated by a number of examples. The 
components of the NRM are described in section VII. In 
section VIII the NRM is proved to be a superset of the CRM. 
Finally, conclusion is presented in section IX. Appendices I 
and II are provided with the formal syntax of the NRA and a 
sample code of the prototype implementation. 

II. LITERATURE SURVEY 
Recursive algebraic definitions in nested models are 

undoubtedly preferable to the corresponding non-recursive 
ones. This is based on the following facts:  

1) The non-recursive algebras allow operations only on 
entire tuples. In contrast, recursive algebras allow the direct 
manipulation of tuples either at the top level or at lower levels 
of the nested relations. 

2) When an attribute at a lower nesting level of the nested 
relation needs to be accessed, because it participates in an 
operation expressed in a non-recursive algebra, one or more 
unnesting operations need to be applied resulting in the 
creation of many additional tuples. The non-recursive 
operation can then be performed and finally the relation is 
nested again. However, one of the main motivations for a 
model consisting of nested relations is the reduction in the 
number of tuples processed. 

3) In the non-recursive algebras, queries can become long 
and complicated, whereas in the recursive algebras queries 
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will be shown to be compact, simpler and more naturally 
expressed. 

4) Restructuring operations are not required with recursive 
algebras unlike non-recursive ones.  

5) Traditional query optimisation techniques can be used 
with recursive algebras. In contrast, nest and unnest 
operations which have to be used frequently in non-recursive 
algebras, are not, in general, inverse operations. Therefore, 
traditional query optimisation techniques can be applied to 
queries which are expressed using recursive algebras since 
recursive operations can be performed at any nesting level 
without using nest or unnest operations [14]. 

However, it has been shown that the recursive and non-
recursive algebras are equivalent in expressive power [13]. 

Previous research work dealing with N1NF recursive 
models includes Abiteboul and Bidoit’s model [1] who 
proposed a Non-First Normal Form database model called the 
Verso model which allows data restructuring. Arbitrary 
projections can be achieved but they usually require a 
restructuring of the original relation. Two versions of the 
selection operation are defined, a simple version of the 
selection operation, the Verso-selection and an extension of 
the selection, called the “super-selection” which can be 
expressed by the Verso-selection, projection, and join 
operations. The restriction operation is itself restricted in that 
it can be applied only to the “root” of the format. The 
Cartesian product operation requires the first operand to be an 
instance over a flat relation and this is again a significant 
weakness. Furthermore, the key feature of their model, the 
restructuring operation, cannot reconstruct entirely the 
structures of the relations without loss of information, even 
when using a combination of all three transformations, root 
and branch permutations, compactions and extensions. As a 
result, the potentiality of the operation is limited to a restricted 
spectre of cases.   

In Roth, Korth and Silberschatz’s model [4] the Partitioned 
Normal Form (PNF) property is defined for nested relations. 
A relation R is in PNF if all the atomic attributes of R form a 
key for the relation and recursively, each relation-valued 
attribute of the relation is also in PNF. The simplicity and 
clarity of relations in PNF is apparent, as well as the fact that 
relations in PNF have some good properties compared to other 
relations. However, in general, relations in PNF impose two 
important restrictions, that there is at least one atomic attribute 
at every nesting level of the relation and also that relation-
valued attributes cannot be part of the key. Two new 
operators, nest and unnest, are added to the basic set of 
operators. This approach has a number of limitations as 
presented in [16], [17]. Furthermore, the algebraic operators 
are defined in such a way that works within the class of PNF 
relations and therefore, they are closed only under PNF 
relations. In addition, projection, selection, join and Cartesian 
product operations cannot be applied to subrelations of nested 
relations. 

A recursive algebra for nested relations is defined by Colby 
in [13]. Nest and unnest operations can be applied to 

subrelations directly, without transforming any other attribute 
of the relation by the assistance of a nest and an unnest list. 
The PNF assumption is not made. Arbitrary algebraic 
expressions in lists (select lists, project lists etc.) of the 
operators, such as comparisons of values of compatible 
attributes situated at different nesting levels in a relation 
cannot be supported. 

An improved version of the algebra proposed by Schek and 
Scholl in [5] is presented by Deshpande and Larson in [18]. 
Two new operators, the subrelation constructor which 
transforms the interior of a nested relation and the PNF-
Transformer which transforms recursively a nested relation 
into a nested relation in PNF are defined. Clearly, the 
invocation of the subrelation constructor one or more times in 
the formulation of queries increases the execution time to 
answer queries. The operators of the algebra are defined in 
such a way to preserve PNF property. Aggregate functions are 
also included in their algebra. Comparisons in the selection 
operation can only take place if the attributes that participate 
in the selection predicate are in the path starting at the root of 
R and ending at the subrelation identified by the pathname.  

Levene in [14] presents the nested Universal Relation (UR) 
Model which forms an extension of the classical UR model to 
nested relations in order to solve the problem of incomplete 
information. One of the main features that his algebra 
provides, is the fact that the user does not need to know the 
structure of the nested relations in order to express a query in 
that algebra. Null values are also taken into consideration in 
the formalised proposed model. All the basic operators of the 
algebra are defined extensively. The problem of defining the 
join operation of two nested relations is solved with the 
insertion of empty nodes.  

Liu and Ramamohanarao present also an algebra for nested 
relations in [19]. However, their algebra provides a restricted 
and complicated approach to the problem, since the following 
constraints must be satisfied: i) the selection operator 
considers only selection-comparable nodes, ii) the join 
operator can be performed only between two relations that 
have atomic attributes at the top levels. 

Further interesting work by Buneman, Naqvi, Tannen and 
Wong [20] simplifies Colby’s algebra and easily allows one to 
express all the recursive operations. Particularly, they present 
a language for structures in which nested relations and 
complex objects may be freely combined. They proved that 
their language coincides in expressive power with the nested 
relational languages proposed by [5], [6] and [13]. However, 
it has to be noted that only the semantics of the constructs that 
could be used in the language are studied and not the practical 
aspects of the design of syntax for query languages. 

III. THE RUNNING EXAMPLE OF THE PAPER 
The running nested database example of the paper consists 

of five nested relations TRAINING, DEPT, LOCATION, 
CASH-POINT and COURSE (Fig. 1). 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

436

 

 

 

 
TRAINING 

    TRAINER       

COMPANY  TRN    COURSE    

    CODE   C    

      CN Y    

  Jack  xx0  1 75    

Apple      2 76    

    xy1  1 82    

  Mark    3 82    

    xy2  2 79    

    xy1  3 82    

IBM  Tim  xx2  5 79    

      4 82    

Microsoft  Karen  xx1  2 77    

      2 81    

 

DEPT 
  UNIT 

D DN UN UD COURSE_DETAILS 

    TRN COMPANY C 

       CN Y 

  511 Software    1 75

   Engineering Mark Apple  2 76

       5 79

1 Research      1 82

  552 Basic Research Karen Microsoft  2 79

    Tim IBM  5 79

       2 76

  678 Planning Mark Apple  4 82

  650 Design Karen Microsoft  1 75

2 Development 780 Maintenance Tim IBM  3 82

    Mark Apple  2 76

       2 81

  981 Planning Jack Apple  3 82

       5 79

LOCATION 
COMPANY                          ANNEX   

  BUILDING ADDRESS  

TOSHIBA  North Building Porchester Rd.  

IBM  Maple House Kendal Av.  

  Main Building Danebury Rd.  

Microsoft  Pegasus House Ashford St.  

  Queen’s Building Park Rd.  

COURSE 
 C  COURSE_DURATION TITLE  SUBJECT  

 CN Y     TOPICS  

 1 75     Access  

 2 77  80 Computer Skills  Word  

       Excel  

 2 82  120 Multimedia  Power Point  

 3 82     Internet  

 2 79  20 Programming  C++  

       JAVA  

CASH-POINT 
BANK                        BRANCH  

  SORT_CODE ADDRESS 

Barclays  386600 Ashford St. 

NatWest  560045 Park Rd. 

  560038 Porchester Rd.

Lloyd’s  478202 Ashford St. 

  478210 Park Rd. 

 
Fig. 1 The running nested database example 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:3, 2010

437

 

 

Relation TRAINING holds data about courses and trainers 
provided by IT companies. Semantically, the attributes of the 
TRAINING relation have the following meaning: COMPANY 
- company name, TRN - trainer name, CODE - course code, 
CN - course number Y - year in which the course was taken. 
A specific course can be identified uniquely by both course 
number (CN) and year (Y); a specific course consists of a 
number of different topics (see rel. COURSE) which can be 
given by different trainers belonging to different companies. 

Relation DEPT holds data about departments of a company 
as well as trainers who have given courses to the staff of these 
departments. The semantics of the attributes of relation DEPT 
are: D - department number, DN - department name, UN – 
unit number, UD – unit description, TRN – trainer name, 
COMPANY – company name, CN - course number and Y - 
year in which the course was taken. Relation DEPT is a 
modified version of relation DEPT in [5]. 

Relation LOCATION contains data about branches of 
different companies. The attributes of relation LOCATION 
have the following semantics: COMPANY –company name, 
BUILDING – building name and ADDRESS – street name. 

Relation CASH-POINT has data about cash-points that 
different banks own. The semantics of the attributes of 
relation CASH-POINT are: BANK – bank name, 
SORT_CODE – sort code of the branch and ADDRESS – 
street name. 

Relation COURSE contains data about the different courses 
that took place. Semantically, the meaning of the attributes of 
relation COURSE is: CN - course number, Y - year in which 
the course was taken, COURSE_DURATION – course 
duration (number of hours), TITLE – course title and TOPICS 
– course topics. 

IV. BASIC CONCEPTS AND TERMINOLOGY 
In order to introduce the Nested Relational Model (NRM) 

in the next section it is necessary to present firstly the basic 
concepts and terminology that are going to be used. Some of 
the following definitions have been used before by the 
database community. However, a repetition of these 
definitions at the present point is necessary for completeness. 
Moreover, some terms and notation are introduced for the first 
time in the present paper in order to provide the essential 
formalisation of the presented model.  

Definition 1 (Atomic or flat attributes and relation-valued 
or nested attributes) Let U be the set of elementary values 
(i.e., reals, integers etc.) and the value null. An attribute A is 
atomic or flat if DA ⊆ U, where DA is the domain of the 
attribute A. If DA ⊆ P(U) where P is the power set, then A is a 
relation-valued or nested attribute.   

Relation-valued attributes or nested attributes can be 
considered as subrelations of the relations to which they 
belong.  

Definition 2 (Non-first normal form relations or nested 
relations) Non-first normal form relations or nested relations 
are relations which contain relation-valued attributes or nested 

attributes.  
In this paper, relations with atomic attributes only will be 

called flat relations, whereas relations that contain relation-
valued attributes or atomic attributes will be referred to as 
nested relations. In other words, flat relations are considered 
as special cases of nested relations. 

Attr(R) is the set of attributes of relation r with scheme 
name R i.e., Attr(R) = {R1, R2, ..., Rn}, where n ≥ 1 and R1, 
R2, ..., Rn are the attributes of R, either atomic or nested. 

Definition 3 (Tree structure) Every nested relation r with 
relation scheme R can be represented as a tree with root node 
R. All the nested attributes of the relation are the non-leaf 
nodes of the tree and all the atomic attributes form the leaf 
nodes of the tree.  

The tree structure is a very useful representation of a nested 
relation since the scheme of a nested relation can become 
complex and so, the tree offers a clear graphical representation 
of the nested structure.  

Example 1: The tree structure of the TRAINING relation 
(Fig. 1) is shown in Fig. 2. 

 
Definition 4 (Nesting levels of a relation) The number of 

nesting levels of a relation is equal to the maximum number of 
nodes to be passed through starting from the root to reach any 
atomic attribute in the tree representation. The root of the 
relation is by definition at nesting level 0.  

Example 2: The nesting levels of relation TRAINING (Fig. 
1) are 4.  

Consequently, the nesting level of an attribute in a relation 
can be computed by counting the number of nodes which must 
be passed through from the root node to get to that attribute. 
For example, atomic attribute TRN of relation TRAINING is 
at nesting level 2. 

Definition 5 (Common attributes between two relations) 
Two (flat or nested) relations have an atomic attribute in 
common if they both contain an atomic attribute which has the 
same name and domain in both relations. Two nested relations 
have a nested attribute in common if they both contain a 
nested attribute which has the same name and the same 
scheme (the same atributes with the same names defined over 

 
 TRAINING 

COMPANY TRAINER 

TRN COURSE 

CODE C 

CN Y 
 

Fig. 2 Tree representation of relation TRAINING 
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the same domains).  
The above definition can be applied recursively for nested 

attributes containing one or more nested attributes.  
Definition 6 (Path) Let LAn→Aj

 be the path of nested or 
atomic attribute Aj belonging to nested attribute An, which is a 
child of the root of relation R. Then, LAn→Aj

 is defined as 
follows: 

i) LAn→Aj
 = An, where Aj = An 

ii) LAn→Aj
 = An(LAn+1→Aj

), where An+1 is an attribute of An 
either equal to or containing Aj.  

Then, the set of all attributes (atomic and nested) of R can 
be defined as Attr(R) = {Ra1, Ra2, …, Rap, Rn1, …, Rni, …, Rnq}  

= {Ra1, Ra2, …, Rap, Rn1, …, ∪
m

k 0=

LRni → Rni
k

, …, Rnq} where: 

 Ra1, Ra2, …, Rap are atomic attributes at nesting level 
1 of relation R (p ≥ 0), 

 Rn1, …, Rni, …, Rnq are nested attributes at nesting 
level 1 of relation R (1 ≤ i ≤ q),  

 R
ni

 for k = 0  

 R
ni k

=   

R
ni k

 for k ≠ 0 (i.e., an attribute that has 

nested attribute R
ni

 as its ancestor) 
m is the number of descendants’ attributes of nested 

attribute Rni. 
The path is used for the definition of an attribute in a nested 

relation, in contrast to flat relations, since the whole path of an 
attribute is needed in order to identify that specific attribute.  

Example 3: The path of the atomic attribute CN of the 
nested relation TRAINING (Fig. 1) with tree structure in Fig. 
2 is LTRAINER→CN = TRAINER(LCOURSE→CN) = 
TRAINER(COURSE(LC→CN)) = 
TRAINER(COURSE(C(LCN→CN))) = 
TRAINER(COURSE(C(CN))). 

From the above example, it is apparent that the name of an 
attribute by itself is not enough in general to uniquely identify 
the attribute, since in nested relations an attribute is fully 
defined by reference to both its name and its position in the 
tree structure of the relation in which it belongs. In addition, 
there are cases in which two common attributes belong in the 
same relation but in different subrelations, as for example in 
the result relation of a join operation. Consequently, the only 
way for the two attributes to be distinguished from one 
another is by their paths. Therefore, the path of an attribute 
shows whether the attribute belongs to a nested attribute or 
not, as well as the nesting level of it. The path of an attribute 
identifies the attribute uniquely. 

Definition 7 (Two nested relations having the same 
scheme) Two nested relations have the same scheme if they 
contain only common attributes (atomic and/or nested) -see 
Definition 5.  

An attribute or set of attributes whose values uniquely 
identify each entity in an entity set is called a key for that 

entity set [21]. For the case of a nested database model, entity 
sets are nested relations and the definition of the key must be 
expanded in order to support nested attributes as well. 

Informally, a nested relation can have either atomic or 
nested attributes or even a combination of atomic and nested 
attributes as a key. Semantically, a nested attribute is a key of 
a nested relation, when each set of values of the nested 
attribute that belongs to the same tuple, uniquely identifies 
that tuple. That implies that each of these set of values of the 
nested attribute distinguishes, as an entirety, solely the tuple in 
which it belongs. 

Formally, the definition of a key of a nested relation is 
given below: 

Definition 8 (Key of a nested relation) The key of a nested 
relation r with relation scheme R, can be a set K consisting of 
atomic and/or nested attributes of R such that for any two 
tuples ti and tj in the relation the following constraint is valid 
at all times: ti[K] ≠ tj[K], where i ≠ j and with the additional 
property that removing any attribute from K leaves a set of 
attributes that is not a key of R.  

Example 4: The key of relation COURSE (Fig. 1) is the 
nested attribute C. 

It is considered that an approach where nested attributes are 
allowed to be part of key attributes is an important benefit for 
a nested model. Nested models, where nested attributes are not 
allowed to be part of key attributes, have a significant 
limitation, since relations, as the one presented in Fig. 1, 
cannot be supported. Therefore, there are cases that are not 
covered by such an approach. 

The PNF assumption presupposes that nested attributes 
cannot form part of a key in a nested relation, a significant 
restriction of a nested database model, as explained in section 
II. 

Consequently, in the nested model defined in the present 
paper, the relaxing of the restriction that other nested models 
impose, to allow nested attributes as part of the key, is a 
considerable extension and thus, an important benefit that the 
NRM offers. 

V. THE NESTED RELATIONAL ALGEBRA (NRA) 
A new nested relational algebra is defined in this chapter, 

called the Nested Relational Algebra, NRA. Relations in NRA 
can be nested to any finite depth. 

A. Operations in the NRA 
Union, difference, intersection, projection, selection, 

unnest, nest, rename, Cartesian product, natural join and Θ–
join operations are formally defined using recursive 
definitions for nested relations. The “base case” of each 
recursive operator has the same definition as the non-recursive 
one; i.e., the recursive definition can be reduced to the non-
recursive one when relations do not contain any nested 
attributes. For each definition, an example is presented in 
order to make it more comprehensive. The recursive rename 
operation for nested relations is also formally defined for the 
first time.  
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For the recursive nested union, difference and intersection 
operations let r and q be two nested (in general) relations with 
relation schemes R and Q respectively. Let also, the two 
relations have the same relation scheme i.e., R = Q = {S(R), 
R1, R2, …, Rn} where S(R) is the set containing all the key 
nested attributes and all the atomic attributes of R and Q (the 
same for the two relations) and {R1, R2, …, Rn} are the non-
key nested attributes of R and Q. Assume also that Attr(R) is 
the set of all attributes (atomic and nested) of the two 
relations, tr is a tuple in relation r, tq is a tuple in relation q and 
t is a tuple in the result relation. 

 
The Recursive Nested Union Operation (∪∪) 
The union of the two relations r and q, r ∪∪ q, is defined as 

follows: 
Definition 9 (Recursive Nested Union) 
i) Non-recursive union for flat relations (r ∪ q) 

r ∪ q = { t| ((∃ tr ∈ r) (t[Attr(R)] = tr[Attr(R)]))  
  ∨ ((∃ tq ∈ q) (t[Attr(R)] = tq[Attr(R)]))} 
ii) Recursive union for nested relations (r ∪∪ q) 
r ∪∪ q = { t| ((∃ t ∈ r) ∧ (∀ tq ∈ q) (t[S(R)] ≠ tq[S(R)]))  
∧ ((∃ t ∈ q) ∧ (∀ tr ∈ r) (t[S(R)] ≠ tr[S(R)])) 
∧ ((∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] = tq[S(R)])  
∧ (t[R1] = tr[R1] ∪∪ tq[R1]) ∧…∧ (t[Rn] = tr[Rn] ∪∪ 

tq[Rn])))}  
Example 5: Let relations TRAINING_1 and TRAINING_2 

(Fig. 3) be two modified versions of relation TRAINING (Fig. 
1) having the same scheme. In both relations, TRAINING_1 
and TRAINING_2, S(TRAINING_1) = S(TRAINING_2) = 
COMPANY. 

The union of the two relations, according to the above 
definition, is shown in Fig. 3. 

 
The Recursive Nested Difference Operation (--) 

 

 TRAINING_1 ∪∪ TRAINING_2 
   TRAINER    

COMPANY TRN  C 

   CN Y   

   1 75   

Apple Jack  2 76   

   6 82   

   1 82   

 Mark  3 82   

   2 79   

   3 82   

IBM Tim  5 79   

   4 82   

   5 84   

Microsoft Karen  2 77   

   2 81   

Toshiba Tim  5 84   

TRAINING_2 
  TRAINER  

COMPANY TRN C 

  CN Y

 Jack 6 82

Apple  2 76

 Mark 3 82

  2 79

Toshiba Tim 5 84

Microsoft Karen 2 77

  2 81

TRAINING_1 -- TRAINING_2 
    TRAINER    

COMPANY  TRN  C    

    CN Y   

Apple  Jack  1 75   

  Mark  1 82   

    3 82   

IBM  Tim  5 79   

    4 82   

TRAINING_1 ∩∩ TRAINING_2 
  TRAINER  

COMPANY TRN C  
  CN Y

Apple Jack 2 76

 Mark 3 82
  2 79

Microsoft Karen 2 77
  2 81

TRAINING_1 
    TRAINER    

COMPANY  TRN C 

    CN Y   

  Jack  1 75   

Apple    2 76   

    1 82   

  Mark  3 82   

    2 79   

    3 82   

IBM  Tim  5 79   

    4 82   

Microsoft  Karen  2 77   

    2 81   

 
Fig. 3 Examples of the recursive nested union, difference and intersection operations 
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The difference of the two relations r and q, r -- q, is defined 
as follows: 

Definition 10 (Recursive Nested Difference) 
i) Non-recursive difference for flat relations (r - q) 
r - q = { t| (∃ tr ∈ r) (∀ tq ∈ q) ((t[Attr(R)] = tr[Attr(R)])  
∧ (t[Attr(R)] ≠ tq[Attr(R)]))} 
ii) Recursive difference for nested relations (r –- q) 
r -- q = { t| ((∃ tr ∈ r) (∀ tq ∈ q)  
((t[S(R)] = tr[S(R)] - tq[S(R)]) ∧ (t[R1] = tr[R1]) ∧…∧ (t[Rn] 

= tr[Rn])))  
∨ ((∃ tr ∈ r), (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] = tq[S(R)])  
∧ (t[R1] = tr[R1] -- tq[R1]) ∧…∧ (t[Rn] = tr[Rn] -- tq[Rn])))}  
Example 6: The difference of the two relations 

TRAINING_1 and TRAINING_2 is shown in Fig. 3. 
 
The Recursive Nested Intersection Operation (∩∩) 
The intersection of the two relations r and q, r ∩∩ q, is 

defined as follows: 
Definition 11 (Recursive Nested Intersection) 
i) Non-recursive intersection for flat relations (r ∩ q) 
r ∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) (t[Attr(R)] = tr[Attr(R)] = 

tq[Attr(R)])} 
ii) Recursive intersection for nested relations (r ∩∩q) 
r ∩∩ q = { t| (∃ tr ∈ r) (∃ tq ∈ q) ((t[S(R)] = tr[S(R)] ∩ 

tq[S(R)])  
    ∧ (t[R1] = tr[R1] ∩∩ tq[R1]) ∧ ... ∧ (t[Rn] = tr[Rn] ∩∩ 

tq[Rn]))}  
Example 7: The intersection of the two relations 

TRAINING_1 and TRAINING_2 is shown in Fig. 3. 
 
The Recursive Nested Projection Operation (ππ) 
Let r be a nested (in general) relation with relation scheme 

R. Let also, {Ra1, …, Rak} be the subset of atomic attributes at 
the top level of R which are going to be projected and {Rn1, 
…, Rnm} the subset of nested attributes of R which are going 
to be projected either fully or partially on attributes belonging 
to these nested ones (k, m ≥ 0). 

In order to define the projection operation, the term project 
list needs to be defined firstly. In general, a project list is a list 
of project paths. A project path of an attribute which is going 
to be projected is the path of that attribute (see Definition 6). 

Definition 12 (Project list) Lπ is a project list of R if 
i) Lπ is empty (the project list of an atomic attribute is 

empty). 
ii) Lπ is of the form (Rn1Ln1, …, RnmLnm), where Ln1, …, Lnm 

are project lists of nested attributes Rn1, …, Rnm respectively. 
 
Then, the projection operation in a nested relation r, 

ππ(rLπ), where tr is a tuple in relation r and t is a tuple in the 
result relation, is defined as follows: 

Definition 13 (Recursive Nested Projection) 
i) π(r) = r  
ii) ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)  
   ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])  

  ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = 
ππ(tr[Rnm]Lnm)))}  

Example 8: Given relation TRAINING_1 (Fig. 3) consider 
the following query: “Retrieve the course numbers for the 
courses that each company has run”. The result relation is 

shown in Fig. 4. 
 
The Recursive Nested Selection Operation (σσ) 
Let r be a nested (in general) relation with relation scheme 

R and let Ra = {Ra1, …, Rak} and Rn = {Rn1, …, Rnm} be the 
subsets of all atomic and nested attributes of R respectively 
that participate in the selection operation, where k and m are 
less than or equal to the number of atomic and nested 
attributes at the top level in the relation R, respectively. Let 
also, c be a set of conditions in R, which is of the form {ca, cn} 
where ca={ca1, …, cak} is a set of conditions which must be 
true for the atomic attributes Ra1, …, Rak of R respectively and 
cn ={cn1, …, cnm} is a set of conditions that must hold for the 
nested attributes Rn1, …, Rnm of R respectively. When both 
sets of conditions are applied simultaneously then, the result is 
obtained by computing the intersection of the two results. In 
addition, the condition can be no matter complicated, as for 
example equality of nested attributes. If two multi-valued 
nested attributes are compared for equality, they are treated as 
sets so, since each nested attribute is, in fact, a relation, equal 
tuples are searched at the level of the nested relations. 

In order to define the selection operation, the term select list 
needs to be defined firstly. In general, a select list is a list of 
select paths. A select path of an attribute that is going to 
participate in the selection, is the path of that attribute (see 
Definition 6). The select list is defined recursively. 

Definition 14 (Select list) Lσ is a select list of R if 
i) Lσ is empty (all the atomic attributes of relation r have 

empty select lists). 
ii) Lσ is of the form (Rn1Ln1, …, RnmLnm) where Ln1, …, Lnm 

are select lists of nested attributes Rn1, …, Rnm respectively.  
Then, a selection operation of the relation r, where tr is a 

tuple in relation r and t is a tuple in the result relation, is 

 
   TRAINER  

COMPAN
Y 

  C  

   CN  

   1  
   2  

Apple   1  
   3  
   2  

   3  
IBM   5  

   4  

Microsoft   2  
   2  

Fig. 4 ππ(TRAINING_1(COMPANY, TRAINER(C(CN)))) 
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defined as follows: 
Definition 15 (Recursive Nested Selection) 
σ(rca1, …, cak) = { t| (∃ tr ∈ r)  
((t[Attr(R) - {Ra1, …, Rak}] = tr[Attr(R) - {Ra1, …, Rak}])  
∧ ((t[Ra1] = tr[Ra1]) ∧ ca1 = true)  
∧ … ∧ ((t[Rak] = tr[Rak]) ∧ cak = true))} 
σσ(rcn1, …, cnmLσ) = { t| (∃ tr ∈ r)  
((t[Attr(R) - {Rn1, …, Rnm}] = tr[Attr(R) - {Rn1, …, Rnm}])  
∧ (t[Rn1] = σσ(tr[Rn1]cn1

Ln1) ≠ ∅)  
∧ … ∧ (t[Rnm] = σσ(tr[Rnm]

cnm
Lnm) ≠ ∅))} 

In the general case, the selection operation can be defined 
as the intersection of the two previously defined cases as 
follows: 

σσ(rcLσ) = σσ(rca1, …, cak, cn1, …, cnmLσ) = σ(rca1, …, cak) ∩ σσ(rcn1, 

…, cnmLσ)  
Example 9: Given relation TRAINING_1 (Fig. 3) consider 

the following query: “Find all the information of the 
TRAINING_1 relation of those courses that have been given 
by trainers Mark or Tim during the year 1982”. The result is 
shown in Fig. 5. 

 
The Recursive Unnest Operation (μμ) 
Let r be a nested (in general) relation with relation scheme 

R. 
Definition 16 (Unnest list) Lμ is an unnest list of R if it is 

of the form 
Ri, where Ri is a nested attribute of R at the top level. 
(RiLi) where Li is an unnest list of the nested attribute Ri.  
Let Attr(R) be the set of all attributes of R and Ri a nested 

attribute of R, at the top level of R. Let also, tr be a tuple in 
relation r and t a tuple in the result relation. Then, the unnest 
operation, μμ(rLμ), is defined as follows (see also [13]): 

Definition 17 (Recursive Unnest) 
i) μ(rRi) = { t| (∃ tr ∈ r) ((t[Attr(R) - Ri] = tr[Attr(R) - Ri]) ∧ 

(t[Ri] є tr[Ri]))} 
ii) μμ(rRiLi) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) – 

Ri])  
  ∧ (t[Ri] = μμ(tr[Ri]Li)))}  
Example 10: The result of unnesting relation TRAINING 

(Fig. 1) on the COURSE attribute, i.e., 
μμ(TRAININGTRAINER(COURSE)), is shown in Fig. 6. 

 
The Recursive Nest Operation (vv) 
Let r be a nested (in general) relation with relation scheme 

R. 
Definition 18 (Nest list) Lv is a nest list of R if it is of the 

form  
i) (R1, …, Rn) where R1, …, Rn are attributes of R, either 

atomic or nested at the top level of R. 
ii) (RiLi) where Li is a nest list of the nested attribute Ri.  
Let Attr(R) be the set of all attributes of R and An = {R1, 

…, Rn} the set of attributes of R that are going to be nested to 
form a new nested attribute A.  

Let also, tr be a tuple in relation r, t a tuple in the result 
relation and s a tuple of the new nested attribute A. Then, the 
nest operation, vv(rLv→A), is defined as follows (see also [13]): 

Definition 19 (Recursive Nest) 

 
    TRAINER    

COMPAN

Y 

 TRN  C 

    CN Y   

Apple  Mar

k 

 1 8

2 

  

    3 8

2 

  

IBM  Tim  3 8

2 

  

    4 8

2 

  

Fig. 5 σσ(TRAINING_1((TRAINER(TRN) = ‘Mark’ OR ‘Tim’) AND 

(TRAINER(C(Y)) = 82))) 
 

 
   TRAINER    

COMPAN

Y 

TRN  CODE   

     CN Y

 Jack  xx0  1 7

5

     2 7

6

Apple Mark  xy1  1 8

2

     3 8

2

 Mark  xy2  2 7

9

 Tim  xy1  3 8

2

IBM Tim  xx2  5 7

9

     4 8

2

Microsoft Karen  xx1  2 7

7

     2 8

1

Fig. 6 μμ(TRAININGTRAINER(COURSE)) 
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i) v(rAn→A) = { t| (∃ tr ∈ r) ((t[Attr(R) - An] = tr[Attr(R) - 
An])  

∧ (t[A] = {s[An] | (s є r) (s[Attr(R) - An] = tr[Attr(R) - 
An])}))} 

ii) vv(r(RiLi) →A) = { t| (∃ tr ∈ r) ((t[Attr(R) – Ri] = tr[Attr(R) – 
Ri])  

   ∧ (t[Ri] = vv(tr[Ri]Li→A)))}  
Example 11: In order to return to relation TRAINING (Fig. 

1) from the relation μμ(TRAININGTRAINER(COURSE)) of Fig. 6, a 
nest operation needs to be performed, i.e., 
vv(μμ(TRAININGTRAINER(COURSE))TRAINER(CODE,C)→ 

TRAINER(COURSE)). 
 
The Recursive Nested Rename Operation (ρρ) 
The rename operation takes a specified relation and returns 

another that is identical to the given one except that at least 
one of its attributes has a different name ([22]). The rename 
operation is useful before or after performing a number of 
operations, as for example for cases when there are duplicate 
names in the result relation after performing a join operation 
of two relations, or when the Cartesian product operation is 
performed between two relations having attributes with the 
same name. When a rename operation takes place only the 
heading of the relation changes, the body (instance) remains 
the same. 

Let r be a nested (in general) relation with relation scheme 
R = {R1, R2, …, Ri, …, Rn, A, B,…, Z}, where R1, R2, …, Ri, 
…, Rn are atomic attributes and A, B, …, Z are nested 
attributes  at the top level of relation R. 

Then, the rename operation, ρρ, of relation r is defined as 
follows: 

Definition 20 (Recursive Nested Rename) 
i) Rename of an atomic attribute Ri to Ri´ at the top level of 

relation R 
    ρ[Ri ← Ri´](R) = {R1, R2, …, Ri´, …, Rn, A, B, …, Z} 
ii) Rename of a nested attribute A to A′ at the top level of 

relation R 

    ρ[A ← A′](R) = {R1, R2, …, Ri, ..., Rn, ∪
m

k 0=

LA´→Ak, B, 

…, Z} 
where m is the number of attributes that are descendants of 

A and for m = 0, A′ = A0 (atomic attribute at the top level of 
R) and case (ii) reduces to case (i). 

iii) Rename of an atomic or nested attribute Ai to Ai′ at a 
lower level of relation R 

    ρρ[Ai ← Ai′](R) = {R1, R2, …, Ri, …, Rn, A, A1, …, 

∪
m

k 0=

LA→Ai′k, B, …, Z}, where A1 is a child attribute of nested 

attribute A, Ai is an attribute at a lower level of relation R 
belonging to nested attribute A and m is the number of 
descendants that Ai has (m = 0, when atomic, in which case 
Ai′0 = Ai′).  

When more than one attribute has to be renamed the 
definition is recursive, as follows: 

ρρ[Ra1←R′a1, …, Rak←R′ak, Rn1←R′n1, …, Rnm←R′nm, 
Rl1←R′l1, …, Rlp←R′lp](R) =  

(ρρ[Rlp←R′lp](…(ρρ[Rl1←R′l1](ρ[Rnm←R′nm](…(ρ[Rn1←R′
n1](ρ[Rak←R′ak](…(ρ[Ra1←R′a1](R))))))))))  

where Ra1, …, Rak are atomic attributes at the top level of 
relation R, Rn1, …, Rnm are nested attributes at the top level of 
relation R and Rl1, …, Rlp are either atomic or nested attributes 
at lower levels (different, in general) of relation R and k, m, p 
≥ 0. The names of the attributes having primes denote the new 
names that these attributes are going to be renamed. 

Example 12: Consider the relation DEPT (Fig. 1) and let 
attribute UD be renamed as UD′ and attribute C as C′. Then, 
the rename operation is defined as follows: 

ρρ[UD ← UD′, C ← C′](DEPT) = ρρ[C ← C′](ρρ[UD ← 
UD′](DEPT)) =  

ρρ[C ← C′]({D, DN, UNIT, UNIT(UN), UNIT(UD′), 
UNIT(COURSE_DETAILS), 
UNIT(COURSE_DETAILS(TRN)), 
UNIT(COURSE_DETAILS(COMPANY)), 
UNIT(COURSE_DETAILS(C)), 
UNIT(COURSE_DETAILS(C(CN))), 
UNIT(COURSE_DETAILS(C(Y)))}) =  

{D, DN, UNIT, UNIT(UN), UNIT(UD′), 
UNIT(COURSE_DETAILS), 
UNIT(COURSE_DETAILS(TRN)), 
UNIT(COURSE_DETAILS(COMPANY)), 
UNIT(COURSE_DETAILS(C′)), 
UNIT(COURSE_DETAILS(C′(CN))), 
UNIT(COURSE_DETAILS(C′(Y)))} 

 
The Recursive Nested Cartesian Product Operation (××) 
Let R be a relation scheme of relation r.  
Definition 21 (Join path) L is a join path of R if either:  
(i) L is empty or 
(ii) L = RiLi where Ri is a nested attribute of R and Li is a 

join path of Ri.  ([3])  
The join path can be represented as a branch of the tree 

structure of some nested relation R starting from a child of the 
root of the tree and going down to some node of the tree that 
represents either an atomic or nested attribute. In other words, 
the join path consists of all the nodes that are passed in order 
to reach a specific attribute.  

Example 13: In relation DEPT (Fig. 1) an example of a 
join path is UNIT(COURSE_DETAILS(TRN)).  

Let r and q be two nested (in general) relations with relation 
schemes R and Q respectively and let Attr(R) be all the 
attributes (atomic and nested) of R, Attr(Q) all the attributes 
(atomic and nested) of Q and L a join path of R. Let, also, Ri 
be a nested attribute of R, Li a join path of Ri, tr a tuple in 
relation r, tq a tuple in relation q and t a tuple in the result 
relation. The Cartesian product operation can be applied either 
at the top level of both relations or between a lower nesting 
level of a relation and the top level of another relation. The 
first case is exactly the same as the standard Cartesian product 
for flat relations. 
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So, the Cartesian product of two relations r and q is defined 
as follows [13]: 

Definition 22 (Recursive Nested Cartesian Product) 
× (r, q) = { t ≡ (t[Attr(R)], t[Attr(Q)])|  
   (∃ tr ∈ r) (∃ tq ∈ q) ((t[Attr(R)] = tr[Attr(R)]) ∧ 

(t[Attr(Q)] = tq[Attr(Q)]))} 
×× (rL, q) = ×× (r(RiLi), q) ≡ ×× (q, r(RiLi)) =  
{ t| (∃ tr ∈ r) ((t[Attr(R) –{Ri}] = tr[Attr(R) – {Ri}]) ∧ (t[Ri] 

= ×× (tr[Ri]Li, q)))}  
The commutative property is satisfied, as is the case in the 

CRM. Thus, it is always valid that  
×× (rL, q) ≡ ×× (q, rL) 
Example 14: The Cartesian product operation is performed 

between the COURSE attribute of relation TRAINING and 
the CASH-POINT relation (Fig. 1). Due to the large number 
of tuples in the result relation, only a part of it is displayed in 
Fig. 7. 

The Cartesian product operation is not often a semantically 
meaningful operation, as can be seen from the above example. 
However, it helps in defining the join operation, since the join 
is a special case of a Cartesian product operation and for this 
reason it is included here. 

 
The Recursive Nested Natural Join operation ( ) 
The natural join operation is formally defined in [23]. The 

main definition is given here for completeness reasons. 
Definition 23 (Recursive Nested Natural Join) 
Let r and q be two nested relations with relations schemes R 

and Q respectively and let A ={A0, A1, …, Aj} be the set of all 
common attributes that the two relations have, where A0, A1, 
…, Aj are atomic or nested attributes either at the top or lower 
levels in the two relations.  

Then, the natural join of relations r and q,  (r, q), is 
defined as follows: 

 (r, q) =  (sjLsjAj, s′jLs′jAj)(…(  (s1Ls1A1, 

s′1Ls′1A1)(  (rLrA0, qLqA0)))) where  (rLrA0, qLqA0) = 

x1,  (s1Ls1A1, s′1Ls′1A1) = x2, …,  (sjLsjAj, s′jLs′jAj) = 

xj+1 and (s1, s′1),…, (sj, s′j) pairs, are subrelations of x1, …, xj 
respectively with their root node being the first different nodes 
along the paths to the common attributes A1, …, Aj 
respectively.  

 
The Recursive Nested Θ-Join Operation ( Θ ) 

The Θ-join operation is a special case of the join operation 
where the two relations are joined on the basis of some 
comparison operator other than equality.  

It can be expressed by applying a selection operation to the 
result of the Cartesian product operation of two relations. The 
Cartesian product is applied at the top levels of the two nested 
relations and then, a recursive nested selection operation 
follows which compares two attributes in the resulting 
relation. The two attributes need not be at the same nesting 
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Fig. 7 ×× (TRAINING(TRAINER(COURSE)), CASH-POINT) 
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level in the resulting relation.  
Let r and q be two nested (in general) relations with relation 

schemes R and Q respectively. Let also, X and Y be two 
atomic attributes belonging to relations R and Q respectively 
and Θ the condition that they must satisfy. Assume, without 
loss of generality, that Y belongs to a deeper nesting level 
than X and LσY′→Y is the select path of Y starting at node Y′ 
which is at the same nesting level as X (when X and Y are at 
the same nesting level the select path is empty). So, the 
recursive nested Θ–join operation of the two relations r and q 
is defined as follows: 

Definition 24 (Recursive Nested Θ-Join)  
r Θ  q = σσ((r × q)X Θ Y Lσ Y′→Y)  

B. Functions 
Aggregate functions for nested relations have not been 

discussed in any other model presented in section II, but in 
[18]. Aggregate functions are redefined below. 

Let f be a nested aggregate function (f є {N-MAX, N-MIN, 
N-SUM, N-AVG, N-COUNT}, where N-MAX, N-MIN, N-
SUM, N-AVG and N-COUNT are the nested versions for the 
corresponding aggregate functions MAX, MIN, SUM, AVG 
and COUNT for flat relations), f′ an aggregate function for 
flat relations (f′ є {MAX, MIN, SUM, AVG, COUNT}), r a 
nested relation, X an atomic or nested attribute at a lower 
nesting level of r, Par the parent attribute of atomic attribute Y 
of r (Y is at the same or higher nesting level than X and it is 
the attribute over which attribute X is summarised) and X/Y 
denotes that attribute X is summarised over attribute Y. Then, 
f[X/Y](r) is defined as follows: 

Definition 25 (Nested Aggregate Function) 
f[X/Y](r) = f′({ti[X] | ti є t, t є Par(Y) ∧ ti[X]  ≠ null})  
Note: Attribute X can be a nested attribute only when the 

nested aggregate function f is N-COUNT. For all other cases, 
X attribute must be an atomic attribute. 

For an example see Query 6 in section VI. 

VI. MANAGEMENT OF NESTED DATA 
The nested algebra presented in section V, is a well-defined 

and formalised nested algebra where data restructuring 
operations are avoided. In this section, examples are provided 
to show the ease of use of the NRA. Relations have no 
restrictions on the number of nesting levels they can contain. 
The nested model presented, provides a better way of 
representing and querying complex data as demonstrated by 
the queries that follow since they are compact and do not 
require nest, unnest or any other restructuring operations for 
the manipulation of nested data. 

A number of examples are presented that contain only 
operations on nested data, demonstrating how this model 
works and functions. Queries refer to the nested database 
example described in section III (Fig. 1). For some queries, 
comparisons are made with other proposed models. 

Query 1: What are the descriptions of the units that belong 
to department 1 and who are the trainers who have given 

courses to staff members of these units? Display also the value 
for the department. 

ππ((σσ(DEPTD = 1)) D, UD, TRN)  
A projection operation on a selected part of the DEPT 

relation is needed to answer the above query. Three attributes 
of the relation are projected which can be found at different 
nesting levels; attribute D at nesting level 1, attribute UD at 
nesting level 2 and attribute TRN at nesting level 3. However, 
the projection operation takes place as normal, without 
changing the structure of the relation using unnest and nest 
operations and thus, the nesting arrangement of the relation is 
maintained in the resulting relation as well. Therefore, in the 
resulting relation, D, UD and TRN are still at nesting levels 1, 
2 and 3 respectively, as in the input relation DEPT. 

Query 2: Find the tuples with course numbers equal to the 
number of the department for the whole tuple. 

σσ(DEPTD = CN) 
The above query shows the advantage of the selection 

operation proposed in section V that allows arbitrary 
expressions to be specified in the select condition, as for 
example equality of values of attributes that are not at the 
same nesting level in the relation, without unnesting and 
nesting the relation. The query is expressed algebraically in 
exactly the same way as if the two compared attributes were at 
the top level of the original relation.  

Query 3: Find the names of the banks and the companies 
that are situated at the same road. 

νν((μμ(ππ((LOCATION CASH-POINT) 

COMPANY,BANK,ADDRESS))(ADDRESS))(COMPANY,BANK)→(

COMPANY BANK)) 
In this example, and in similar cases, nest and unnest 

operations are necessary since they can restructure the 
relations and as a result, present the same data in a different 
format that is required by the given query.  

However, extra nest and unnest operations are avoided in 
the above query since the natural join and projection 
operations are defined recursively in the NRA.  

In Abiteboul and Bidoit’s model [1] this query cannot be 
performed since the two relations that participate in the natural 
join operation do not have any common attributes at the top 
level. 

Query 4: Find the names of the trainers that have given the 
“Computer Skills” training course. 

ππ((σσ(TRAINING  COURSE) TITLE= “Computer Skills”) 
TRN) 

One can easily see the advantage of joining subrelations 
which are at different nesting levels (in this example, the 
subrelation C at nesting level 3 in relation TRAINING and at 
nesting level 1 in relation COURSE), without the need to 
unnest and nest the data and without any other restructuring 
operations assumed by other proposed models (e.g., [1], [13]). 
The above example shows that NRA provides a simple way of 
answering queries, since even just the algebraic solution of the 
query can be translated naturally to the above well-phrased 
query; moreover, the query does not distinguish between 
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nested and flat relations, as the query would be expressed in 
the same way if the two relations, TRAINING and COURSE, 
were flat relations. This is explained by the recursive nature of 
the NRA operations. 

In contrast, in Levene’s model [14] the natural join can be 
applied only if relation COURSE is extended with two empty 
nodes at levels 1 and 2 so that the common attribute C to 
appear at the same nesting level 3 in both relations. Then, the 
two relations are joinable, according to Levene’s definition 
and therefore, can be joined. 

Query 5: Find the names of the banks which are located on 
the same road as the companies for which Tim or Karen have 
worked for, together with the names of these companies. 

ππ((((σσ(TRAINING(TRN= “Tim” OR TRN = “Karen”)))  

LOCATION)  CASH-POINT) COMPANY, BANK) 
This query requires two natural join operations. However, 

since the natural join defined in [23] can be performed 
between any possible relations sharing common attributes, it 
does not involve any preliminary checks to determine if the 
two operand relations are qualified for the natural join. In 
other models, for example in [1], [13], it is not certain if the 
natural join operation can be performed between a nested 
relation and the output of the natural join of two nested 
relations, since, as explained in section II of this paper, for 
each of these models the natural join operation is subject to 
some restrictions. On the other hand, in NRA any possible 
combination of relations, sharing at least one common 
attribute, can be joined.  

This query also demonstrates how complex queries can be 
answered easily in the query language proposed in this paper. 

Query 6: What is the title of the course that has the 
maximum number of different topics? Display also the 
number of different topics that this course has.  

ππ(COURSE(TITLE, N-
COUNT[TOPICS/TITLE]←MTOPICS))   

ππ(ππ(COURSE(TITLE, N-
COUNT[TOPICS/TITLE]←MTOPICS1)) 

(MAX(MTOPICS1)) ←MTOPICS) 

Aggregate functions for nested attributes have been defined 
in subsection B of section V. 

The above query is expressed in the NRA using the 
following steps: 

1. In the original relation COURSE, the number of different 
topics per title is computed, it is named MTOPICS1 and 
projected on TITLE and MTOPICS1 attributes. 

2. From the result of step 1, MAX (MTOPICS1) is 
computed, named MTOPICS and projected. 

3. In the original relation COURSE, the number of different 
topics per title is computed, it is named MTOPICS and 
projected on TITLE and MTOPICS. 

4. The results of steps 2 and step 3 are joined together. 
It is noteworthy that if the relation COURSE was a flat 

relation then, the SUMMARIZE operation would be used to 
produce the same result in combination with the traditional 

aggregate functions COUNT and MAX. 
It must be said that this query or any other query containing 

aggregate functions on nested attributes cannot be expressed 
in any other relational model discussed in section II apart from 
[18] with the use of an additional operator, the subrelation 
constructor, as follows: 

π[TITLE, MAX[SUBJECT′]] (∮(C, 
COURSE_DURATION, TITLE, SUBJECT, SUBJECT′); 
SUBJECT′ := COUNT[TOPICS](SUBJECT)∮ (COURSE)) 
where ∮ is the subrelation constructor. 

Query 7: Find all trainers who have given more courses 
than Karen has. 

ππ((σσ 

(ππ((νν(μμ(πt
π(TRAINING(TRN,COURSE))COURSE) 

(CODE, C)→COURSE))(TRN,N-COUNT[CN/TRN]←MCN))  
××  ππ((σσ(TRAININGTRN= “Karen”)) 
(N-COUNT[CN/TRN]←MCN1))) MCN > MCN1) TRN) 
Two copies of the TRAINING relation are needed for this 

query in order to perform the Cartesian product operation 
between them. However, to make the query simpler, a 
projection operation is applied to the first copy of the relation 
and an aggregate function is also used to count the number of 
nested tuples which corresponds to the number of different 
courses that each trainer (TRN) has given. Moreover, an 
unnest and then a nest operation are also used to a projected 
part of the original relation to convert the relation to the right 
one, before the computation of the aggregate function. With 
the second copy of the relation, a projection is performed on a 
selection of the relation. The same aggregate function is also 
used here, applied to the same attribute as before. The 
Cartesian product is performed afterwards between a binary 
relation and a unary one containing only one tuple.  

Once again, the above query can demonstrate the 
expressive power of the proposed nested model and the 
facility in stating complex queries. This query, as the previous 
one, cannot be expressed in any other nested relational model 
presented in section II apart from [18], yet with the problem 
discussed above. 

VII. THE NESTED RELATIONAL MODEL (NRA) 
The components of the NRM are described below. 

A. Data types-Domains 
Domains are data types of arbitrary internal complexity 

([22]). Therefore, such domains can consist of relation-type 
values. Attributes defined on that domains are relation-valued 
attributes, that is, they contain values that are relations. The 
domain of a nested attribute is defined recursively below.  

Assume that Rn1, Rn2, …, Rnk are, in general, all the atomic 
and nested attributes that belong to nested attribute Rn and P is 
the powerset of a set S. 

Definition 26 (Nested attribute domain) The domain of a 
nested attribute Rn, DOM(Rn), is defined recursively as 

i) DOM(Rn) ⊆ D, where D is the underlying database 
domain, for the special case where Rn is an atomic attribute. 
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ii) DOM(Rn1) × DOM(Rn2) × … × DOM(Rnk), for k ≥ 1, 
where Rn1, Rn2, …, Rnk are atomic attributes of Rn. 

iii) P(DOM(Rn1)) × P(DOM(Rn2)) × … × P(DOM(Rnk)), for 
k ≥ 1, where Rn1, Rn2, …, Rnk are nested attributes of Rn, in 
general. 

B. Databases 
In the NRM, databases are sets of nested relations. Nested 

relations do not satisfy the 1NF assumption. A database 
example in the NRM is shown in Fig. 1.  

C. Structures 
Definition 27 (Nested Relation Scheme) The scheme of a 

relation R in the NRM is defined recursively as RS = R(R1S1, 
R2S2, ..., RnSn), where n ≥ 1, R1, R2, ..., Rn are the attribute 
names of R, either atomic or nested and  

∅ (empty set)   if Ri is an atomic attribute  
Si =  

(Ri1S i1, Ri2S i2, ..., RikSik)  if Ri is a nested attribute 
and k ≥ 1 

where 1 ≤ i ≤ n. 
Example 15: The scheme of relation TRAINING (Fig. 1) is  

TRAINING (COMPANY TRAINER (TRN COURSE (CODE 
C (CN Y)))). 

D. Relational Operators 
The set of conventional relational comparison operators of 

the CRM, {=, ≠, <, ≤, >, ≥}, is also supported in the NRM. 

E.  Operations 
The union, difference, intersection, projection, selection, 

rename, Cartesian product, natural join and Θ-join recursive 
operations of the NRM have been defined formally in section 
V. Two additional operations, nest and unnest, have also been 
defined in the NRM. 

F. Functions 
The set of functions in the CRM is also supported in the 

NRM. 

VIII. MAPPING THE CRM TO THE NRM 
NRM is reduced to the CRM when restricted to support 

only flat relations, in a way similar to the approach of 
Paredaens and Van Gucht [24]. In this section, the 
components of the CRM are going to be mapped to the NRM 
that have been described in section VII, in order to prove that 
the NRM is a proper superset of the CRM. 

A. Data types - Domains 
Proposition 1: The set of domains in the CRM is a proper 

subset of the set of domains in the NRM. 
Proof: The nested attribute domain is defined recursively 

(Definition 26). Therefore, for the special cases i) where k=0 
i.e., the attribute is atomic or ii) where k ≥ 1 i.e., the attribute 
is nested consisting of atomic attributes only (which can be 
considered as a flat relation), the nested attribute domain 
definition of the NRM is reduced to the atomic attribute 

domain definition of the CRM. 
Consequently, since the set of domains in the NRM can be 

reduced, for specific special cases, to the set of domains in the 
CRM, the former is a proper superset of the set of domains in 
the CRM.  

B. Databases 
Proposition 2: The set of databases in the CRM is a proper 

subset of the set of databases in the NRM. 
Proof: Databases in the NRM have been introduced in 

order to relax the 1NF assumption that is satisfied in the 
CRM. Thus, the 1NF assumption of flat relations is a special 
case of the general N1NF assumption which characterises 
relations in the NRM.  By definition, a flat relation is also a 
relation of the nested model. Therefore, the set of databases in 
the NRM is a proper superset of the set of databases in the 
CRM. 

C. Structures 
Proposition 3: The set of structures in the CRM is a proper 

subset of the set of structures in the NRM. 
Proof: The definition of the scheme in the NRM is given 

recursively (Definition 27). For the special case, where Si, for 
all i, is equal to the empty set, the definition is reduced to that 
of the CRM, since all attributes of the relation are atomic. 

D. Relational Operators 
Proposition 4: The set of relational comparison operators 

in the CRM is isomorphic to the set of relational operators in 
the NRM (i.e., for every comparison operator in the CRM 
there is a corresponding comparison operator in the NRM). 

Proof: The proof is omitted for obvious reasons. 

E. Operations 
In the following, it is shown by a number of propositions 

that each operation in the NRM is an extended operation of 
the relevant operation in the CRM. Before this is done, some 
preliminary discussion is necessary, regarding the effect of 
relational operations to the key of relations.  

Let Unary be a unary operation and let R1 = Unary(R0). 
Then, the first obvious remark is that this operation does not 
have any effect on the key of R0 i.e., the key of R0 remains the 
same. The second one is that the key of R0 is not inherited to 
R1. These observations apply to any data model, and to the 
CRM as well. As an example of the second remark, consider a 
flat relation R0 and assume that K is its primary key. Then, the 
CRM select operation R1=σF(R0), also yields a flat relation, 
R1. Since R1 is a subset of R0, it follows that it does not 
contain two distinct tuples with identical values for K. 
However, it is not implied by this fact that K is also the key of 
R1, it is only the user who may specify what the key of R1 is. 

As another example, let the scheme of R0 be R0(K, A, B), 
where K is its key. If R1=πA,B(R0), it is known that R1 does not 
contain duplicate tuples and, definitely, it is again the user 
who may specify its key.  

Hence, the conclusion is that a unary CRM operation does 
not affect the key (if defined) of the input relation and it does 
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not propagate it to the result relation. This same conclusion 
can also be drawn for binary operations of the CRM. 
Subsequently, the same conclusion can be drawn for any 
operation in any data model, therefore for all the operations of 
the NRM as well.  

Proposition 5: The union operation in the NRM is an 
extended version of the union operation in the CRM. 

Proof: The union operation in the NRM is defined 
recursively (Definition 9). From the recursive definition, it is 
deduced that for the special case where the relations are in 
1NF format, the definition is reduced to the non-recursive 
union definition for flat relations (case i), since the relations 
do not contain any nested attributes. This definition then, is 
the definition of the union operation in the CRM. 

Proposition 6: The difference operation in the NRM is an 
extended version of the difference operation in the CRM. 

Proof: The proof is similar to that of Proposition 5. 
Proposition 7: The intersection operation in the NRM is an 

extended version of the intersection operation in the CRM. 
Proof: The proof is similar to that of Proposition 5. 
Proposition 8: The projection operation in the NRM is an 

extended version of the projection operation in the CRM. 
Proof: From Definition 13 (case ii):  
ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = { t| (∃ tr ∈ r)  
((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = tr[Rak])  
     ∧ (t[Rn1] = ππ(tr[Rn1]Ln1)) ∧ … ∧ (t[Rnm] = 

ππ(tr[Rnm]Lnm)))}. 
For the special case where relation r is flat, since all 

attributes of relation r are atomic, RniLni = ∅, for all i (1 ≤ i ≤ 
m), and the definition of the projection operation is reduced 
to: 

ππ(r(Ra1, …, Rak, Rn1Ln1, …, RnmLnm)) = ππ(r(Ra1, …, Rak)) =  
         { t| (∃ tr ∈ r) ((t[Ra1] = tr[Ra1]) ∧ … ∧ (t[Rak] = 

tr[Rak]))}, 
which is the definition of the projection operation in the 

CRM. So, the projection operation in the NRM is an extended 
version of the projection operation in the CRM.  

Proposition 9: The selection operation in the NRM is an 
extended version of the selection operation in the CRM. 

Proof: The proof is similar to that of Proposition 8. For the 
special case where relation r is flat, since all attributes of 
relation r are atomic, L is empty and Definition 15 is reduced 
to σσ(rcLσ) = σ(rc) = σ(rca1, …, cak) which is the traditional 
selection operation for flat relations in the CRM. 

Proposition 10: The rename operation in the NRM is an 
extended version of the rename operation in the CRM. 

Proof: From Definition 20-case (ii), the rename of a nested 
attribute at the top level of a relation is: 

ρ[A ← A′](R) = {R1, R2, …, Ri, …, Rn, ∪
m

k 0=

LA′→Ak, B, …, 

Z}. 
This definition is reduced to: 
 ρ[A ← A′](R) = {R1, R2, …, Ri, …, Rn, A′, B, …, Z}, for 

the special case where the attribute to be renamed, A, is an 

atomic attribute at the top level of relation R, since ∪
m

k 0=

LA′→Ak 

= A′ (m=0 i.e., there are not any descendants of A). This is 
equivalent to the rename operation in the CRM. 

Proposition 11: The Cartesian product operation in the 
NRM is an extended version of the Cartesian product 
operation in the CRM. 

Proof: Case (i) or case (ii) for L=Ø of Definition 22 is the 
traditional Cartesian product operation for flat relations in the 
CRM. 

Proposition 12: The natural join operation in the NRM is 
an extended version of the natural join operation in the CRM. 

Proof: The natural join which operates for cases where the 
common atomic or nested attributes belong to different 
subrelations and at different nesting levels in the two 
relations),  (rL, qM), is defined in [23]. 

The natural join can be reduced to the conventional natural 
join for flat relations if the special case is assumed, where the 
common attributes are atomic attributes at the top level of the 
two relations.  Formally, the definition for L and M empty, is 
reduced to: 

 (rL, qM) =  (r, q) = { t| (∃ tr ∈ r) (∃ tq ∈ q)  
   ((t[Attr(Ri)] = tr[Attr(Ri)]) 
  ∧ (t[Attr(Qi)] = tq[Attr(Qi)]) 
   ∧ (t[Ri1] = tr[Ri1] = tq[Qi1]))} 
which is the traditional definition of the natural join 

operation in the CRM. 

F. Functions 
Proposition 13: The set of functions in the CRM is 

isomorphic to the set of functions in the NRM.  
Proof: The proof is omitted for obvious reasons. 

G. Mapping Synopsis 
Proposition 14: The NRM is a superset of the CRM. 
Proof: This is a result of Propositions 1-13 since, as it has 

been explained in subsection B of section VIII, in order to 
prove that a database model is a superset of another database 
model, it is necessary and sufficient to prove that every 
property of the latter (data types, databases, structures, 
operators, operations and functions) is also a property of the 
former. 

IX. CONCLUSION 
In this paper, an algebra (NRA) and a database model 

(NRM) have been defined for nested relations of arbitrary 
nesting levels. All the operators have been recursively 
defined. As a result, there is no need to flatten the nested 
relations when a series of operations are executed and so the 
data redundancy and duplication caused by unnesting relations 
is avoided. Furthermore, the representation of the data is 
claimed to be in a “natural form”. Thus, it is easier for users to 
understand when working with the data, since even complex 
objects can be modelled in one relation. A number of example 
queries have been expressed in the NRA to demonstrate its 
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functionality. In addition, the model has been proved to be 
consistent with the CRM. 

In appendix I, a formal syntax of the NRA is given. In 
appendix II, a sample code of the prototype implementation 
can be found as well as a number of examples, presented in 
this paper, coded in Miranda, which demonstrate the 
functionality and validity of the model. It should be stated that 
the prototype serves satisfactory as a proof of concept. 
Specifically, the nested rename, projection, selection and 
Cartesian product operations have been fully implemented. 
The nested join operation has been partially implemented. 
Particularly, only one nested column is allowed at each 
nesting level and the join operator allows joining on only one 
pair of columns; reasonable assumptions within the 
framework of a prototype.  

Future work includes the study of optimisation techniques 
for the efficient evaluation of complex queries. The definition 
of an extension of SQL to support the nested features of NRM 
is also, another research direction. The incorporation of spatial 
data to NRM is an additional challenge. The NRM can also be 
used as a basis to build an algebra for supporting nesting 
structures in XML (similarly to the FLWR expressions of 
XQUERY). 

APPENDIX I 
Formal syntax of the NRA 

expression  
:: = one-relation-expression| two-relation-expression 
one-relation-expression  
:: = nested-renaming | nested-selection | nested-projection  
two-relation-expression  
:: = nested-projection binary-operation expression 
nested-renaming 
 :: = ρt

ρ [attribute-commalist1] (term) 
attribute-commalist1 
 :: = fattribute ← fattribute | fattribute ← fattribute, 

attribute-commalist1 
fattribute 
 :: = attribute1 | function2(attribute1) 
attribute1 
 :: = attribute | nested-aggregate-attribute 
attribute 
 :: = basic-attribute | nested-attribute 
basic-attribute 
 :: = atomic-attribute 
nested-aggregate-attribute 
 :: = function1[attribute/basic-attribute] 
function1 
 :: = N-MAX | N-MIN | N-SUM | N-COUNT | N-AVG 
function2 
 :: = MAX | MIN | AVG | COUNT | SUM 
term 
 :: = relation | (expression) 
nested-projection 
 :: = πt

π (term (attribute-commalist2)) | term 

attribute-commalist2 
:: = fattribute | fattribute, attribute-commalist2 
binary-operation 
 :: = ∪ ∪ | ∩ 

∩ | − 
− | × 

× |   | 
Θ

 
nested-selection 
 :: = σ 

σ (term comparison) 
comparison 
 :: = attribute-term | attribute-term  logical-operator 

comparison 
logical-operator 
:: = AND | OR | AND NOT | OR NOT 
attribute-term 
 :: = FAA θ FAA 
FAA 
 :: = constant | atomic-attribute | attribute-term | nested-

aggregate-attribute 
θ 
 :: = <  | > | = | <= | >= | ≠ 

APPENDIX II 
A sample of the prototype implementation 

A small part of the code, that has been developed in 
Miranda, is listed in this section which contains basic 
functions for selection, projection and Cartesian product 
operators.  

|| isColumnTag: Simple method to identify a column using 
its tag. 

isColumnTag :: string -> columnType -> bool 
 
|| resolvePath: Creates full path name for columns in a table. 
resolvePath:: relationalTable -> relationalTable 
 
|| resolvePath2: Creates full path names for a list of entries 

given a string and a depth. 
resolvePath2 :: string -> num -> [tableEntry] -> 

[tableEntry] 
 
|| resolvePath3: Creates full path names for a list of columns 

given a string and a depth. 
resolvePath3 :: string -> num -> tableEntry -> 

tableEntry 
 
|| resolvePath4: Creates full path names for a column given 

a string and a depth. 
resolvePath4 :: string -> num -> columnType -> 

columnType 
 
|| rpar: Generates a given number of closing parenthesis. 
rpar :: num -> string 
 
|| selectCol: Used to select a column recursively based on its 

tag. 
selectCol :: string -> columnType -> tableEntry 
 
|| selectEntryByStr: Selects all columns from a list of 
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columns using the given column tag. 
selectEntryByStr :: string -> tableEntry -> tableEntry 
 
|| selectEntryByStrLst: Selects a list of columns whose 

names are provided by a list of string  
|| tags. 
selectEntryByStrLst :: [string] -> tableEntry -> 

tableEntry 
 
|| selectEntryLstByStrLst: Selects entries from a given entry 

list 
|| whose names are provided by a list of tags. 
selectEntryLstByStrLst :: [string] -> [tableEntry] -> 

[tableEntry] 
 
|| tableProjection2: Selects a subset of table entries based on 

given 
|| column names after all recursive column names have been 

resolved. 
tableProjection2 :: [string] -> relationalTable -> 

relationalTable 
 
|| flattenRelTable: Flattens a relational table by calling 

helper 
|| function flattenEntryList. 
flattenRelTable :: relationalTable -> relationalTable 
 
|| flattenEntryList: Flattens a list of table entries by calling 

helper function flattenColumnList. 
flattenEntryList :: [tableEntry] -> [tableEntry] 
 
|| flattenColumnList: Flattens a list of columns by calling 

helper function flattenColumn. 
flattenColumnList :: [columnType] -> [columnType] 
 
|| flattenColumn: Flattens recursive columns. 
flattenColumn :: columnType -> [columnType] 
 
|| tableProduct2: Product of two relational tables at the top 

level. 
|| All possible combinations of table entries are included. 
|| No recursive application involved.  
tableProduct2 :: relationalTable -> relationalTable -> 

relationalTable 
 
|| tableProduct3: Product of a table with an inner table of 

another table. 
|| All possible combinations of table entries are included. 
tableProduct3 :: relationalTable -> (string, 

relationalTable) -> relationalTable 
 
|| tableProduct4: Applies the product of a table to a list of 

table entries 
|| for recursive application. 
tableProduct4 :: relationalTable -> string -> 

[tableEntry] -> [tableEntry] 

 
|| tableProduct5: Applies the product of a table to a list of 

table columns 
|| for recursive application. 
tableProduct5 :: relationalTable -> string -> tableEntry 

-> tableEntry  
 
|| tableProduct6: Applies the product to a recursive column 

which holds the 
|| required inner table. 
tableProduct6 :: relationalTable -> columnType -> 

columnType 
 
|| tableProduct7: Applies the product to a recursive column 

if the inner table is 
|| the one required. 
tableProduct7 :: relationalTable -> string -> 

columnType -> columnType 
 
|| getRecTableNames: Gets the name of a table and calls 

getRecTableNames2 
|| to get the names of all recursive tables. 
getRecTableNames :: relationalTable -> [string] 
 
|| getRecTableNames2: Gets table names recursively for a 

list of table entries. 
getRecTableNames2 :: [tableEntry] -> [string] 
 
|| getRecTableNames3: Gets table names recursively for a 

list of columns. 
getRecTableNames3 :: tableEntry -> [string] 
 
|| getRecTableNames4: Gets the name of a table column if it 

is an inner table. 
getRecTableNames4 :: columnType -> [string] 
 
 
Examples 
The numbering of the queries below refers to the example 

queries found in section VI. 
Query 1: 
selectFrom ["D", "DEPT(UNIT(UD))", 

"DEPT(UNIT(COURSE_DETAILS(TRN)))"][(" 
D", NF ((=) 1))]d 
Query 4: 
selectFrom["COURSE/TRAINING(COURSE/TRAINER(T

RN))"][("COURSE/TRAINING(COURSE/TRAINER(COUR
SE/COURSE(TITLE)))", SF ((=) "Computer Skills"))] 
(joinTables("C", t)("C", course)) 

Query 5: 
A revised version of the query is given, due to the fact that 

relevant implementation is missing (only for ‘Karen’, since 
OR has not been implemented). 

tableProjection["COMPANY","BANK"] 
(joinTables("TRAINING/LOCATION(ANNEX(ADDRESS))
", 
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joinTables("COMPANY",selectFrom["COMPANY"][("TRAI
NING(TRAINER(TRN))", 
SF((=)"Karen"))]t)("COMPANY",location))("CASH-
POINT(BRANCH(ADDRESS))", cashpoint)) 
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