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Approximation Incremental Training Algorithm
Based on a Changeable Training Set

Yi-Fan Zhu, Wei Zhang, Xuan Zhou, Qun Li, Yong-Lin Lei

Abstract—The quick training algorithms and accurate solution
procedure for incremental learning aim at improving the efficiency of
training of SVR, whereas there are some disadvantages for them, i.e.
the nonconvergence of the formers for changeable training set and
the inefficiency of the latter for a massive dataset. In order to handle
the problems, a new training algorithm for a changeable training
set, named Approximation Incremental Training Algorithm (AITA),
was proposed. This paper explored the reason of nonconvergence
theoretically and discussed the realization of AITA, and finally
demonstrated the benefits of AITA both on precision and efficiency.

Keywords—support vector regression, incremental learning,
changeable training set, quick training algorithm, accurate solution
procedure

I. INTRODUCTION

DURING the past decades, Support Vector Machine
(SVM) [1] has been successfully applied in the field

of machine learning, such as the pattern recognition [2]–
[4], regression and approximation (referred to as support
vector regression, SVR) [5], etc. The theoretical foundation
of SVR is statistical learning theory (SLT), which is a specific
theory for studying learning machine under the small sample
condition [1]. The key part of SLT is the introduction of
the structural risk minimization (SRM) principle to control
the capacity of learning machine for considering both the
asymptotic performance and the capacity of obtaining the
optima result under an limited information condition. Based on
the SLT, SVR possesses many advantages, e.g. no local optima
(convex problem with a unique solution), good ability of gen-
eralization, intrinsic regularization [6], and the sparseness of
support vectors (SV) as well as the robustness to outliers using
ε-insensitive loss function. The studies have shown that SVR
can obtain good performance of approximation or prediction
in various applications including function approximation [6],
[7], prediction [8] and other simulation applications [9].

The basic idea of SVR is as follows: select a function Φ(·)
to map the training set from original input space to high-
dimension feature space H and construct an optimal linear
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regression function in H as follows:

f(x) =< w,Φ(x) >H +b (1)

where < ·, · >H (< ·, · > for simplicity) denotes the inner
product in H, and (w, b) ∈ R

n × R are the weight vector
and bias respectively. In order to meet the SRM principle,
the w should be as small as possible to ensure the flatness
of function f . Note that it’s finally equivalent to solve a
constrained optimization problem [5] as follows:

min
w,b,ξ,ξ∗

1
2‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

s.t.

⎧⎪⎨
⎪⎩

f(xi)− yi ≤ ε+ ξi , i = 1, ..., N

yi − f(xi) ≤ ε+ ξ∗i , i = 1, ..., N

ξi, ξ
∗
i ≥ 0 , i = 1, ..., N

(2)

where the minimization of the first term is to improve the
generalization capacity and the second term is to reduce the
error, constant C > 0 determines the trade-off between these
two minimizations and ε ≥ 0 is a priori chosen constant to
control the noise tolerances. Finally, the following regression
result can be trained using duality theory and Karush-Kuhn-
Tucker (KKT) conditions with introducing kernel function K:

f(x) =
N∑
i=1

(αi − α∗
i )K(xi, x) + b

=
∑
i∈SV

(αi − α∗
i )K(xi, x) + b (3)

where SV is the index set of SVs. It’s obvious that standard
SVR training algorithm can always obtain the global optimal
solution since the regression problem is transformed into a
convex quadratic programming with a unique solution, and
avoids the local optimal in neural networks.

However, the standard SVR training algorithm is confronted
with a serious problems, i.e. it’s incapable of dealing with mass
samples since the limitation of storage and computation of
Hessian matrix. Therefore, many improved training algorithms
with decomposition (referred as quick training algorithm,
QTA) are proposed. The main ideas for these quick training
algorithms are classified as following two catalogues:

1) One is “Increasing”, which takes Chunking algorithm
[1] as representation. It obtained the SV set and cor-
responding Lagrange multipliers by selecting working
set and subsequently to update the working set. The M
samples, which possess the most serious violations with
the KKT conditions, are selected into the working set
and repeat the process above until all of the samples
meet the KKT conditions.
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2) The other is “decomposing”, whose examples are Osuna
[10] and SMO [11]. The main idea of these algorithms
is that the big quadratic programming is decomposed
into manageable small ones over part of the data and
any sample in the working set is replaced by the sample
which is in the non-working set and disobeys the KKT
conditions. The process is repeated until all the samples
meet the KKT conditions.

However, these QTAs are working with a fixed working
set and the generalization analysis of SVR are dealing with
the new test samples, which possess no impact on the gen-
eralization analysis theoretically since they do not belong to
the training set. Whereas when the training set is changeable,
there are little effective approaches for these algorithms. There
are two familiar approaches. One is to discard all previous
result completely and train SVR with new training set, and
the other is to train SVR constrainedly based on the new
training set, while there is a same disadvantage that these
techniques may give an approximate solution, and may require
many passes through the dataset to reach a reasonable level of
convergence [12], [13]. Cauwenberghs et al. [13] proposed
an accurate solution for incremental learning (referred as
accurate solution procedure, ASP), which is to compute the
impact on Lagrange coefficients and Support Vectors (SV)
when appending or removing a training sample. Whereas
ASP cannot be employed in regression problems directly as
it is proposed for classification problems. Although Ma et
al. [14] introduced this algorithm for regression analysis, it’s
ineffective for increasing dateset.

A new training algorithm, i.e. Approximation Incremental
Training Algorithm (AITA) was proposed in this paper. The
AITA is hybrid with the QTA and ASP and the performance
of precision and efficiency are demonstrated by a synthetic
problem under different test schemes.

Notations: all matrices are written with uppercase letters,
e.g. A, and the ith column of a matrix A that is denoted
Ai . Matrix X =

(
xj
i

)
1≤i≤N,1≤j≤d

∈ R
N×d denotes the

sample matrix, where N is the amount of samples and d
is the dimension of input. Letter in lowercase, e.g. x ∈ R

d

denotes a sample and X = (x1, ..., xN )T , where the ith
sample is denoted xi = (x1

i , ..., x
d
i ) ∈ R

d. Vector Y =
(y1, ..., yN )T ∈ R

N is the output of X . K(t, s) denotes the
kernel in R

d × R
d and K is the corresponding Gram matrix,

i.e. K = K(XT , XT ) = (K(xi, xj))N×N . Kernel matrix
K(t,XT ) denotes the 1 × N matrix consists of the kernel
values between some input t = (t1, · · · , td) ∈ R

d and the N
samples in sample matrix X ∈ R

N×d, i.e.

K(t,XT ) = K

⎛
⎜⎜⎝t,

⎛
⎜⎜⎝

x1
1 · · · xN1

...
. . .

...

xd
1 · · · xNd

⎞
⎟⎟⎠

⎞
⎟⎟⎠ (4)

=
(

K(t, x1), · · · , K(t, xN )
)
1×N

∀g(x) : R
d �→ R,g(XT ) = (g(x1), · · · , g(xN ))

T . e =
(1, · · · , 1)T ∈ R

N denotes the vector whose components equal
to 1 and em = (1, · · · , 1)T ∈ R

m

Defintion 1 (Modified sample): A sample is called modi-
fied sample if it is different with the existing samples in
training set when the SVR is being trained.

II. APPROXIMATION INCREMENTAL TRAINING
ALGORITHM

A. Problem Analysis

It’s known that the predicted value is irrelevant to the sample
which is not SV (NoSV), since the regression function (3)
is actual the linear combination of kernel functions of SVs.
This property is called “sparseness”, which determines that
the complex of computation of SV is related to the amount of
SV other than the dimension of input space. Therefore, there
is no impact on the training result if the modified samples are
NoSVs, even though the training set is changeable. It’s known
that the SVs are determined automatically by solving a convex
quadratic programming with linear constraints, that is the pro-
gramming (2), and its necessary and sufficient conditions are
Karush-Kuhn-Tucker(KKT) conditions as shown in following
lemma.

Lemma 1: Let Q be the Hessian matrix of convex quadratic
programming (2) and any feasible solution α is the optimal
solution if and only if all the samples must meet the KKT
conditions which are determined by Lagrange multipliers α.

For further details can be seen in [11]. It’s obvious that the
properties of Lagrange multipliers α(∗) and their relations with
SVs as follows:

Theorem 1: Let ᾱ(∗) = (ᾱ
(∗)
1 , ..., ᾱ

(∗)
N )T be the optimal

solutions of programming (2), for ∀i ∈ {1, 2, ..., N}, then
ᾱiᾱ

∗
i = 0, ξ̄iξ̄

∗
i = 0.

Proof: According to the KKT conditions and comple-
mentary slackness conditions, the programming (2) can be
transformed into its dual problem (a matrix form) as follows:

min 1
2 (α− α∗)TK(XT , XT )(α− α∗)
+εeT (α+ α∗)− Y T (α− α∗)

(5)

s.t.

{
eT (α− α∗) = 0 , α ≥ 0, α∗ ≥ 0

Ce− α ≥ 0 , Ce− α∗ ≥ 0
(6)

Then there are λ̄(∗), ξ̄(∗) such that the optimal ᾱ(∗) make
the following equations hold:

K(XT , XT )(ᾱ− ᾱ∗) + εe− Y + b̄e− λ̄+ ξ̄ = 0

K(XT , XT )(ᾱ− ᾱ∗)− εe− Y + b̄e+ λ̄∗ − ξ̄∗ = 0 (7)
λ̄, λ̄∗ ≥ 0, ξ̄, ξ̄∗ ≥ 0

and meet the complementary slackness conditions

λ̄T ᾱ = 0 , λ̄∗T ᾱ∗ = 0

ξ̄T (Ce− ᾱ) = 0 , ξ̄∗T (Ce− ᾱ∗) = 0
(8)

1) If ᾱi = 0 or ᾱ∗
i = 0, then ᾱiᾱ

∗
i = 0. According to (8), if

ᾱi = 0 or ᾱ∗
i = 0, then the corresponding ξ̄i = 0 or ξ̄∗i = 0,

which achieves our assertion.
2) If 0 < ᾱi < C, according to (7) and (8), then

ᾱi(ε+ ξ̄i + yi − f(xi)) = 0 (9)
(C − ᾱi)ξ̄i = 0 (10)
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and ξ̄i = 0, ε+ ξ̄i + yi − f(xi) = 0, that is

yi − f(xi) + ξ̄i = −ε < ε (11)

According to the constraints of programming (2), i.e. yi −
f(xi) ≤ ε+ ξ̄∗i , then ξ̄∗ = 0. And according to (7), then

ᾱ∗
i (ε+ ξ̄∗i − yi + f(xi)) = 0 (12)

Substituting (11) into (12), then ᾱ∗
i = 0, which achieves

the assertion. In the same way that for 0 < ᾱ∗
i < C, then

ᾱi = 0, ξ̄iξ̄
∗
i = 0.

3) If ᾱi = C, then ξ̄i ≥ 0 according to (10). There are two
cases, that is,

• If ξ̄i = 0, then yi − f(xi) = −ε < ε according to (9).
The proof is as same as 2)

• if ξ̄i > 0, then yi−f(xi) = −ε−ξ̄ < −ε according to (9).
Therefore, according to the constraints of programming
(2) , that is yi − f(xi) ≤ ε + ξ̄∗i , we have ξ̄∗i = 0. And
according to (12), then ᾱ∗

i = 0.
As the cases above, for ᾱi = C, then ᾱ∗

i = 0, ξ̄∗i = 0. With
the similar proof, if α∗

i = C, the theorem will also hold.
According to the proof of theorem 1, the KKT conditions

of SVR can be summarized as follows:

α
(∗)
i = 0 ⇒ |yi − f(xi)| ≤ ε (13)

α
(∗)
i ∈ (0, C) ⇒ |yi − f(xi)| = ε (14)

α
(∗)
i = C ⇒ |yi − f(xi)| ≥ ε (15)

where the samples (xi, yi) of (13), (14) and (15) are called
NoSV, Normal Support Vector (NSV) and Boundary Support
Vector (BSV) respectively, where 1) NoSVs locate at the inside
or boundary of the ε-bound, 2) NSVs locate on the boundary
and 3) BSVs locate at the outside or boundary respectively [3].
The NSVs and BSVs are called by a joint name, i.e. Support
Vector (SV)1.

From the analysis above, the following corollary holds:
Corollary 1: Given ᾱ(∗) = (ᾱ

(∗)
1 , ..., ᾱ

(∗)
N )T be the optimal

solution of programming (5), f(x) be the regression function,
for any i ∈ {1, · · · , N}:

1) if |yi − f(xi)| < ε, then ᾱ
(∗)
i = 0;

2) if |yi − f(xi)| > ε, then ᾱ
(∗)
i = C

Proof: For 1), if |yi − f(xi)| < ε, then

0¡ ξ̄i ¡ε+ ξ̄i + yi − f(xi)¡2ε+ ξ̄i

0¡ξ̄∗i ¡ε+ ξ̄∗i − yi + f(xi)¡2ε+ ξ̄∗i
(16)

According to (9) and (12) we have ᾱi = 0, ᾱ∗
i = 0;

For 2), utilizing reduction to absurdity, suppose |yi −
f(xi)| > ε, but the corresponding ᾱ

(∗)
i ∈ [0, C). According to

the proof of theorem 1, if ᾱ(∗)
i ∈ [0, C), then |yi−f(xi)| ≤ ε.

it’s obvious that such identification is at odds with the assump-
tion, that is ᾱ

(∗)
i = C, which completes the proof.

Note that, without consideration of computing b and with
assumption of β = α−α∗ ( without loss of generality, suppose
β ≥ 0), the primal dual problem (5) can be transformed into

1the SVs corresponding to (14) and (15) are also called on-boundary SV and
off-boundary SV or utilizing terms “in-bound” and “bound support vector”
respectively.

the following expression according to the result of theorem 1,
i.e. αiα

∗
i = 0:

minF = 1
2β

TK(XT , XT )β + εeT |β| − Y Tβ

s.t. eTβ = 0
(17)

The expression of (17) is quite similar to the quadratic
programming for classification, while employing β̂i = yiβi

and supposing ε = 0 will make the similarity more obvious.
The only difference between them is without limitation of
β̂i > 0, while αi > 0 was required for classification.
Therefore, the first derivative of F to βi is as follows:

hi =
∂F

∂βi
=

N∑
j=1

K(xi, xj)βj + ε− yi

= f(xi) + ε− yi

⎧⎪⎨
⎪⎩
≥ 0 ; |yi − f(xi)| ≤ ε

= 0 ; |yi − f(xi)| = ε

≥ 0 ; |yi − f(xi)| ≥ ε

(18)

It’s easy to conclude the relations between the three types of
samples (that is NoSV, NSV and BSV) and the first derivative
of F as well as the geometrical properties of different samples
(see figure 1 and table I) according to (13)� (15).

( )

i
C0

( )

i

F

0
i

h

C( )
0

i
C0

( )

i

F

0
i

h

( )
0

i
C

( )

i

F

0
i

h

f(x)

f(x)

f(x)+

NoSV NSV BSV

Fig. 1. Relations between three types of samples and first derivative of
objective function

TABLE I
GEOMETRICAL PROPERTIES OF DIFFERENT TYPES OF SAMPLES

Type Name ᾱ
(∗)
i ξ̄

(∗)
i s

(∗)
i

a

NoSV 0 0 0
Normal SV in-bound SV (0, C) 0 0

Boundary SV off-bound SV C (0,∞) (0,∞)

a: s
(∗)
i denotes the corresponding expression of complementary

slackness conditions of Lagrange multipliers α
(∗)
i , ξ

(∗)
i , that is

si := αi(ε+ ξi + yi − f(xi)) or s∗i := α∗
i (ε+ ξ∗i − yi + f(xi)).

It’s noted that the optimal solution may be more than 1
since the SV kernel just requires the Gram matrix K =
K(XT , XT ) = (K(xi, xj))N×N be semidefinite. According
to lemma 1, if and only if α(∗) make any training sample
x meet the KKT conditions, α(∗) are the optimal solutions of
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programming (2). In other words, if there is a modified sample
s, it’s required that s is a NoSV to ensure that α(∗) are also
the optimal Lagrange multipliers trained for the new training
set, that is s obeys the primal KKT conditions. Therefore, the
following theorem holds:

Theorem 2: Given primal training set N0 = (X0, Y0) and
suppose the training result be as follows:

f0(x) = K(x,XT
0 )(α0 − α∗

0) + b̄ (19)

and let g(x) be the follows judgement function:

g(x) = y − f0(x) (20)

Suppose s = (xT
s , ys) be a modified sample, where xs =

(x1
s, . . . , x

d
s)

T is input, ys is the corresponding output, then
the following assertions hold, that is

1) if |g(xs)| = |ys − f0(xs)| < ε, then s obeys the primal
KKT conditions and the regression function dose not
change as well as the s is a NoSV.

2) if |g(xs)| = |ys−f0(xs)| > ε, then s disobeys the primal
KKT conditions and the regression function definitely
change while the s will change to be a SV.

Proof: Firstly, we proof the case that the modified sam-
ple s is appended. Without loss of generality, Let N =

(N T
0 , s)T =

(
X0 Y0

xT
s yTs

)

(N+1)×(N+1)

= (X,Y ), X =

(
X0

xT
s

)
, Y =

(
Y0

yTs

)
, α(∗) = (α

(∗)T
0 , α

(∗)
s ) ∈ R

N+1,

where α
(∗)T
0 ∈ R

N denote the first N Lagrange multipliers,
whose corresponding training set is N0. Suppose α

(∗)
s be a

new Lagrange multiplier corresponding to s, and

K(XT , XT ) =

( K(XT
0 , X

T
0 ) K(XT

0 , xs)

K(xs, X
T
0 ) K(xs, xs)

)

(N+1)×(N+1)

Then the quadratic programming is as follows:

minF = 1
2 (α− α∗)TK(XT , XT )(α− α∗)

+ε(eT , 1)(α+ α∗)− Y T (α− α∗)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(eT , 1)(α− α∗) = 0

C(eT , 1)T − α ≥ 0

C(eT , 1)T − α∗ ≥ 0

α ≥ 0, α∗ ≥ 0

(21)

Actually, the objective function of the programming (21)
can be transformed to the following function,

F =
1

2
(α0 − α∗

0)
TK(XT

0 , X
T
0 )(α0 − α∗

0)

+ εeT (α0 + α∗
0)− Y T

0 (α0 − α∗
0)

+
1

2
(αs − α∗

s)
TK(xs, X

T
0 )(α0 − α∗

0) (22)

+
1

2
(α0 − α∗

0)
TK(XT

0 , xs)(αs − α∗
s)

+
1

2
(αs − α∗

s)
TK(xs, xs)(αs − α∗

s)

+ ε(αs + α∗
s)− ys(αs − α∗

s)

and the corresponding constraints are:

eT (α0 − α∗
0) + (αs − α∗

s) = 0, α0 ≥ 0, α∗
0 ≥ 0

Ce− α0 ≥ 0, C − αs ≥ 0, αs ≥ 0, α∗
s ≥ 0

Ce− α∗
0 ≥ 0, C − α∗

s ≥ 0

(23)

Suppose the optimal solutions of programming (21) are
α̂(∗) = (α̂

(∗)
1 , · · · , α̂(∗)

N , α̂
(∗)
s ). According to the KKT condi-

tions, there are some Lagrange multipliers b̂, ξ̂(∗) such that the
following complementary slackness conditions hold:

α̂i(ε+ ξ̂i − g(xi)) = 0 (24)

α̂∗
i (ε+ ξ̂∗i + g(xi)) = 0 (25)

Thus, for 1), if |g(xs)| = |ys − f0(xs)| < ε, i.e. ε + ξ̂s −
g(xs) > 0, then α̂s = 0. In the same way, α̂∗

s = 0 holds.
Substituting it into (22) and (23), such that the terms, which
contain αs±α∗

s , equal to 0. Therefore, the programming (21)
is equivalent to programming (5). Thus, the optimal solutions
α̂(∗) = (ᾱ(∗)T , 0)T , where ᾱ(∗) are the optimal solutions of
programming (5). In other words, if |g(xs)| < ε, sample s =
(xs, ys) obeys the KKT conditions of primal programming (5),
thus the regression function does not change and s is a NoSV.

For 2), firstly suppose s obeys the KKT conditions of primal
programming (5), then s is appended to obtain a new training
set, denoted by N for solving the programming. The corre-
sponding optimal solution of s should be α

(∗)
s = 0. According

to the theorem 1 and corollary 1, then |ys − f0(xs)| ≤ ε.
It’s noted that the result is inconsistent with the assumption
|ys − f0(xs)| > ε. Thus, s disobeys the KKT conditions of
primal programming (5).

Secondly, suppose the regression function does not be
effected by the modified sample s, though s disobeys the KKT
conditions of primal programming (5). In other words, s is a
NoSV for new programming (21). Thus, the corresponding
Lagrange multiplier α

(∗)
s = 0. According to the proof of 1),

if α
(∗)
s = 0, then programming (21) is equivalent to primal

programming (5) and consequently the regression function
trained as well as KKT conditions would not change. However,
s will disobey the KKT conditions of programming (21)
consequentially since it disobeys the KKT conditions of pro-
gramming (5). It’s inconsistent with the lemma 1. Therefore,
the regression function will change and s is a SV.

If the modified sample is removed, the proof is in the same
way as above, which would not be discussed due to the limited
space.

From the proof above, the following corollary holds,
Corollary 2: Any modified sample x obeys the KKT condi-

tions of primal programming if and only if x meets |g(x)| < ε.
The training results, which are trained with all the samples

and just with a set of samples which disobey the KKT
conditions, are same by utilizing the theorem 2 and corollary
2. Therefore, for any modified sample s:

1) If s obeys the primal KKT conditions, it means that the
SV set contains the information of s and it’s unnecessary
to train it any more.

2) If s disobeys the primal KKT conditions, it means that
there is a lack of information of s and the training with
s is necessary.
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Obviously, the prior evaluation, which modified samples
may disobey the KKT conditions, will simplify the training
with modified samples. Based on the idea, lots of quick
training algorithms (QTA), e.g. Chunking [1], Osuna [10] and
SMO [11] etc., are proposed. However, there is a notable
disadvantage of these QTAs, i.e. they are lack of convergence
[12]. Because the theorem 2 can just ensure that the modified
samples will possess no impact on the training result if they
obey the primal KKT conditions. Whereas, there exists some
cases that the modified samples would turn to be SVs when
they disobey the KKT conditions, while it may make the
original NoSVs turn to be SVs and the converse may be also
true. Therefore, this case will make the QTAs iterate all the
time.

As noted in previous section, an accurate solution procedure
(ASP) for incremental learning was proposed by Cauwen-
berghs et al. [13]. The algorithm aims to compute the accurate
impact of any modified sample on Lagrange coefficients and
SVs, which was introduced into regression analysis by Ma et
al. [14]. However, the main shortcoming is its inefficiency.

Therefore, this paper will propose an approximation incre-
mental training algorithm (AITA) based on the ASP. It can be
considered to be a tradeoff of the QTA and ASP as follows:

• Take the nonconvergence of QTA into account. AITA
will consider the cases on which the existing samples
would be turned to be a SV or NoSV due to the modified
samples, which is the idea of ASP.

• Overcome the inefficiency of ASP. AITA allows a spot
of samples could disobey the primal KKT conditions as
long as the loss of precision is tolerant as QTA does [12].
It can dramatically improve the efficiency of training by
only computing the accurate change of samples which
are found most likely to change.

B. Approximation Incremental Training Algorithm

1) Overview of Basic Process: The basic process of AITA
is as follows:

Setp 1: Firstly verify the modified sample sc = (xs, ys)
(suppose s denote its index) whether it meets the primal
KKT conditions according to the theorem 2. It’s unnecessary
to append it into the new training set if it obeys the KKT
conditons, otherwise turn to Setp 2.

Setp 2: Let A denote the indexes of the primal training set.
The training set is divided into the following three parts, i.e.

1) index set of NoSV, that is

NoSV = {i | if sample(xT
i , yi)is NoSV} (26)

2) index set of NSV, that is

NSV = {i | if sample (xT
i , yi)is NSV} (27)

3) index set of BSV, that is

BSV = {i | if sample (xT
i , yi)is BSV} (28)

Obtain all the samples within the radius Δδ = |ys−f(xs)|+
ε of the sc and denote the index set by I as well as let its
potency be ni.

Setp 3: Check the change of the corresponding samples
with index in NSV caused by sc and apply the change to all
the samples with index in C = I ∪NSV . Determine whether
the samples with index in C would turn to SV or NoSV and
keep the samples with index in A− C unchanged.

2) the Realization of AITA: Given the primal training set
be N = {(xT

i , yi)}Ni=1, sc = (xT
s , ys) denote a modified

sample and |g(xs)| = |ys − f(xs)| > ε. Firstly suppose
NoSV,NSV,BSV be the indexes sets obtained by training
with N , and let theirs potencies be np, nq, nl. The basic idea
of AITA is to modify the corresponding Lagrange multiplier
βs of modified sample sc with an increment Δβs, and to make
sure that sc will obey the KKT conditions in a limited iteration
and all the samples with the indexes in S = NSV ∪{s} always
obey the KKT conditions in each iteration. Therefore, the
relationship between Δβs and the change of KKT conditions
are discussed firstly.

At first, let βs = 0, then change (increase or decrease) the
βs gradually with Δβs under the constraint of KKT conditions
(see (13)∼(18)). In each incremental step, the corresponding
increment of samples with indexes in D = I ∪ NSV , i.e.
Δβi, (i ∈ S), should ensure the samples meet the KKT
conditions. In order to make sure that sc also meet the KKT
conditions, it’s necessary that for ∀i ∈ S such that

Δhi = K(xi, xs)Δβs +
∑

j∈NSV

K(xi, xj)Δβj +Δb (29)

0 = Δβs +
∑

j∈NSV

Δβj (30)

where Δb denotes the increment of bias. According to the
KKT conditions, for all the sample with indexes i ∈ NSV ,
the corresponding hi ≡ 0. Thus, the equations (29) and (30)
can be rewritten as follows:∑

j∈NSV

K(xi, xj)Δβj +Δb = −K(xi, xs)Δβs

∑
j∈NSV Δβj = −Δβs

(31)

without loss of generality , suppose NSV = {s1, · · · , snp},
the corresponding sample set be XNSV , then equation(31) can
be transformed into the following matrix form:(

0 eT

e K(XT
NSV , X

T
NSV )

)
·
(

Δb

ΔβNSV

)

= −
(

1

K(XT
NSV , xs)

)
Δβs

(32)

where ΔβNSV = (Δβs1 , · · · ,Δβsnp
)T . Since

K(XT
NSV , X

T
NSV ) is semi-definite, let matrix R be as

follows:

R =

(
0 eT

e K(XT
NSV , X

T
NSV )

)−1

(33)

and substituting into (32), i.e.(
Δb

ΔβNSV

)
= −R ·

(
1

K(XT
NSV , xs)

)
·Δβs

= Γ ·Δβs =

(
γ

γNSV

)
·Δβs (34)
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where

Γ =

(
γ

γNSV

)
= −R ·

(
1

K(XT
NSV , xs)

)
(35)

denotes the Coefficient Sensitivity of the change of multipliers
[13], where γNSV = (γ1, · · · γnp

)T . It’s obvious that R above
will change as the NSV changes, and the update strategy will
be discussed later. In ASP, the corresponding balance condition
of Coefficient Sensitivity is as follows:

Δb = γΔβs (36)
Δβj = γjΔβs, ∀j ∈ A (37)

and let γj ≡ 0, (∀j /∈ NSV ). In AITA, the index set of sample
which will be checked is reduced to I . Note that the samples
with indexes in I meet the balance condition above. Therefore
suppose I ′ = I − I ∩NSV = {i | i ∈ I, i /∈ NSV }, i.e. the
indexes in I rather than in NSV , and suppose nt denote its
potency and I ′ = {t1, · · · , tnt} be the index set and XI′ be
the corresponding sample set. According to (18),(29),(30) and
(35), then

⎛
⎜⎜⎝

Δht1

...
Δhtnt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

φ1

...
φtnt

⎞
⎟⎟⎠Δβs = ΦΔβs (38)

where

Φ =

⎛
⎜⎜⎝

K(xt1 , xs)

...
K(xtnt

, xs)

⎞
⎟⎟⎠ (39)

+

⎛
⎜⎜⎝

1 K(xt1 , xs1) · · · K(xt1 , xsnp
)

...
...

. . .
...

1 K(xtnt
, xs1) · · · K(xtnt

, xsnp
)

⎞
⎟⎟⎠

·
(

γ

γNSV

)
= K(XI′ , xs) + (e,K(XI′ , XNSV )) · Γ

is called Margin Sensitivity [13]. It can be transformed to the
component form as follows:

φi =

⎧⎨
⎩

K(xi, xs) +
∑

j∈NSV

K(xi, xj)γj + γ,∀i ∈ I ′

0 ,∀i ∈ NSV
(40)

Especially, if NSV = ∅, i.e. there are no NSV, equation
(38) can be simplified to Δhj = Δb, ∀j ∈ I ′ according to
(29) and (30). Given any Δβs, the βi(i ∈ NSV ) and b can
be updated according to (35), and hi(i ∈ I ′) can also be
updated according to (35). It’ noted that the samples with
indexes in I ′ and NSV would not change if Δβs is as small
as possible, while Δhi and consequently the samples would
change if |Δβs| is gradually increasing since equation (38)
holds. According to the derivative process of (34) and (38),
they will hold only if the NSV remains unchanged. Therefore,
the next step is to determine the bound of Δβs to keep the
NSV unchanged or determine the termination condition.

Firstly determine the sign of Δβs, i.e. whether βs be
increased or decreased. It’s found that βi = αi − α∗

i and
αiα

∗
i = 0, thus (13)-(15) can be transformed to the following

equation:

βi

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

= −C ; yi − f(xi) ≤ −ε
∈ (−C, 0) ; yi − f(xi) = −ε
= 0 ; −ε ≤ yi − f(xi) ≤ ε

∈ (0, C) ; yi − f(xi) = ε

= C ; yi − f(xi) ≥ ε

(41)

Therefore, according to (41), the sign of Δβs can be
determined as follows:

q = sign(Δβs) = −sign(ys − f(xs)) (42)

Next is to determine the magnitude of Δβs. Using the
taxonomy in [13] for reference, it’s necessary to estimate the
following five cases for the possible four kind of samples with
corresponding indexes in I (that is modified sample, NoSV,
NSV, BSV) to determine the magnitude of Δβs according to
(34) and (38).

1) for a modified sample sc:
• C1: hs ≤ 0 and hs is turned from hs < 0 to hs = 0,

then sc is turned to be a NSV.
• C2: |βs| ≤ C, and βs is turned from |βs| < C to
|βs| = C, then scis turned to be a BSV.

2) for si = (xT
i , yi), i ∈ NSV :

• C3: 0 ≤ |βi| ≤ C, if βi is turned from 0 < |βi| < C
to |βi| = C, then si is turned from a NSV to a BSV,
and if βi = 0, then si is turned from a NSV to a
NoSV.

3) for si = (xT
i , yi), i ∈ BSV :

• C4: hi ≤ 0, and hi is turned from hi ≤ 0 to hi = 0,
then si is turned from a BSV to a NSV.

4) for si = (xT
i , yi), i ∈ NoSV :

• C5: hi ≥ 0, and hi is turned from hi ≥ 0 to hi = 0,
then si is turned from a NoSV to a NSV.

These cases will be discussed summarily:
a) for case C1: According to (38) and (40), Δβs = Δhs

φs
,

thus the maximum increment of Δβsis as follows:

C1 = ys − f(xs) + qε/φs (43)

b) for C2: according to βs, the maximum increment of Δβs

is as following equation since βs is turned from βs < C to
βs = C:

C2 = qC − βs (44)

c) for C3: according to (37), the maximum increment
of Δβs will be discussed with the following cases for the
different values of βi and γi:

C3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(C−βi)
γi

,if 0 ≤ βi < C ,qγi > 0,βiturns to be C
−(C+βi)

γi
,if −C < βi ≤ 0,qγi < 0,βiturns to be −C

−βi

γi
,if −C ≤ βi < 0,qγi > 0,βiturns to be 0

−βi

γi
,if 0 < βi ≤ C ,qγi < 0,βiturns to be 0

(45)
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d) for C4: since (37), the maximum increment of Δβs is

C4 = ys − f(xs)− sign(qγi)ε/γs (46)

e) for C5: similarly to C4, the maximum increment of Δβs

is
C5 = ys − f(xs) + sign(qγi)ε/γs (47)

Note that the Δβs computed above may be different from
each other. Therefore, the upper bound can be determined
as the minimum of all the Δβs computed when Δβs > 0.
In the same way, for Δβs < 0, the lower bound is the
corresponding maximum value. Moreover, it can be simplified
to the following equation:

Δβmin
s = qmin{|C1|, |C2|, |C3|, |C4|, |C5|} (48)

In the iteration of AITA, the R (see (33)) should be updated
as long as NSV changes. Similarly with reference [13], R
should be expanded to the following equation to append the
index of the modified sample sc, which is possible to turn to
be a NSV, to NSV :

R ←
( R 0e

0eT 0

)
+

1

φs
·
(

Γ

1

)
·
(

Γ, 1
)

(49)

where Γ, φi can be computed according to (35) and (40). It
also can be adapted to append the index of any sample into
NSV , meanwhile, R is still reversible [13]. If the indexes of
some samples in index set NSV , just suppose the kth index
will be removed from NSV and the corresponding sample is
sk, then the updating equation of R is as follows:

rij ← rij − r−1
kk rikrkj

∀i, j ∈ N ′ = {0, 1, · · · , k − 1, k + 1, · · · , np}
(50)

where index 0 corresponds to b. According to the analysis
above, the AITA can be presented as follows:

Step 1: βs ← 0, compute hs. If hs > 0, it means that sc
obeys the KKT conditions, thus append its index into NoSV ,
and terminate AITA, otherwise turn to Step 2.

Step 2: obtain sample indexes within |g(xs)|+ ε, i.e. I .
Step 3: Compute the sign q of Δβs according to (42).
Step 4: If sc meets the KKT conditions, i.e. Δβs is

determined by C1 or C2, terminate AITA, otherwise turn to
Step 5.

Step 5: Update Γ,Φ according to (35) and (39) respectively,
compute the increments of Δβs corresponding to various cases
according to (43)-(47), or compute its bound according to (48).
Update βs, b, βi, i ∈ NSV according to (34) and hi, i ∈ I ′

according to (38). Update various index set under the following
cases according to the bound of Δβs:

1) if the bound was computed by C1, then append the index
of sc into NSV and update R according to (49).

2) if the bound was computed by C2, then append the index
of sc into BSV

3) if the bound was computed by C3, and
• if the corresponding βk = 0 for the current sample

sk, then append the index k of sk into NoSV and
update R according to (50).

• if the corresponding βk = C for the current sample
sk, then append the index k of sk into BSV and
update R according to (50).

4) if the bound was computed by C4, then append the index
k of sk into NSV and update R according to (49).

5) if the bound was computed by C5, then append the index
k of sk into NSV and update R according to (49).

III. EXPERIMENT AND RESULT ANALYSIS

A. Synthetic Problem

In order to demonstrate the existence of the transformations
between SV and NoSV and the impact of the location of
modified samples on these transformations, a first-order func-
tion y = f(x) = (1 + x + x2)e0.5x

2

was selected, where a
data set of N = 20 training points in which the input data
point x is picked uniformly from the interval x ∈ [−4, 4], and
the targets are generated by an additive white noise (the true
values and observations are denoted by solid squares and +
respectively as shown in fig.2(a)). Meanwhile, five modified
samples, which were labeled with Loc. i (i = 1, · · · , 5) from
left to right (denoted by hollow circle as shown in fig.2(a)),
were selected according to the geometrical characters of f(x).
The corresponding characters are as follows:
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(a) Basic Scenario

True value
Observation
Modified sample

−4 −2 0 2 4
−1

0
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2

3

4

5
(b) Training result without modified samples

True value
Observation
SV
Prediction

−4 −2 0 2 4
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0

1

2

3

4

(c)Training result of Scenario 1 on the first location

−4 −2 0 2 4
−1

0

1

2

3

4

(d) Training result of Scenario 2 on the first location

Fig. 2. Training results of basic scenario and two test scenarios on Loc. 1

1) Loc. 1: the derivative of f(x) at Loc. 1 is larger than 0
and it locates at an area which is smooth and changes
rapidly on both sides.

2) Loc. 2: the derivative of f(x) at Loc. 2 approximates
to 0 and it locates at an area which contains the local
maximums and changes rapidly on both sides.

3) Loc. 3: the derivative of f(x) at Loc. 3 approximates
to 0 and it locates at an area which contains the local
minimums and changes differently on both sides.

4) Loc. 4: the derivative of f(x) at Loc. 4 approximates
to 0 and it locates at an area which contains the local
maximums and changes smoothly on both sides.
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5) Loc. 5: the derivative of f(x) at Loc. 5 is smaller than
0 and it locates at an area which is smooth and changes
smoothly on both sides.
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(e)Training result of Scenario 1 on the second location

True value
Observation
SV
Prediction

−4 −2 0 2 4
−1

0

1

2

3

4

(f)Training result of Scenario 2 on the second location
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(g)Training result of Scenario 1 on the third location
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(h)Training result of Scenario 2 on the third location

Fig. 3. Training results of two test scenarios on Loc. 2 and 3
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(i)Training result of Scenario 1 on the fourth location
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(j)Training result of Scenario 2 on the fourth location
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(k)Training result of Scenario 1 on the fifth location
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(l)Training result of Scenario 2 on the fifth location
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Fig. 4. Training results of two test scenarios on Loc. 4 and 5

B. Test scenario and simulation result

Meanwhile, three different scenarios as follows are designed
for systematic comparisons on each location.

1) Basic Scenario Neglect modified samples, where ⊕
denotes the SVs trained (whose training set is S)
and dashed denotes the prediction curve (as shown in
fig.2(b))

2) Test Scenario 1 Train the SVR with all the training
set that the modified samples are appended to the primal
training set.

3) Test Scenario 2 Train the SVR with a new training
set which consists of the modified samples and S.

It’s noted that the following conclusions can obtained from
fig.2 to fig.4.
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Fig. 5. Comparison results between AITA and the test scenario 2 on the five
locations

1) It’s found that the offset of the curve approximates 0 as
the distance, which is apart from the modified sample,
increasing according to the comparison of the two test
scenarios with the basic scenario.

2) It’s noted that the impact of the modified sample on
the change of SV beside the modified sample according
to the comparison of the test scenario 1 with the basic
scenario.
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3) It’s found that the more SVs near the modified sample,
the more extent to which the curve changes according
to the comparison of the test scenario 1 with scenario 2.

In order to illustrate the advantage of AITA, we still take
the test function used in fig.2 to fig.4 as an example. Fig.5
shows the comparison results between the test scenario 2 and
AITA on the five locations above. For the precision, AITA is
superior to that of the test scenario 2 from fig.5, especially on
the rougher locations, i.e. Loc. 2, 3 and 4. Moreover, it’s found
that the amounts of SV trained by AITA and the test scenario
1 are approximately equivalent according to the comparison
between fig.5 and fig.2∼4, while the training samples are less
than that of the test scenario 1.

Next, the following two comparison schemes are set to
illustrate the training efficiency of the four scenarios, i.e. basic
scenario, test scenario 1, test scenario 2 and AITA.

1) Efficiency Scheme 1 It’s different about the potency
of training set (there are twelve schemes from 5 to 300
respectively) to evaluate the change of average training
times when there is an appended modified sample (the
additive noise is set bigger to make sure the sample will
be appended into training set) in each five locations.

2) Efficiency Scheme 2 The primal training set keeps
unchanged (150 samples) and evaluate the impact of
different kind of modified sample (which may be ap-
pended into or keep away from the training set) with
different amounts (there are eight schemes from 5 to
100 respectively) on the total training time.
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Fig. 6. Comparison results under the Efficiency Scheme 1

Fig.6 and 7 show that the comparison results under the
efficiency schemes, that is

1) It’s found that the efficiency of AITA is superior to that
of the test scenario 2 while sightly inferior to that of the
test scenario 1 owing to the corresponding potencies of
the training sets when the amount of modified samples
is less according to the fig.6 and 7. However, fig.5
shows that the test scenario 2 is inferior to AITA in
the performance of precision.
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Fig. 7. Comparison results under the Efficiency Scheme 2

2) It’s noted that the training time is increasing with the
amount of the modified samples, while the increasing
rate is different, i.e. that of the test scenario 1 is more
than others according to fig.7 when the amount of mod-
ified samples are more and of complicated composition.
Moreover, the training time of AITA increases slower
than the test scenario 1 and 2 and less than these test
scenarios finally with the increment of sample size,
because some of these modified samples may meet the
KKT conditions and do not attach themselves to the
computation of kernel matrix.

According to the analysis of precision and efficiency, AITA
can improve the training efficiency while preserve a better
precision performance. It’s illustrated that it can enhance the
training algorithm with an outstanding accumulative learning
ability for a changeable training set effectively.

IV. CONCLUSION

This paper proposed a new algorithm for training SVR
quickly under a changeable dataset. It’s known that there
are significant problems in the conventional quick training
algorithms (QTA), e.g. Chunking, SMO et al., and the accurate
solution procedure (ASP) for incremental learning. These
problems result in the lack of convergence or efficiency.
Therefore, this paper is concerned with suggesting ways to
improve the training algorithm, i.e. approximation incremental
training algorithm (AITA), by hybrid the ideas of QTA and
ASP. It learns from the advantages of QTA and ASP, that
is improving training efficiency, avoiding nonconvergence.
Furthermore, the basic process and realization of AITA are
presented. Finally, some comparison schemes are used to
demonstrate the correctness of the idea of AITA and illustrate
its performance. The numerical results indicate that AITA
can indeed improve the quality of SVR in fitting precision
and efficiency. It shows great potential for AITA to the
accumulative learning ability for a changeable dataset which
usually appears in the practical applications.
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[8] K.-R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen,
and V. Vapnik, “Predicting time series with support vector machines,”
in Artificial Neural Networks ICANN’97, W. Gerstner, A. Germond,
M. Hasler, and J.-D. Nicoud, Eds., vol. 1327. Berlin: Springer Lecture
Notes in Computer Science, 1997, pp. 999–1004.

[9] D. Odapally, “Structural optimization using femlab and smooth support
vector regression,” Ph.D. dissertation, University of Texas, 2006.

[10] E. E. Osuna, R. Freund, and F. Girosi, “Training support vector
machines: An application to face detection,” in IEEE Conference on
Computer Vision and Pattern Recognition, 1997, pp. 130–136.

[11] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods-Support Vector
Learning, B. Sch?lkopf, C. J. Burges, and A. J. Smola, Eds. Cambridge,
England: MIT Press, 1999.

[12] W. Zhou, “Kernel-based learning machines,” Ph.D. dissertation, Xi’an
Electronic and Science University, 2003.

[13] G. Cauwenberghs and T. Poggio, “Incremental and decremental support
vector machine learning,” Machine Learning, vol. 44, no. 13, pp. 409–
415, 2001.

[14] J. Ma, J. Theiler, and S. Perkins, “Accurate online support vector
regression,” Neural Computation, vol. 15, no. 11, pp. 2683–2703, 2003.


