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Abstract— In this work, a Modified Functional Link Artificial 

Neural Network (M-FLANN) is proposed which is simpler than a 
Multilayer Perceptron (MLP) and improves upon the universal 
approximation capability of Functional Link Artificial Neural 
Network (FLANN). MLP and its variants: Direct Linear Feed-
through Artificial Neural Network (DLFANN), FLANN and          
M-FLANN have been implemented to model a simulated Water Bath 
System and a Continually Stirred Tank Heater (CSTH). Their 
convergence speed and generalization ability have been compared. 
The networks have been tested for their interpolation and 
extrapolation capability using noise-free and noisy data. The results 
show that M-FLANN which is computationally cheap, performs 
better and has greater generalization ability than other networks 
considered in the work.  
 

Keywords—DLFANN, FLANN, M-FLANN, MLP  

I. INTRODUCTION 
ULTILAYER Perceptrons (MLPs) are the most common type 
of neural networks employed in process modeling. MLPs have 

been successfully applied for adaptive identification and control of a 
variety of nonlinear processes [1]-[6]. Direct Linear Feed-through 
(DLFANN) neural network combines conventional MLP neural 
network architecture with a set of linear terms to produce a 
network for modeling both linear and nonlinear systems 
simultaneously. Lee and Holt applied direct linear feed-
through (DLF) network for modeling of spectroscopic process 
data [7]. DLF neural network offers many advantages over the 
conventional multilayer feed-forward networks for process 
modeling and control [8]-[9]. In Functional Link Artificial 
Neural Networks (FLANNs), the hidden layer is removed 
without giving up non-linearity by providing the input layer 
with expanded inputs that are constructed as the functions of 
original attributes [10]. Removal of hidden layer makes these 
networks extremely simple and computationally cheap. 
Identification of nonlinear processes using FLANNs has been 
reported by researchers [11]-[14]. FLANNs have an inherent 
limitation, of not guarantying universal approximation, which 
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has deterred interest in them. Only a few applications using 
FLANNs are available in literature. Therefore, this has been a 
major motivating factor for modifying FLANN and improving 
upon its approximation ability. In this work, a Modified 
Functional Link ANN       (M-FLANN) is proposed which is 
not only simpler than a MLP but also improves upon the 
universal approximation capability of FLANNs. MLP and its 
variants (DLFANN, FLANN, M-FLANN) have been 
implemented to model a simulated Water Bath System and a 
Continually Stirred Tank Heater (CSTH). The convergence speed, 
interpolation, and extrapolation ability of the four networks is 
verified. 

II. MULTILAYER PERCEPTRON AND ITS VARIANTS 

A. Multilayer Perceptron 
In ANNs, neurons are arranged into groups called layers. 

The name Multilayer Perceptron itself indicates that there are 
multi i.e. more than one layers of neurons. There are usually 
layers of neurons called, hidden layers between the input layer 
and the output layer. . 

B. Direct Linear Feed-through Artificial Neural Network 
A process may exhibit both linear and/or nonlinear behavior 

over its operating range. Thus, it seems more appropriate to 
have a network structure that is capable of handling both 
linear and nonlinear systems. The DLFANN combines 
conventional neural network architecture with a set of linear 
terms to produce a network which can handle both linear and 
nonlinear behavior simultaneously. 

The DLFANN network is shown in Fig. 1. In DLFANN, 
neurons in input layer are not only connected to the first 
hidden layer in the network, but are also connected directly to 
neurons in the output layer (shown by thick solid lines). These 
direct interconnections between input and output neurons are 
responsible for handling linear terms in the function to be 
approximated.  

DLFANNs are better at approximating functions that 
contain both linear and nonlinear terms. But the computational 
complexity of network is increased as weights corresponding 
to direct interconnection between the input and output neurons 
are added. This results in the training to be slower than in 
MLP. It also increases algorithmic complexity. Another factor 
that cannot be ignored is that the added complexity may be 
useful only in case where the function to be approximated is 
considerably linear. In fact, for nonlinear systems, it may give 
only marginal improvement over MLPs.  
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Fig. 1 Direct Linear Feed-through Artificial Neural Network 

(DLFANN) 
 

C. Functional Link Artificial Neural Network 
The function approximation capability of FLANNs can be 

understood as follows: 
Take a MLP with d = 2 input units and h = 3 sigmoidal 

hidden units in the lone hidden layer as an example. The 
output function calculated for this neural network is 

1

* ( )
h

k k jk j
j

y G W x
=

⎛ ⎞
= Φ⎜ ⎟

⎝ ⎠
∑  (1) 

where jkW  is the weight connecting hidden unit j with output 

unit k and kG  the activation function employed by the output 
layer neurons.  

 The hidden layer units calculate a projection of original 
input space into an intermediate one by means of hidden layer 
weights, ijW . 
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jG  is the activation function used at hidden layer neurons. 
In this hidden space, linear discrimination, to be carried out 

by the output weights becomes easier than in the original input 
space. By contrast, linear networks used in FLANN take 
hidden units to the input layer and work with a single layer of 
weights. The output function described by (1) is modified as 

1
* ( )

d

k k ik i
j
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 (4)  

where d’ is the dimension of the new input space 
( 1 '( ( ),... ( ),..., ( ))i dx x xψ ψ ψ . 

The new units ( )i xψ , instead of being learnable arbitrary 
functions of the original attributes as in (3), are now fixed 
polynomial and trigonometric terms constructed out of the 
original attributes. For example, a possible input layer for the 
two-dimensional problem could be 2 2

1 2 1 1 2 2( , , , , )x x x x x x . The 
FLANN network is shown in Fig. 2. The corresponding 

FLANN architecture is capable of capturing nonlinear  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Functional Link Artificial Neural Network (FLANN) 
 

relationships between its original input and output patterns. 
Linear mapping in this polynomial space is, in fact, nonlinear 
in the original input space.  

FLANNs do not have any hidden layer and the 
computational cost, in fact, moves from the hidden layer to 
selection of suitable expanded inputs for the input layer. The 
expanded inputs are chosen using an evolutionary technique, 
which makes use of Genetic Algorithms and gradually evolves 
inputs of the FLANN to achieve the desired model [15]. The 
order of the polynomial used to obtain expanded inputs can be 
gradually increased so that minimum number of inputs is used 
and the complexity of the neural network is minimized. The 
evolutionary algorithm is reproduced below in brief: 

1. The evolutionary algorithm begins from original 
input attributes. This makes sense since some 
problems can be solved linearly, perhaps after 
rejecting some noisy or irrelevant attributes. 

2. Each input vector is encoded by means of a binary 
chromosome of length equal to the number of 
available polynomial terms. A bit 1 specifies that 
corresponding polynomial term is fed into the 
network. 

3. Instead of choosing initial random population, it 
starts from a pool of single feature networks. For 
example if the system to be modeled has five inputs, 
the following initial pool of chromosomes is taken: 
[(1 0 0 0 0), (0 1 0 0 0), (0 0 1 0 0), (0 0 0 1 0) and (0 
0 0 0 1)]. 

4. Roulette-wheel selection and single-point crossover 
have been employed in the GA used. The crossover 
and mutation probability is fixed at 0.9 and 0.05 
respectively. 

5. The maximum number of generations has been fixed 
at 50. 

6. If the error reached by the best individual in the 
population on the validation set is not satisfactory, 
then the order of the polynomial terms is raised by 
one. For example, system having two attributes 1x  
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and 2x  will yield five polynomials of degree two, i.e. 
2 2

1 2 1 1 2 2( , , , , )x x x x x x . 
7. The number of terms grows very quickly with the 

degree of product or trigonometric polynomial. For 
CSTH with 6 input attributes, the number of product 
polynomial terms increase from 27 to 83 as the 
degree is raised from 2 to 3. The search space 
dimension increases from 227 to 283. Therefore, it is 
not recommended to increase the degree of product 
polynomial terms beyond 2. Instead the convergence 
is improved by including trigonometric polynomial 
basis terms given by 

 
cos( x),sin( x),cos(2 x),sin(2 x),

.....,cos(m x),sin(m x)

π π π π

π π

〈

〉
   

where m is the order of polynomial. 
8. The process is repeated with increased number of 

polynomial terms. The best individual obtained in 
previous evolution run is also included in the new 
population. The algorithm is run till the error goal is 
achieved or the degree of polynomial becomes 
prohibitively high. 

As FLANNs do not have any hidden layer; the architecture 
becomes simple and training does not involve full 
backpropagation. Thus, nonlinear modeling can be 
accomplished, by means of a linear learning rule, such as delta 
rule. The computational complexity is also reduced and the 
neural net becomes suitable for on-line applications. Further, 
it reaches its global minima very easily. As FLANNs involve 
linear mapping in polynomial space, they can easily map 
linear and nonlinear terms. Notwithstanding advantages 
accrued, unlike MLP, these networks lack universal 
approximation capability. 

III. MODIFIED FUNCTIONAL LINK ARTIFICIAL NEURAL 
NETWORK  

In this work, the FLANNs have been modified to improve 
upon their approximation ability while still maintaining 
advantages obtained by reduction in computational 
complexity.  
Following are the modifications: 
1. Self-feedback weighted interconnections are added at the 

output layer. 
2. Lateral feedback interconnections are added at the output 

layer. 
3. Output neurons first process expanded inputs by applying 

appropriate activation function as was being done in the 
FLANN and then combine the self and lateral feedback 
outputs only for calculating the outputs. 

The structure of the M-FLANN network is shown in Fig. 3. 
The solid lines in the figure indicate the modifications added. 
It can be seen that the two output neurons have self-feedback 
and lateral connections. For single output systems, a dummy 
output needs to be added for successful implementation of   
M-FLANN. Further, though the network still has no hidden 

layer, it is no longer a true feedforward neural network as 
feedback connections are present. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 M-FLANN Network 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 M-FLANN, Equivalent Feedforward Neural Net 
 
The output neurons of M-FLANN in Fig. 3 contain self and 

lateral feedback connections. A single hidden layer MLP 
neural net in Fig. 4 is equivalent to the M-FLANN network of 
Fig. 3. The hidden layer of equivalent feedforward network 
simulates the first stage of output computation of M-FLANN 
whereby it computes the output y’(y1’,y2’) from the original 
FLANN inputs ( )i xψ , using the equation 

'

1
.

d
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 (5)  

The output layer neurons have linear activation function, as 
their purpose is only to represent the combination of outputs 
from the self and lateral feedback connections in the output 
layer of M-FLANN, given by equations below. 

1 11 1 21 2( . . )y a y a y′ ′= +  (6) 

2 12 1 22 2( . . )y a y a y′ ′= +  

1 2( , )y y y=  
where a11, a12, a21 and a22 are lateral and self feedback 
interconnection weights as shown in Fig. 4. 
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Leaving out inputs at this stage saves significant 
computational overhead as well as the unnecessary repeated 
computation step. The equivalent network is akin to a 
Multilayer Perceptron, and therefore, can make use of any 
gradient descent based learning algorithm for training. The 
inputs of M-FLANN can be very conveniently determined 
using an evolutionary algorithm that makes use of GAs to 
evolve expanded set of inputs, which are product and 
trigonometric polynomial terms of original inputs. Details of 
the algorithm have been described in the previous section. 

The novel proposed neural network is superior to other 
neural architectures in many respects. M-FLANN has a 
systematically laid down procedure for selecting its 
architecture details. It has better convergence speed than 
MLP, DLFANN and FLANN. It has no hidden layer, is 
computationally cheap and has small number of 
interconnection weights and biases, which makes it suitable 
for on-line applications. Also, M-FLANN makes use of linear 
terms, just as used in FLANNs and is able to approximate 
linear as well as nonlinear functions. M-FLANN improves 
upon the approximation ability of FLANN. Therefore, it is 
expected that M-FLANN is likely to re-ignite the interest of 
research community in FLANNs. 

IV. WATER BATH SYSTEM MODEL SIMULATION DETAILS 
Water Bath System is a single-input single-output system. 

However, as different assumptions taken do not hold in 
practice, system components do not behave perfect linearly. A 
mathematical model has been developed for a Water Bath 
System with the following specifications: tank capacity- 12 
litres, inlet temperature- 25˚C, base heater wattage-  2500 
watts, inlet/outlet flow rate- 1 litre/min, stirrer speed-  120 
rpm, sampling period- 30 seconds and system time delay- one 
sample. The control objective is to regulate the temperature of 
water in the tank.. The four ANN architectures discussed in 
sections II and III have been used to model the process. 

Water Bath System is represented by the equation: 

)(/ / . / . .i pdT dt F V T T Q V C ρ= − +  (7)  

where T is the tank temperature, F the flow rate, Ti the inlet 
temperature, V the volume of the tank, Q the heat input, 

pC the specific heat and ρ the density of water. 

A. Network Architecture 
1) Multilayer Perceptron Based Model  

A single hidden layer MLP is employed to model a Water 
Bath System. Four neurons are taken in the input layer. Two 
neurons account for inputs, the tank flow rate F and the tank 
inlet temperature Ti and the other two for the heat input to 
tank water, Q and the delayed output tank temperature, Tp 
respectively. The single neuron in the output layer is used for 
the output tank temperature, T. Twelve neurons are chosen for 
the lone hidden layer and architecture of the MLP network is 
4-12-1. The total number of weights and biases is 73. 

2) Direct Linear Feed-through ANN Based Model  
The DLFANN used to model a Water Bath System makes 

use of additional linear weights. Rest of the architecture is 

akin to that of MLP. Thus, the architecture of the DLFANN 
model of Water Bath System is 4-12-1 and the number of 
weights and biases is increased from 73 to 77.   

3) Functional Link ANN Based Model  
The expanded set of inputs for FLANN is evolved using 

both the product and trigonometric polynomial terms obtained 
from original inputs. The evolutionary algorithm described in 
Section IIC is implemented to determine the expanded inputs 
terms. The evolved FLANN network architecture is 16-1 and 
uses a total of 17 weights and biases.  

4) Modified Functional Link ANN Based Model  
M-FLANN model makes use of identical expanded input 

terms as that of FLANN. But, M-FLANN is designed for 
multi-input multi-output systems having interacting equations. 
Therefore, a dummy output Td, with a constant value taken as 
0.5 is added. Thus, the architecture of M-FLANN controller 
16-2 and the total number of weights & biases, including the 
self and lateral feedback connections is 40.  

B. Generation of Training and Test Data 
1) Generation of Noise-free Training Data 

The ANN models have been trained using training samples 
taken from open loop response of the process. Equation (7) 
describing the process is solved using ODE solver in 
MATLAB. The heat input, Q, to the tank is varied from 250 to 
2250 watts at regular steps of 250 watts. For each value of Q, 
five random combinations of plant inputs are generated. For 
each combination, the response of the system is observed for 
15 minutes. Seven samples at regular time intervals of 150 
seconds are taken from each response. Thus, a total of 316 
input-output training samples are generated.  

2) Generation of Test Data for Interpolation Test 
For generation of interpolation test data, 10 combinations of 

four input parameters, Q, F, Ti & Tp and initial output states, T 
and Tp, are taken at random in ranges for which Water Bath 
System model is trained.  The response of the processant for 
each set of input variables is observed for 15 minutes and 7 
samples at regular intervals of 150 seconds are taken. 
Thereby, a total of 70 test samples for interpolation are 
generated. 

3) Generation of Test Data for Extrapolation Test 
For generation of extrapolation test data, 10 combinations 

of the four input parameters, Q, F, Ti & Tp and the initial 
output states are taken at random. Q is chosen randomly in the 
range varying from 0 to 250 watts and from 2250 to 2500 
watts, i.e. outside the range of training data.  The response of 
the plant for each set of input variables is observed for 15 
minutes and 7 input-output samples at regular intervals of 150 
seconds are taken from each response. Thereby, a total of 70 
test samples for extrapolation are generated.  

The ranges of input-output variables for generation of 
training, interpolation and extrapolation data are shown in 
Table 1. 

4) Generation of Noisy Data for Training and Testing 
In the mathematical model of Water Bath System, it is 

assumed that there are no losses due to heat radiation to and 
from the surroundings and temperature in tank is kept uniform 
with the help of a stirrer. In practice, this may not be exactly 
true. Therefore, to simulate noisy practical situations, random  
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TABLE 1 
RANGES OF INPUT-OUTPUT VARIABLES FOR GENERATION OF TRAINING, 
INTERPOLATION  TEST  AND  EXTRAPOLATION  TEST  DATA  FOR  ANN 

MODELS OF  WATER BATH SYSTEM. 
Range 

Training Interpolation Extrapolation 
Variables* 

Min Max Min Max Min Max 
F 0 2 0 2 0 2 
Q 250 2250 250 2250   0 

2250 
250 

2500 
Ti 23 27 23 27 20 30 
Tp 35 45 35 45 30 50 
T 27 85 27 85 27 85 
Td 0.5 0.5 0.5 0.5 0.5 0.5 

 
noise (maximum ±0.5°C), is added to the tank output 
temperature in the noise-free input-output data sets using the 
random function in MATLAB.  

Twenty-five sets of randomly generated weights for all the 
four ANNs are taken. The DLFANN weights are taken same 
as that of MLP with the addition of direct input to output layer 
weights, so that it could be verified if the addition of these 
linear weights leads to any improvement in results.  

C. Training of ANN Based Models  
MLP, DLFANN and FLANN based controller have been 

trained using SORRPROP training algorithm [16]. For 
training DLFANN, FLANN and M-FLANN, the learning 
algorithm is modified suitably. Although, FLANN can be 
trained using simple delta rule, to have fair comparison of 
different MLP variants, same learning algorithm has been 
employed for all the networks. It is all the more essential, as 
SORRPROP algorithm is considerably faster compared to 
both the delta learning rule and conventional backpropagation. 

V. RESULTS AND DISCUSSIONS FOR WATER BATH SYSTEM 
MODEL 

The first set of simulation tests is conducted using the 
training data to compare their convergence times. Two values 
of sum-squared error (SSE) goal, equal to 0.01 and 0.001, are 
taken to judge the short and long term convergence rates of 
the four ANNs. Maximum training time of 100 and 200 
seconds is chosen for the short-term and long-term 
convergence tests respectively. The network that does not 
converge within the maximum prescribed time-limit is 
assumed to be non-converging. All four ANNs are trained 
using SORRPROP training algorithm. The results obtained 
have been tabulated in terms of minimum, maximum, and 
mean of convergence times taken to converge to the error goal 
by 25 sets of runs for each ANN model. The number of times 
networks do not converge is also reported. For the first set of 
test results given in Table 2 it is seen that FLANN gives the 
least mean convergence time of 1.1494 seconds.   M-FLANN 
gives comparable performance and takes 1.7542 seconds. The 
MLP and DLFANN give large convergence times.    

The results of simulation runs for testing the long-time 
convergence ability of ANN models are given in Table 3. It is 
observed that FLANN that gave least convergence time for 
SSE goal of 0.01 totally fails to converge for SSE goal of 
0.001. This confirms that FLANNs although converge 

TABLE 2  
COMPARISON RESULTS FOR SHORT-TERM CONVERGENCE TEST FOR ANN 

MODELS OF A SIMULATED WATER BATH SYSTEM  
Convergence Time in seconds 

 
ANN  
Type 

Mean Min. Max. Std. dev. 

Not 
Conv-
erged 

MLP 41.6725 7.750 100.000 28.3275 02 
DLFANN 48.7444 11.656 100.000 28.4415 03 
FLANN 1.1494 0.765 2.093 0.2685 00 
M-FLANN 1.7542 0.500 7.984 1.5598 00 
 

TABLE 3  
COMPARISON RESULTS FOR SHORT-TERM CONVERGENCE TEST FOR ANN 

MODELS OF A SIMULATED WATER BATH SYSTEM  
Convergence Time in seconds 

 
ANN  
Type 

Mean  
 

Min.  Max.  Std. 
dev. 

Not 
Conv-
erged 

MLP 145.2675 39.688 200.000 70.435 14 
DLFANN 172.8769 59.453 200.000 50.971 19 
FLANN 200.0000 200.000 200.000 0.0 25 
M-FLANN 6.3631 0.921 28.375 7.410 00 
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Fig. 5 Comparison of Convergence Times of ANN Models of a 

Simulated Water Bath System  
rapidly to their global minima, lack universal approximation 
capability. M-FLANN gives mean convergence time of 
6.3631 seconds and converges at every run. MLP and 
DLFANN networks not only give large convergence times but 
also fail to converge for most of the runs.  

The configuration showing the fastest convergence speed 
out of the 25 runs for each ANN model is trained further and 
the results are plotted in Fig. 5. From the figure, it is observed 
that FLANN shows fastest convergence speed but reaches its 
global minima extremely fast and there is no further 
improvement in SSE thereafter. Therefore, it fails to converge 
for small values of the error goal. DLFANN also does not 
show improvement in convergence time over that of MLP.  

M-FLANN network model has the smallest convergence 
time and outperforms all other ANN networks. M-FLANN is 
trained further using adaptive backpropagation algorithm to 
find out if it also reaches its global minima like FLANN. It is 
seen that unlike FLANN, the SSE value for M-FLANN 
continues to decrease further although at reduced pace to 
0.0002314 in 10,000 epochs. 
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TABLE 4  
COMPARISON   RESULTS   FOR  INTERPOLATION AND EXTRAPOLATION TESTS  
OF  ANN MODELS OF A SIMULATED WATER BATH SYSTEM TRAINED WITH 

NOISE-FREE TRAINING DATA 
ANN 
Type 

Interpolation 
 

Extrapolation 

 SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

MLP 0.000118 0.0338 0.0091 0.0805 
DLFANN 0.000157 0.0351 0.0217 0.0816 
FLANN 0.000285 0.0326 0.0136 0.0828 
M-FLANN 0.000055 0.0330 0.0055 0.0969 
 
 

TABLE 5 
 COMPARISON   RESULTS   FOR  INTERPOLATION AND EXTRAPOLATION 

TESTS  OF ANN MODELS OF A SIMULATED WATER BATH SYSTEM  TRAINED 
WITH NOISE-FREE TRAINING DATA 

ANN 
Type 

Interpolation 
 

Extrapolation 

 SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

MLP 0.0137 0.0047 0.0235 0.0308 
DLFANN 0.0135 0.0057 0.0321 0.0427 
FLANN 0.0161 0.0039 0.0281 0.0355 
M-FLANN 0.0145 0.0041 0.0147 0.0312 
 
The next two sets of simulation tests are conducted to 

evaluate the interpolation and extrapolation ability of four 
ANN models. The configurations showing the fastest 
convergence speed out of the 25 runs for each type of ANN 
models are chosen. In the first set of these simulation tests, all 
ANNs except M-FLANN are trained for a fixed time of 100 
seconds with noise-free training data. As M-FLANN has very 
small convergence times, to avoid overfitting, it is trained for 
25 seconds only. The trained networks are then tested for their 
interpolation and extrapolation ability using noise-free and 
noisy interpolation and extrapolation test data sets.  

The SSE obtained for each ANN model in interpolation and 
extrapolation tests is tabulated in Table 4. From the table, it is 
observed that M-FLANN network gives the minimum SSE of 
0.000055 for noise-free interpolation test data compared to 
0.000118 of MLP, 0.000157 of DLFANN and 0.000285 of 
FLANN. Similar result is observed for noise-free 
extrapolation test data. M-FLANN gives SSE equal to 0.0055 
compared to 0.0091 of MLP, 0.0136 for FLANN and 0.0217 
for DLFANN. The four ANN models perform almost 
similarly for tests conducted using noisy data set.  

For second set of simulation tests the ANN models are 
trained afresh with noisy training data for 100 seconds each. 
M-FLANN model is trained for 25 seconds only. The SSE 
obtained for noise-free and noisy test data sets is tabulated in 
Table 5. For noise-free test data set the SSE reported by ANN 
models increases manifolds compared to results obtained 
when trained with noise-free data. From the results, it is 
observed that M-FLANN gives consistent performance while 
other ANNs give larger SSE for extrapolation test.  For the 
noisy test data set, the performance of ANN models is almost 
similar. It is inferred that on the whole, performance of M-

FLANN model is better than others particularly for noise-free 
interpolation and extrapolation test data sets.  

From the results discussed above, it is evident that            
M-FLANN has better convergence speed and generalization 
ability than other three ANNs considered. 

VI. MODELING OF A CONTINUALLY STIRRED TANK HEATER  
The CSTH process is a MIMO system, described by a set of 

two interacting equations. CSTH is one of the most commonly 
used processes in chemical industry. In CSTH, the objective is 
to raise the temperature of the inlet stream to a desired value. 
A heat transfer fluid is circulated through a jacket to heat the 
fluid in tank.  

The equations used to model the system are as given below: 
/ / . . / . .i j pdT dt F V (T T) UA(T T) (V ρC )= − + −  (8) 

/ . . . / . .j j j ji j j j j pjdT dt F V (T T ) - UA(T T) (V ρ C )= − −    (9) 

where, T and Tj are the tank and jacket temperatures, F and Fj 
the tank and jacket flow rates, Ti and Tji the tank and jacket 
inlet temperatures, U the overall heat transfer coefficient, A 
the area for heat transfer, Cp and Cpj the tank and jacket heat 
capacities, ρ and ρj the tank and jacket fluid density and V and 
Vj the tank and jacket volumes. 

A. Network Architecture 
1) Multilayer Perceptron Based Model 

A single hidden layer MLP is employed to model the CSTH 
process. Six neurons are taken in the input layer. Four neurons 
account for four inputs, tank flow rate F, jacket flow rate Fj, 
tank inlet temperature Ti and jacket inlet temperature Tji and 
the other two for two delayed output states i.e. the tank and 
jacket temperatures, T and Tj respectively. The two neurons in 
the output layer are used for two output variables T and Tj. 
Twelve neurons are chosen for a lone hidden layer. Thus, the 
architecture of MLP is 6-12-2. The total number of weights 
and biases are 110.  

2) Direct Linear Feed-through ANN Based Model 
The DLFANN used to model the CSTH process makes use 

of additional weights, which directly connect the input layer to 
the output layer. Rest of the architecture is akin to that of 
MLP i.e. 6-12-2. It results in higher computational complexity 
as the number of weights is increased to 122. But the 
DLFANN is able to model the linearity in CSTH behavior 
wherever applicable. 

3) Functional Link ANN Based Model  
Twenty-six expanded input terms are evolved using both 

the second order product and third order trigonometric 
polynomial terms obtained from original inputs. Thus, 
architecture of FLANN network is 26-2 and a total of 54 
weights are used.  

4) Modified Functional Link ANN Based Model  
M-FLANN used to model CSTH has the same number of 

expanded inputs as used in the FLANN. Thus, the architecture 
of M-FLANN network is also 26-2. Further, it adds self and 
lateral feedback connections in the output layer and a total of 
60 weights are used. 
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TABLE 6 
  RANGES OF INPUT-OUTPUT VARIABLES FOR GENERATION OF TRAINING, 

INTERPOLATION AND EXTRAPOLATION TEST DATA FOR ANN MODELS OF A 
CONTINUALLY STIRRED TANK HEATER. 

Range 
Training Interpolation Extrapolation 

Variables* 

Min Max Min Max Min Max 
F 20  30  20  30  15 35 

Fj 16  46  16  46    0 
46 

16 
56 

Ti 23  27  23  27  20 30 

Tji 85  95  85  95  80 95 

T 35  65  35  65  30 70 

Tj 55  85  55  85  50 90 

 

B. Generation of Training and Test Data 
1) Generation of Noise-free Training Data 

The CSTH process is modeled using all four ANNs.  For 
generating input-output training samples, jacket flow rate, Fj 
is varied from 16 to 46 litres/minute, in steps of 5 
litres/minute. For each value of Fj, five random combinations 
of three input variables, F, Ti & Tji and the initial output 
states, T and Tj are taken.  The sampling time period of the 
process is taken as 6 seconds. The equation (8) and (9) 
describing CSTH are solved using ODE solvers in MATLAB. 
The response for each set of input variables is observed for 5 
minutes and 11 training samples at regular intervals of 30 
seconds are taken. One sample corresponding to steady state 
conditions is also added. Thereby, a total of 386 training 
samples are chosen. 

2) Generation of Test Data for Interpolation Test 
For generation of interpolation test data set, ten 

combinations of four input parameters, Fj, F, Ti & Tji and 
initial output states, T and Tj, are taken at random but limited 
to the ranges for which the CSTH model is trained. The 
response of the plant for each set of input variables is 
observed for 5 minutes and 11 samples at regular intervals of 
30 seconds are taken from each response. Thereby, a total of 
110 test samples for interpolation are generated. 

3) Generation of Test Data for Extrapolation Test 
For generation of extrapolation test data set, Fj is chosen 

randomly in the range varying from 0 to 16 litres/minute and 
from 46 to 56 litres/minute, i.e. outside the range of training 
data.  Ten combinations of the four input parameters, Fj, F, Ti 
& Tji and the initial output states, T and Tj, are taken at 
random. The response of the plant for each set of input 
variables is observed for 5 minutes and 11 input-output 
samples at regular intervals of 30 seconds are taken from each 
response. Thereby, a total of 110 extrapolation test data 
samples are generated.  

4) Generation of Noisy Data for Training and Testing 
For modeling CSTH, it is been assumed that there are no 

losses due to heat radiation to and from the surroundings and  
the temperature in tank and jacket is kept uniform with the 
help of a stirrer. In practice, this may not be exactly true. 
Therefore, noise (maximum of ±0.5°C), is added to the 
outputs using the random function in MATLAB, to simulate 

noisy practical situations. The noise-free data sets generated  
 

TABLE 7 
 COMPARISON RESULTS FOR SHORT-TERM CONVERGENCE TIME FOR ANN 

MODELS OF A CONTINUALLY STIRRED TANK HEATER 
Convergence Time in seconds 

 
ANN  
Type 

Mean Min. Max. Std. dev. 

Not 
Conver

-ged 
MLP 125.71 24.19 240.00 79.41 06 
DLFANN 39.28 5.38 181.86 38.13 00 
FLANN 0.52 0.41 0.67 0.06 00 
M-FLANN 1.31 1.06 1.72 0.19 00 

 
TABLE 8 

 COMPARISON RESULTS FOR LONG-TERM CONVERGENCE TIME FOR ANN 
MODELS OF A CONTINUALLY STIRRED TANK HEATER 

Convergence Time in seconds 
 

ANN  
Type 

Mean Min. Max. Std. dev. 

Not 
Conver

-ged 
MLP 224.28 110.19 240.00 37.36 20 
DLFANN 161.59 24.55 240.00 80.26 11 
FLANN 240.00 240.00 240.00 0.00 25 
M-FLANN 2.21 1.65 2.67 0.22 00 

 
earlier are modified by adding noise to output tank and jacket 
temperatures. The ranges of input-output variables taken for 
generation of training and test data sets are shown in Table 6. 

VII. RESULTS AND DISCUSSION ON ANN MODELS OF A 
SIMULATED CONTINUALLY STIRRED TANK HEATER  

Twenty-five sets of weights for all the four ANNs are 
generated at random. This has been done so that the results 
obtained on these 25 sets of weights for each network could 
be justifiably treated as generalized.  

The first set of simulation tests is conducted using the 
training data to compare their convergence times. Two values 
of SSE goal, equal to 0.15 and 0.04, are taken to judge the 
short and long term convergence rates of the four networks. 
Maximum training time of 240 seconds is chosen. The 
network that does not converge within 240 seconds, is 
assumed to be non-converging. ANNs are trained using 
SORRPROP training algorithm to achieve the error goal and 
time taken by each to converge to set error goal is noted.  

From the results for short-term convergence rates given in 
Table 7, it is observed that FLANN model of CSTH takes the 
minimum mean time (0.52 seconds) to converge to the SSE 
goal of 0.15. The small value of standard deviation (0.06) for 
FLANN model also indicates that FLANN gives very 
consistent results for every run. M-FLANN model also 
converges fast (1.31 seconds). DLFANN model is about 30 
times slower. The MLP model gives the poorest performance 
and fails to converge for 6 of the 25 runs.  

Table 8 provides results for long-term convergence test, 
SSE=0.04. It is observed that FLANN that showed least 
convergence time in first test set, fails to converge even once. 
This confirms that FLANN reaches its global minima really 
fast and does not improve thereafter. MLP does not converge 
for 20 out of the 25 runs. DLFANN fails half the number of 
times. M-FLANN gives best convergence time (2.21 seconds) 
and converges at every run. Its low value of standard 
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deviation (0.22) also indicates its consistent performance. 
The training results for configurations showing fastest 

convergence speed out of 25 runs for each type of ANN 
models are plotted in Fig. 6. From the results, it is observed 
that M-FLANN network has the smallest convergence times. 
FLANN shows fastest convergence speed but reaches its 
global minima extremely fast and does not improve thereafter.  
DLFANNs perform better than MLPs, but looses in the long 
run. The performance of M-FLANNs is the best and when 
trained further, its SSE decreases to even lower than 0.0009. 

The next two sets of simulation tests are conducted to 
evaluate the interpolation and extrapolation ability of the four 
ANNs. Each ANN configuration that generated minimum SSE 
for modeling CSTH using training data for the first set of 
simulation tests is chosen. In the first set of these simulation 
tests all ANNs are trained for a fixed time of 200 seconds with 
noise-free training data set.  The trained networks are tested 
for their interpolation and extrapolation ability using noise-
free and noisy interpolation and extrapolation test data sets.  

The SSE obtained for each ANN model in interpolation and 
extrapolation tests is tabulated in Table 9. It is observed that 
M-FLANN gives minimum SSE (0.00009) for noise-free 
interpolation test data set compared to 0.0727 of MLP, 0.0727 
of DLFANN and 0.0444 of FLANN. Similar result is 
observed for noise-free extrapolation test data. M-FLANN 
gives SSE equal to 0.0059 compared to 0.1173 of MLP, 
0.1718 for DLFANN and 0.1834 for FLANN. The SSE 
reported by four ANNs for interpolation and extrapolation 
tests conducted using noisy data set is higher but M-FLANN 
gives least error and performs best. The performance of other 
three ANN models is almost identical. 

The second set of simulation runs is conducted to test the 
interpolation and extrapolation ability of ANNs in presence of 
noise. The ANNs are trained afresh using noisy training data 
set for 200 seconds each. The SSE obtained for noise-free and 
noisy test data sets is given in Table 10. M-FLANN again 
scores over other three networks and gives pest performance. 
Interpolation results for noise-free test data set indicate SSE of 
0.0310 for M-FLANN, 0.0483 for FLANN, 0.32 for 
DLFANN and 1.0669 for MLP. Similar results are observed 
for noise-free extrapolation test data set. The results for the 
noisy interpolation and extrapolation data sets also confirm 
superior performance of the M-FLANN model of CSTH.  

It is therefore, concluded that M-FLANN has good 
convergence rate, better generalization ability and gives 
consistent and better performance than all other ANN models 
considered in this work. 

VIII. CONCLUSIONS  
From the results obtained in the work, it is concluded that 

the M-FLANN is computationally cheap and has small 
convergence times. The simulation tests on modeling of Water 
Bath System and CSTH suggest that the M-FLANN network 
has better interpolation and extrapolation ability in 
comparison to MLP, DLFANN and FLANN neural networks 

and is better suited for process modeling. 
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Fig. 6 Comparison of Convergence Speed of ANN Models for a 
Simulated Continually Stirred Tank Heater 

 
TABLE 9 

 COMPARISON   RESULTS   FOR INTERPOLATION AND EXTRAPOLATION 
TESTS OF ANN MODELS OF A SIMULATED CONTINUALLY STIRRED TANK 

HEATER TRAINED WITH NOISE-FREE DATA 
ANN 
Type 

Interpolation 
 

Extrapolation 

 SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

MLP 0.0727 0.2469 0.1173 0.1692 
DLFANN 0.0726 0.2590 0.1718 0.2029 
FLANN 0.0444 0.2137 0.1834 0.2375 
M-FLANN 0.00009 0.2004 0.0059 0.0420 

 
TABLE 10 

 COMPARISON   RESULTS   FOR INTERPOLATION AND EXTRAPOLATION 
TESTS OF ANN MODELS OF A SIMULATED CONTINUALLY STIRRED TANK 

HEATER TRAINED WITH NOISY DATA 
ANN 
Type 

Interpolation 
 

Extrapolation 

 SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

SSE  for  
Noise-free  
Test Data 

SSE  for  
Noisy  
Test Data 

MLP 1.0669 1.2964 3.8253 3.9625 
DLFANN 0.3200 0.2972 1.3524 1.3195 
FLANN 0.0483 0.3225 0.2013 0.2696 
M-FLANN 0.0310 0.3246 0.0409 0.0986 
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