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Simulation of the Finite Difference Time
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Abstract—The finite-difference time-domain (FDTD) method is 7] Y+o H =_\ = )
one of the most widely used computational methods i ot o ox
electromagnetic. This paper describes the dedigmosdimensional
(2D) FDTD simulation software for transverse magnefTM) oH
polarization using Berenger's split-field perfectigatched layer gasz +0E = y 3)
(PML) formulation. The software is developed usihdatlab ot X ox
programming language. Numerical examples validaesbftware.
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|. INTRODUCTION In order to solve these equations numerically, tlaeg

HE finite-difference time-domain (FDTD) method is adlscretlzed according to finite differencing teajunés. The

. . . , central difference approximation is used in thiseca For
flexible and powerful solution tool for solving Maell's example, in equations (1) and (3), central diffeieg results
equations [1-5]. Further, the efficient and acoairsdlution of ple, q ' e

electromagnetic wave interaction problems in unieah in the following equations

regions is one of the greatest challenges of theD-ethod. e TR _

For such problems, an absorbing boundary condgk®C) Hi"(i+¥2.j)=e” H(i+Y/2,)) ®)

must be introduced at the outer grid boundary rtaukite the (1_e’”9('*V2vJ)"‘/ﬂ) EN2(i+1/2,]+ Y Y+ ENV2(i+7/2,j+1 D)

extension of the grid to infinity. _U*(i+],/2')5x{— nV2(i 41/2 T - _;Mz i+12i-
Recently, among a few important studies on ABC W&s Y ') B (Y2, -49-E7(i+12j- 42

Berenger’s Perfectly Matched Layer (PML) method [G]the

PML, he created an artificial medium with magneticE!¥?(i+1/2,j+y 2 =e (V2I¥ANeEnv2(j19/2 j+3 )

conductivity ©*) that will make the boundary condition to (1—e'”;('*’/z'j*¥3‘5‘/£) (

work as wave absorber region. This paper desctiteedesign _

of a two-dimensional (2D) FDTD simulation softwafer o (i+12,j+12dx

transverse magnetic (TM) polarized incident wavengis

Berenger's split-field perfectly matched layer (PML Based on the above formulation, a 2-D FDTD code has

formulation. The software is developed using MatlaBeen written in Matlab programming language to $iteuthe

6)

[Hy(i,j+Y2)-Hy(i+1j+12]

programming language. fields of a plane wave source in lossy media. Tdrenfilation
and the FDTD code are validated by checking theamioal
Il. TWO-DIMENSIONAL TM POLARIZATION results for homogeneous media against the andlytidation.
The Maxwell’'s curl equations as modified by Berengee  The code for 2D FDTD is shown in Appendix.
expressed in their time-dependent form as, In order to test and validate the FDTD code, an
electromagnetic wave source interacting with digiec
oH O(E +E ) cylin.der €= 4.0.,0 =.0.12) of radius 6 cm is simulgted in this
IU_X+g*H =— x id 1) section, shown in Fig. 1. A 1 mW/émlane wave is used as
ot X oy source, and the frequency is setup to 2.5 GHz.r&hson for

using dielectric cylinder is there exist an analtisolution to
this problem [7]. A ¥-directed plane wave source :
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in FDTD code andit is 5.0 psec. Fig. 2 shows a comparison of y

FDTD calculated results with analytic solution ajadhe center
axis o the cylinder. The simulation was made witltcale
attached in Appendix.

Back PML

(ib, jb)

source

(11)

Left PML
TINd STy

Front PML

Fig. 1 Schematic representation of the FDTD contmrtal domain

50

Grid Position, |

Fig. 2 Waveform comparison of the FDTD results Kvdtfferent
PML thicknesses) and the analytical solution fptane wave source

Ill.  PROCEDURE FORPAPER SUBMISSION

In this section, various numerical simulations peeformed
to illustrate the effectiveness of PML code [8]ig.F3 shows
the two FDTD computational domains used in
experiments: a test domainQ;, and the much larger

source ar
(30,25)

Test Boundary

Fig. 3 Test and benchmark computational domains

Then, the local error of the computed field(x, due to
reflections from the PML, is obtained by subtragtthe field
at any point withirQ; at a given time step from the field at the
corresponding point if2g. Here,E,is used to define the error

n

(8)

n
QOcal |i,j - EZ,T i
whereE,r andE,g are, respectively, the FDTD computed E-
fields within the test and benchmark domains. Ferthhe
global error was defined as

€4lobal ‘n = ZZ
i

In Fig. 4 and 5, different numbers of PML are usetside
the FDTD simulation region to test the efficiendytioe PML
ABC for the lossy media. The accuracy of the PMLAAB
compared with that of standard second-order Mur ABLC

n |2

Ez,T

9)

n
-E
i z,B

i

th@he numbers of PML used are 16, 8 and 4, respégtiie is

evident from the result, 16 PML are good enouglalteorb

benchmark domaifg. By calculating the difference betweenmost of the incident waves at the boundaries.

the FDTD solutions in the two domains at each godit at
each time-step, a measure of the spurious reflectmised by
the test ABC is obtained. Initially, a 2-D test dmim100x50
cells long was examined. A square cell was usetth, wi  §

= 0.015 m, and the time step was chosen basedeastdbility
criterion Jt = &/ 2c , wherec is the speed of light in vacuum.
In all the cases examined here, the excitation agsulse
exhibiting a very smooth transition to zero, asduise[8], and
defined as follows,

1 [10-15co¢7m /2p+
n =2 n<40 (7)
27|50 = | 32 6cog 2m /29— cob Bn /
0 n>40

IV. CONCLUSION

The FDTD method is widely used because it is simple
implement numerically. It provides a flexible meafsr
directly solving Maxwell’s time-dependent curl etjoas by
using finite differences to discretize them. Thisper
describes the design of two-dimensional (2D) FDTD
simulation software for transverse magnetic (TM)apaed
incident wave using Berenger's split-field perfgathatched
layer (PML) formulation. The software is developasding
Matlab programming language. The numerical resafieee
very well with the analytical results for homogensanedia.
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Fig. 5 Comparative local error measures for Mur BiML ABCs
along the test grid outer boundary at time-stepli®0&-.

APPENDIX

%  Fundamental constants

%

cc = 2.99792458e8; %speed of ligHtée space
muz = 4.0*pi*1.0e-7; %permeability of érepace
epsz = 1.0/(cc*cc*muz); %permittivity of frepace
freq = 2.5e+9; %frequency of meuexcitation
omega = 2.0*pi*freq;

%

%  Grid parameters

%

ie = 50; %number of grid cells in xeltion

je = 50; %number of grid cells in yeatition

ib = ie+1,

jb =je+1;

dx = 3.0e-3; %space increment of squarieéatt

dt = dx/(2.0*cc); %time step

nmax = 500; %total number of time steps

iebc = 8; %thickness of left and rigtMIL region
jebc = 8; %thickness of front and b&KL region
rmax = 0.00001;

orderbc = 2;

ibbc = iebc+1;

jbbc = jebc+1;

iefoc = ie + 2*iebc;
jefbc = je + 2*jebc;
ibfoc = iefbc + 1;
jbfbc = jefbc + 1;
%

%  Material parameters
%

media = 2;

eps =[1.04.0];

sig =[0.00.12];
mur =[1.0 1.0];

sim =[0.0 0.0];

%

% Field arrays

%

ez = zeros(ibfbc,jbfbc);
ezx = zeros(ibfbc,jbfbc);
ezy = zeros(ibfbc,jbfbc);
hx = zeros(iefbc,jefbc);
hy = zeros(iefbc,jefbc);
%
%  Updating coefficients
%
for i = 1:media

eaf = dt*sig(i)/(2.0*epsz*eps(i));

ca(i) = (1.0-eaf)/(1.0+eaf);

ch(i) = dt/epsz/eps(i)/dx/(1.0+eaf);

haf = dt*sim(i)/(2.0*muz*mur(i));

da(i) = (1.0-haf)/(1.0+haf);

db(i) = dt/muz/mur(i)/dx/(1.0+haf);
end
%
%  Geometry specification (main grid)
%
% Initialize entire main grid to free space
caezx(1:ibfbc,1:jbfbc) = ca(1);
cbezx(1:ibfbc,1:jbfbc) = cb(1);
caezy(1l:ibfbc,1:jbfbc) = ca(1);
cbezy(1:ibfbc,1:jbfbc) = cb(1);
dahxy(1:iefbc,1:jefbc) = da(1);
dbhxy(1:iefbc,1:jefbc) = db(1);
dahyx(1:iefbc,1:jefbc) = da(1);
dbhyx(1:iefbc,1:jefbc) = db(1);

%fields in majnd

%  Add dielectric cylinder

diam = 40; % diameter of cylinder: 6 cm
rad = diam/2.0; % radius of cylinder: 3 cm

ic = iefbc/2; % i-coordinate of cylinder's center
jc =jefbc/2; % j-coordinate of cylinder's cent

for i = iebc+1:ie+iebc-1
for j = jebc+1:je+jebc-1
dist2 = (i-ic)*2 + (j-jc)"2;
if dist2 <= rad"2
caezy(i,j) = ca(2);
cbezy(i,j) = cb(2);
caezx(i,j) = ca(2);
cbezx(i,j) = cb(2);
end
end
end
%
%  Fill the PML regions
%
delbc = iebc*dx;
sigmam=-log(rmax/100.0)*epsz*cc*(orderbc+1)/(2*delb
bcfactor=eps(1)*sigmam/(dx*(delbc”orderbc) * ...
(orderbc+1));

% FRONT region
caezy(1l:ibfbc,1) = 1.0;
cbezy(1:ibfbc,1) = 0.0;
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for j = 2:jebc
y1 = (jebc-j+1.5)*dx;
y2 = (jebc-j+0.5)*dx;
sigmay = bcfactor*(y1~(orderbc+1)-y2~(orderbc+1))
cal = exp(-sigmay*dt/(epsz*eps(1)));
cbl = (1.0-cal)/(sigmay*dx);
caezy(l:ibfbc,j) = cal;
cbezy(1:ibfbc,j) = cbl;
end
sigmay = bcfactor*(0.5*dx)"(orderbc+1);
cal = exp(-sigmay*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmay*dx);
caezy(l:ibfbc,jbbc) = cal;
cbezy(1:ibfbc,jbbc) = cbl;

for j=1:jebc
y1 = (jebc-j+1)*dx;
y2 = (jebc-j)*dx;
sigmay = bcfactor*(y1~(orderbc+1)-y2~(orderbc+1))
sigmays = sigmay*(muz/(epsz*eps(1)));
dal = exp(-sigmays*dt/muz);
dbl = (1-dal)/(sigmays*dx);
dahxy(1:iefbc,j) = dal;
dbhxy(1:iefbc,j) = dbl;
end

% BACK region
caezy(1l:ibfbc,jbfbc) = 1.0;
cbezy(1:ibfbc,jbfbc) = 0.0;
forj = 1:jebc-1
y1 = (j+0.5)*dx;
y2 = (j-0.5)*dx;
sigmay = bcfactor*(y1~(orderbc+1)-y2~(orderbc+1))
cal = exp(-sigmay*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmay*dx);
caezy(1l:ibfbc,jbfbc-jebc+j) = cal;
cbezy(1:ibfbc,jbfbc-jebc+j) = cbl;
end
sigmay = bcfactor*(0.5*dx)"(orderbc+1);
cal = exp(-sigmay*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmay*dx);
caezy(l:ibfbc,jefbc-jebc+1) = cal;
cbezy(1:ibfbc,jefbc-jebc+1) = cbl;

forj = 1:jebc
yl = jdx;
y2 = (-1)*dx;
sigmay = bcfactor*(y1~(orderbc+1)-y2~(orderbc+1))
sigmays = sigmay*(muz/(epsz*eps(1)));
dal = exp(-sigmays*dt/muz);
dbl = (1-dal)/(sigmays*dx);
dahxy(1:iefbc,jefbc-jebc+j) = dal;
dbhxy(1:iefbc,jefbc-jebc+j) = dbl;

end

%  LEFT region
caezx(1,1:jbfbc) = 1.0;
cbezx(1,1:jbfbc) = 0.0;
for i = 2:iebc
x1 = (iebc-i+1.5)*dx;
x2 = (iebc-i+0.5)*dx;
sigmax = bcfactor*(x1”(orderbc+1)-x2”(orderbc+1))
cal = exp(-sigmax*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmax*dx);
caezx(i,1:jbfbc) = cal;
cbezx(i,1:jbfbc) = cbl;
end
sigmax = bcfactor*(0.5*dx)"(orderbc+1);
cal = exp(-sigmax*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmax*dx);
caezx(ibbc,1:jbfbc) = cal;
cbezx(ibbc,1:jbfbc) = cbl;
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for i = l:iebc
x1 = (iebc-i+1)*dx;
x2 = (iebc-i)*dx;
sigmax = bcfactor*(x1(orderbc+1)-x2(orderbc+1))
sigmaxs = sigmax*(muz/(epsz*eps(1)));
dal = exp(-sigmaxs*dt/muz);
dbl = (1-dal)/(sigmaxs*dx);
dahyx(i,1:jefbc) = dal;
dbhyx(i,1:jefbc) = dbl;
end

%  RIGHT region
caezx(ibfbc,1:jbfbc) = 1.0;
cbezx(ibfbc,1:jbfbc) = 0.0;
for i = l:iebc-1
x1 = (i+0.5)*dx;
x2 = (i-0.5)*dx;
sigmax = bcfactor*(x1”(orderbc+1)-x2"(orderbc+1))
cal = exp(-sigmax*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmax*dx);
caezx(ibfbc-iebc+i,1:jbfbc) = cal;
cbezx(ibfbc-iebc+i,1:jbfbc) = cbl;
end
sigmax = bcfactor*(0.5*dx)"(orderbc+1);
cal = exp(-sigmax*dt/(epsz*eps(1)));
cbl = (1-cal)/(sigmax*dx);
caezx(ibfbc-iebc+1,1:jbfbc) = cail,
cbezx(ibfbc-iebc+1,1:jbfbc) = cbl;

for i = l:iebc
x1 = i*dx;
X2 = (i-1)*dx;
sigmax = bcfactor*(x1”(orderbc+1)-x2”(orderbc+1))
sigmaxs = sigmax*(muz/(epsz*eps(1)));
dal = exp(-sigmaxs*dt/muz);
dbl = (1-dal)/(sigmaxs*dx);
dahyx(iefbc-iebc+i,1:jefbc) = dal;
dbhyx(iefbc-iebc+i,1:jefbc) = dbl;
end
%
% BEGIN TIME-STEPPING LOOP
%
for n = 1:nmax
%

%  Update electric field EZ in main grid

0,
(]

ezy(.,jebc+2) = ezy(:,jebc+2) + 61.4*sin(oratyrdt);

ezx(2:iefbc,2:jefbc)= caezx(2:iefbc,2:jefbckxé2:iefbc,2:jefbc) + ...
cbezx(2:iefbc,2:jefbc).*(hyx(2:iefbc,2:jefp hyx(1:iefbc-1,2:jefbc));

ezy(2:iefbc,2:jefbc)= caezy(2:iefbc,2:jefbcky2:iefbe,2:jefbc) + ...
cbezy(2:iefbc,2:jefbc).*(hxy(2:iefbc,1:jefld)- hxy(2:iefbc,2:jefbc));

ez = ezx + ezy;

%
%  Update magnetic fields (Hx and Hy) in mgrid

%
hxy(:,:) = dahxy(:,:).*hxy(:,:) + dbhxy(:,:).%
(ezx(1:iefbc,1:jefbc) + ezy(l:iefbc,1:jejbe..
ezx(1:iefbc,2:jbfbc) - ezy(1:iefbc,2:jbfhr)

hyx(:,:) = dahyx(:,:).*hyx(:,:) + dbhyx(:,:).%
(ezx(2:ibfbc,1:jefbc) + ezy(2:ibfbc,1:jefbc...
ezx(1l:iefbc,1:jefbc) - ezy(1l:iefbc,1:jeflic)

% END TIME-STEPPING LOOP

end
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