
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

697

Fig. 1. Gaia Stages

Extensions to Some AOSE Methodologies
Louay M. Jeroudaih#1, Mohamed S. Hajji#2

Software Engineering department, Faculty of IT, University of Damascus-Syria
1louy.jer@gmail.com 2mshaj@scs-net.org

Abstract— This paper looks into areas not covered by prominent

Agent-Oriented Software Engineering (AOSE) methodologies.
Extensive paper review led to the identification of two issues, first
most of these methodologies almost neglect semantic web and
ontology. Second, as expected, each one has its strength and
weakness and may focus on some phases of the development
lifecycle but not all of the phases. The work presented here builds
extensions to a highly regarded AOSE methodology (MaSE) in order
to cover the areas that this methodology does not concentrate on. The
extensions include introducing an ontology stage for semantic
representation and integrating early requirement specification from a
methodology which mainly focuses on that. The integration involved
developing transformation rules (with the necessary handling of non-
matching notions) between the two sets of representations and
building the software which automates the transformation. The
application of this integration on a case study is also presented in the
paper. The main flow of MaSE stages was changed to smoothly
accommodate the new additions.

Keywords—Agents, Intelligent Agents, Software Engineering
(SE), UML, AUML, and Design Patterns.

I. INTRODUCTION
GENT-Oriented Software Engineering (AOSE) is one of
the modern approaches in software engineering field. It

focuses on agents' domain and tries to represent agents and its
related concepts in high-level abstractions in order to describe
the software system clearly [1]. Agent-oriented approach
presents a new means of analyzing, designing and developing
complex competitive and cooperative software systems. It
tries to improve current practices in software engineering and
to extend the range of applications these methodologies can
handle [2]. This paper gives an overview of recent researches
on Agent-Oriented Software Engineering and proposes
enhancements to MaSE, a leading methodology in this field.
The improvements concentrate mainly on MaSE weaknesses
in requirement specification by including a special stage for
requirements and building transformation rules to transfer
them to the standard MaSE diagrams. In addition, the paper
describes an advanced stage of work in progress for
incorporating ontology concepts into the MaSE diagrams.

In the second section, the main well established AOSE
methodologies are reviewed. The third section discusses how
new concepts will be integrated into MaSE methodology. The
main transformation rules are presented in the forth section,
while a good size case study is handled is the fifth section.
Conclusions and future works are left for the final section.

II. QUICK REVIEW OF WELL ESTABLISHED AOSE
APPROACHES

Many agent-oriented methodologies were developed to
benefit from agents features/capabilities inside the software
lifecycle. Their general aim was to build a consistent process
for developing software or to enhance some particular parts of
the current development lifecycle. So the efficiency and
performance can be improved. There is a number of agent-
oriented derived methodologies like: Gaia, MaSE, MAS-
CommonKADS, MASSIVE, MESSAGE, PASSI, Tropos and
Prometheus [3][4]. The following subsections overview Gaia,
Tropos and MaSE methodologies which are in the leading
pack:

A. Gaia
Wooldridge, Jennings and Kinny [1][5] presented Gaia

methodology as a general methodology to support both the
micro-level (agent structure) and macro-level (agent society
and organization structure). This methodology suffers a
problem that agent abilities are static. The main motivation
behind Gaia was representing the autonomous, problem-
solving nature of agents, the ways of performing interactions

and creating organizations [1].
Gaia divided the process of designing software into two

main stages (Figure 1): analysis and design. The Analysis
stage includes two internal steps, which are building Role
Model and Interaction Model in order to build the conceptual
models of the target system. While Design stage includes two
internal steps, which are building Agent Model, Services
Model, and Acquaintance Mode in order to transform the
abstract constructs to well-defined entities that can directly be
mapped to the implementation code [4].

Another version of this methodology was built and called
Gaia v.2 included three additional models that are
Environmental Model, Organizational Rules and

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

698

Fig. 2. MaSE stages

Organizational Structures. After that ROADMAP
methodology was created which is considered as an extended
version of Gaia. It focused on dynamic role hierarchy,
additional models for agent's environment, and the agent
knowledge concepts [8].

B. Tropos
Tropos methodology was developed by a group of

researchers from various universities in Canada and Italy for
agent-based system development with strong focus on early
requirements analysis where the domain stakeholders are
deeply analyzed [4].

Tropos divided the process of designing software into four
main stages: Early Requirements Analysis stage focuses on
the intentions of the system's stakeholders that modeled as
goals. Late Requirements Analysis stage focuses on building
the Strategic Dependency Model between the system's
components. Architectural Design stage builds a preliminary
model of system structure that describes how system
components will work together. Detailed Design offers
additional detail for each architectural component of a system
[8][6].

C. MaSE
Wood and DeLoach [1][9] presented Multi-agent Systems

Engineering Methodology (MaSE) methodology as a general
purpose technique that supports application domain and
automatic code creation through the MaSE tools. The goal of
MaSE is to provide us with a complete methodology in order
to lead the designer from the initial system specification to the
implemented system [1][9][7].

MaSE divided the process of designing software into two
stages (Figure 2): The Analysis phase consists of three steps:
Capturing Goals that includes the Goal Hierarchy model,
Applying Use Cases that includes the Use Case and Sequence
Diagrams, and Refining Roles that includes the Role Model
and Concurrent Tasks Model. The Design phase consists of
four steps: Creating Agent Classes that includes the Agent
Model, Constructing Conversations that includes the

Conversations Model, Assembling Agent Classes that
includes the Agent Architecture Model, and System Design
that includes the Development Diagram [4][9][10][7].

III. EXTENDING MASE
The choice of working on MaSE methodology and

improving its features is based on two main reasons. First, it is
one of the most common mature general purposes
methodologies [1]. Second, its structure and diagrams are
similar to those used in the main stream software engineering
methodologies, and it uses (or extend) standard and well-
formed diagrams. The introduced modifications to the MaSE
methodology led to a change in its original flow. The new
modified flow is shown in figure 3 (notice the bold boxes and
lines and compare with figure 2). As mentioned earlier, the
extensions include integrating early requirements handling
and incorporating ontology concepts.

A. Integrating early requirements specification into MaSE
MaSE methodology doesn’t concentrate on the system

requirements, and it deals with the requirements as a separated
phase from the software analysis process, while other
methodologies (like Tropos) may not have MaSE’s flexibility
and modeling power but they focuses deeply on the early
requirements definitions [8]. The first part of this work
integrates early requirements stage into MaSE’s process of
designing software as a new stage. This will divide the
process of designing software in MaSE into three stages
instead of two (figure 3).

To achieve that, the following process was followed:
• Research was conducted to find the most advanced

environments of MaSE.
• AgentTool3 was selected. It is a special tool developed

by the Multi-agent & Cooperative Robotics Laboratory
[11]. This tool offers highly rich interfaces with extra
features for supporting MaSE diagrams [10] [12].

• Research was conducted to find the most advanced
environments that support early requirements diagrams.
Concepts similar to Tropos’s early requirements
diagram were favoured for modelling the final system’s
requirements.

• SI* tool [13], which is a special environment that
supports Tropos methodology was selected. Using this
tool allows the creation of the early requirements
diagram which defines system scope and all objects
inside it (agents, roles, goals…). Besides, we will be
able to define how all of those objects
connects/interacts with each other (section 4).

• Finally, transformation rules from SI* representation to
MaSE (AgentTool3) representation were developed,
and a special software was built to handle all objects,
relationships and concepts in the early requirements
diagram, and then, accordingly, generate preliminary
Agents, Goals and Roles diagrams as required in MaSE
environment. This work can help the designers to build
concrete MaSE models consistent with each other. The
main steps we conducted were:
o Checking the XML format of SI* tool’s early

requirements diagram, and analyzing all relationships
between its objects.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

699

Fig. 3. The extended MaSE stages

Fig. 4. The Ontology support tool

o Checking the XML format of AgentTool3’s
Agents, Goals and Roles diagrams, and analyzing all
relationships between their objects.

o Creating all needed transformation rules
(summarized in section 4) to transfer all objects,
relationships and concepts from the early
requirements diagram to the Agents, Goals and Roles
diagrams.

The process mentioned above allows designers to generate
preliminary Agents, Goals and Roles diagrams based on the
early requirements diagram and use them directly.
Additionally, the tool generates a note file for all relationships
that did not map into any of the Agents, Goals or Roles
diagrams. These notes provide the information which
designers might require to modify the Agents, Goals or Roles
diagrams if they needed to do that.

This work makes modifications on the software designing
process of MaSE by adding a special phase for requirements
and adding Preliminary Roles inside the Refining Roles step.
This step allows designers, if they like, to check the generated
diagrams in order to update them in case any additional
information needs to be presented in them.

B. Integrating ontology concepts into MaSE
Unfortunately, most existing AOSE methodologies

(including MaSE) do not pay enough attention to information
domain specification for multi-agent systems and for the
agents inside the system. The interaction between agents in
the system usually occurs through communications which is
usually defined using the standard agent communication
protocols. Systems usually require passing all kinds of
information between agents in the form of parameters.
However, without specifying the information domain of the
system, designers will not be able to specify exactly what
types of information need to be passed as parameters and will

not be able to describe the information flow between the
system’s agents [14].

In order to use ontologies which describe the domain of
information inside a system in MaSE, this work suggests
adding a new step which is named Creating Ontology, inside
the Analysis stage. This step allows designers to construct the
final system’s ontology that can be used inside the other steps.
This step should occur after the Applying Use Cases step in
order to specify exactly what types of parameters are needed
to be passed between agents, goals, tasks …etc.

To build the ontology the following process is advocated:
• Defining the Ontology’s Scope: in this step, the

designer must specify what the main concepts of
ontology are and what objects will use them inside the
system.

• Checking Old Diagrams: in this step, the designer must
check all objects in all previous diagrams (Goal
Hierarchy، Use Cases، Sequence Diagram) in order to
find all types needed to be defined in the ontology so all
objects in that diagram can be described.

• Defining Levels: based on the final system scope, the
designer can define exact levels of detail to describe all
objects inside the system.

• Describing Preliminary Ontology: in this step, the
designer will be able to define the main types in the
ontology, and for each type he/she can specify exactly
what features need to be presented.

• Searching for an Old Ontology: in this step, the
designer must search for any old ontology that can meet
all or some of the system’s types. This will help
designers integrating new systems with other existing
systems.

• Refining Ontology: in this step, the designer must check
the built ontology to ensure that it is totally sound and
meets final system’s requirements.

To support this process, a special software tool is
underdevelopment (figure 4). This tool allows designers to
define all types and relationships between them in order to
identify the hierarchy of all needed types in the ontology. On
the other hand, the tool allows designers to define types in
detail including their features and axioms.

IV. TRANSFORMATION RULES
The transformation rules which were developed in this

work are thorough and lengthy. This why it's difficult to
include them all in this paper.

Tables I, II and III present samples of the most significant
of these rules which were used for transferring
objects/relationships from the early requirements diagram in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

700

the SI* platform to the Agents, Goals and Roles diagram in
the AgentTool3.

TABLE I
MAIN TRANSFORMATION RULES IN THE AGENTS DIAGRAM

Name Instead
of

Transformation
type

Description

Agent Agent Totally and direct. Each Agent in
the SI* platform
will be replaced
with an Agent in
the agents
diagram.

Capability Resource Totally but not
direct.

Each Resource
in the SI*
platform will be
replaced with a
Capability in the
agents diagram.

TABLE III
MAIN TRANSFORMATION RULES IN THE GOALS DIAGRAM

Name Instead of Transformation
type

Description

AND Composition Partially and not
direct.

Each
'Composition'
relation have
“And” feature in
the SI* platform
will be replaced
with a 'AND'
relation in the
goals diagram.

OR Composition Partially and not
direct.

Each
'Composition'
relation have
“Or” feature in
the SI* platform
will be replaced
with a 'OR'
relation in the
goals diagram.

TABLE IIIII
MAIN TRANSFORMATION RULES IN THE ROLES DIAGRAM

Name Instead
of

Transformation
type

Description

Service Task Totally but not
direct.

Each Task in the
SI* platform will
be replaced with a
Service in the roles
diagram.

Provides Provide
(only
from
Agents
to Tasks)

Partially and not
direct.

Each 'Provide'
relation from
Agents to Tasks in
the SI* platform
will be replaced
with an 'Provides'
relation in the roles
diagram.

Notes:
• “Totally” transformation means that the

component/relation in the SI* platform will be copied
totally to one of the AgentTool3 diagrams at least.

• “Partially” transformation means that the
component/relation in the SI* platform will be copied to

one of the AgentTool3 diagrams at least but based on
some conditions in the transformation rule.

• “Direct” transformation means that the
component/relation in the SI* platform will be copied
as is to one of the AgentTool3 diagrams at least.

• “Not Direct” transformation means that the
component/relation in the SI* platform will be copied
as another component/relation to one of the AgentTool3
diagrams at least.

V. CASE STUDY
The conference management system has become fairly

common in AOSE articles [8]. This system is used here as a
case study to demonstrate how the suggested transformation
rules, and the tool which was developed in this work can be
used to generate all needed MaSE diagrams efficiently starting
from a clear early requirements diagram.

The conference management system is responsible for
managing various sized international conferences and the flow
of evaluation for research papers and it requires coordination
of several individuals and groups (authors, reviewers, decision
makers, review etc.).

The conference management system is an organization
(agents' organization according to AOSE terminology) and it
will work with the authors' organization that used to be
considered as a resource to it, because authors used to write
their papers and send them to the conference management
organization. The organizations' members will get the papers
and store them in the DB. After that they send them to
evaluators who will check the papers and evaluate them. Then,
papers will be forwarded to a decision maker in order to check,
review and accept or reject them. Then the final decision will
be forwarded to notifiers who will inform the authors about
the final decision.

First, the early requirements diagram needs to be drawn and
the following issues need to be considered:

1) The agents of this system are the Authors, Members and
Chairmen (decision makers).

2) The roles of this system are the Papers’ Managers,
Notifiers, Reviewers and Decision Makers.

3) Authors will write a paper and send it to the conference
management organization by using a suitable sending tool.

4) Papers’ Managers will receive the papers and store them
in the conference’s archiving system. Then they will send
them to the Reviewers in order to evaluate them. After that
Reviewers will send them to one of the Decision Makers
which make the final decision about each paper. Decision
Makers will then send them to the Notifiers who will send the
final results to the Authors.

5) The Chairmen agent inherits from the Members agent.
The final requirements diagram is presented in figure 5.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

701

Fig. 6. The Goals diagram

Fig. 5. The early requirements diagram

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:4, 2010

702

After drawing the early requirements diagram, the tool
developed in this work can be used to generate Agents, Goals
and Roles diagrams. The result is shown in figures 6, 7 and 8.
Figure 6 presents the generated Goals diagram, while Figure 7
describes the generated Agents diagram, and Figure 8
describes the generated Roles diagram.

In addition, the tool generates a note file which includes

notes about all components/relationships that didn’t appear in
any of MaSE diagrams. Figure 9 shows a sample of that file.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposes some modifications to the MaSE

methodology by integrating early requirement specification
and ontology concepts into the standard flow of a well
established methodology. The work also proposes a list of
transformation rules that should be used in the transformation
tool in order to transfer all information in the early
requirement diagram to the Agents, Goals and Roles diagrams
of MaSE. In addition, a work was conducted on integrating
ontology concepts on the MaSE flow in order to clearly define
the types of all used objects in all diagrams.

Several open points still remain, especially in the future
usage of the MaSE (especially after integrating early

requirements and ontology concepts in it) which may
concentrate on:

• Symantec web: in order to create a great network of
intelligent agents that interacts together to do many
sophisticated tasks.

• Developing open systems: that will allow developers to
create any kind of agents and allow them to coordinate
with other agents in order to do some special tasks of
the system. But before that, agents must be checked and
confirmed that they satisfied all needed working rules
of the system.

 REFERENCES
[1] Amund Tveit. A Survey Of Agent-Oriented Software Engineering,

NTNU Computer Science Graduate Student Conference, Trondheim,
Norway - May 2001.

[2] Nicholas R. Jennings and Michael Wooldridge. Agent-Oriented
Software Engineering. 2001 AAAI/MIT Press.

[3] Brian Henderson-Sellers and Ian Gorton, Agent-Based Software
Development Methodologies, Workshop on Agent-oriented
Methodologies at OOPSLA 2002, Seattle, USA, November 2002.

[4] Khanh Hoa Dam. Evaluating And Comparing Agent-Oriented
Software Engineering Methodologies, RMIT University – Melbourne,
Australia, Master thesis, September 2003.

[5] Franco Zambonelli Nicholas, R. Jenningsy and Michael Wooldridge,
Developing Multiagent Systems: The Gaia Methodology 2003.

[6] http://www.troposproject.org/ last Jan 2010.
[7] http://macr.cis.ksu.edu/ last Jan 2010.
[8] Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli,

METHODOLOGIES AND SOFTWARE ENGINEERING FOR
AGENT SYSTEMS, 2004.

[9] Mark F. Wood and Scott A. DeLoach, An Overview of the Multiagent
Systems Engineering Methodology, First International Workshop,
AOSE 2000, Limerick, Ireland.

[10] Scott A. DeLoach, Analysis and Design using MaSE and agentTool,
12th Midwest Artificial Intelligence and Cognitive Science Conference
(MAICS 2001) Miami University, Oxford, Ohio.

[11] http://agenttool.cis.ksu.edu/, last update 01 October 2009.
[12] Juan C. Garcia-Ojeda, Scott A. DeLoach and Robby, agentTool III:

From Process Definition to Code Generation, Kansas State University
2009.

[13] http://sesa.dit.unitn.it/sistar_tool/home.php?7, last update 2009.
[14] Jonathan DiLeo, Timothy Jacobs, Scott DeLoach, Integrating

Ontologies into Multiagent Systems Engineering.

Fig. 9. The note file

Fig. 8. The Roles diagram

Figure 7. The Agents diagram

