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Selecting an Advanced Creep Model or a
Sophisticated Time-Integration? A new Approach

by means of Sensitivity Analysis
Holger Keitel

Abstract—The prediction of long-term deformations of concrete
and reinforced concrete structures has been a field of extensive
research and several different creep models have been developed
so far. Most of the models were developed for constant concrete
stresses, thus, in case of varying stresses a specific superposition
principle or time-integration, respectively, is necessary. Nowadays,
when modeling concrete creep the engineering focus is rather on the
application of sophisticated time-integration methods than choosing
the more appropriate creep model. For this reason, this paper presents
a method to quantify the uncertainties of creep prediction originating
from the selection of creep models or from the time-integration
methods. By adapting variance based global sensitivity analysis,
a methodology is developed to quantify the influence of creep
model selection or choice of time-integration method. Applying the
developed method, general recommendations how to model creep
behavior for varying stresses are given.

Keywords—concrete creep models, time-integration methods, sen-
sitivity analysis, prediction uncertainty.

I. INTRODUCTION

THE prediction of long-term deformations of concrete
and reinforced concrete structures has been a field of

extensive research for many decades and several different
creep models have been developed so far. These models
vary in their theory, complexity, and in described phenomena.
Consequently, the prediction quality of these models varies
strongly. Nevertheless, most of these models were developed
for constant concrete stresses only, thus, in case of varying
stresses a specific superposition principle or time-integration,
respectively, is necessary. Different complex time-integration
methods exist [1] in order to simulate creep at varying concrete
stresses using the models developed for constant stresses.
Starting from the simplified Effective Modulus Method, ne-
glecting all stress history and taking only into account the
actual material properties and stress state, and ending up in
the time and computational power demanding superposition
principle by Boltzmann [2] or its extension to non-linear creep
by Diener [3].

Analyzing practical applications it is observed that the focus
of the engineer is rather on the use of a sophisticated time-
integration methods than on the selection of a more appropriate
creep model [4]. This occurs even when the codes give the
opportunity to choose different creep models and evaluation
methods for the prediction quality of these models exist
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[5]. For this reason, the present paper presents a method to
quantify the uncertainties of creep prediction coming from
the selection of creep models or from the choice of time-
integration methods by means of sensitivity analysis. From the
outcome of exemplary applications of the developed method-
ology, recommendations for the engineers how to model creep
behavior for varying stresses are given.

In the next section the different creep models and time-
integration methods are explained. Section III describes the
proposed method of variance based global sensitivity analysis
followed by a numerical example in order to demonstrate the
functionality of the algorithm. Finally, conclusion are drawn
from the results of the analyses.

II. CREEP MODELS

A. Creep Models

The applied models are briefly explained in this section. The
following equations are only valid for the determination of the
creep compliance Cc and creep strain εc,cr, respectively, for
constant stresses. The application of these models to varying
stresses is content of the next subsection.

Model ACI209 [6] assumes an ultimate creep coefficient
ϕc,∞ and combines it with a hyperbolic time-function in
order to determine the creep compliance Cc. The values of
d = 10d for the addend and ψ = 0.6 for the exponent of
the time-function are recommended. The coefficient ϕc,∞ is
defined by the corrections factor γc, depending on concrete
age at beginning of loading t0, relative humidity RH , con-
crete composition, geometry, and fresh and hardened concrete
properties. The creep coefficient refers to Young’s modulus
of the concrete age at beginning of loading Ec,t0 . The creep
compliance Cc becomes

Cc (t, t0) =
ϕc (t, t0)

Ec,t0

=

(t−t0)
ψ

d+(t−t0)
ψϕc,∞ (t0)

Ec,t0

. (1)

with

ϕc,∞ (t0) = 2.35 γc = 2.35 γt0γRHγaγV/Sγslγf−a. (2)

The time-dependent total compliance of concrete Jc addition-
ally includes the elastic compliance and is defined as

Jc (t, t0) =
1

Ec,t0

+ Cc (t, t0) . (3)

The resulting creep strain εc,cr becomes

εc,cr (t, t0) = Cc (t, t0)σc (4)
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and the total strain εc,tot is defined as

εc,tot (t, t0) = Jc (t, t0)σc. (5)

Model MC10 [7] is quite similar to ACI209. The differences
between both models are the definition of the ultimate creep
coefficient ϕc,∞, referring to Young’s modulus at concrete age
of 28 days Ec,28, and the hyperbolic time-function with the
exponent of 0.3. Furthermore, an over-proportionality factor
FΩ (σc) for stress levels exceeding 0.45fcm is integrated in
ϕc,∞. The creep coefficient depends on concrete strength,
relative humidity and type of cement. The creep compliance
results to

Cc (t, t0, σ) =
ϕc (t, t0, σ)

Ec,28
, (6)

with

ϕc (t, t0, σ) = FΩ (σc)ϕRHβfcmβt0,eff

[
t− t0

βH + (t− t0)

]0.3
.

(7)
The definitions of the total compliance and strains are equiv-
alent to Eq. (3), (4) and (5).

Similar to MC10 model GL2000 [8] defines the increase
of the creep compliance using the creep coefficient ϕc and
referring to Ec,28, Eq. (6). The value of ϕc is defined by
humidity, cement type and geometrical properties. In contrast
to the first models no ultimate creep coefficient is assumed,
rather a continuous increase of creep compliance over time is
simulated. The time-dependent development of Cc is defined
by hyperbolic and hyperbolic-exponential functions. The fac-
tor φ (tc) takes into account drying before loading.

ϕc (t, t0) =

φ (tc)

[
2

(
(t− t0)

0.3

(t− t0)
0.3

+ 14

)
+

(
7

t0

)0.5(
t− t0

t− t0 + 7

)0.5
]

+ φ (tc)

⎡⎣2.5 (1− 1.086RH2
)( t− t0

t− t0 + 0.15
(
V
S

)2
)0.5

⎤⎦ .
(8)

Eq. (3), (4) and (5) hold for the determination of Jc and the
strains.

Model B3 [9] is the creep model with the highest physical
background, based on the solidification theory by Bažant and
Prasannen [10], [11]. It distinguishes creep explicitly into basic
and drying creep. Model B3 utilizes the total compliance Jc
instead of creep compliance Cc, defined as the following:

Jc (t, t0, σ) = q1 + FΩ (σc)C0 (t, t0) + FΩ (σc)Cd (t, t0, td) ,
(9)

where q1 is the instantaneous compliance, C0 is the basic
creep compliance, described by the aging visco-elastic com-
pliance q2, the non-aging visco-elastic compliance q3, and
the visco-plastic compliance q4, and Cd is the drying creep
compliance, defined by q5. The parameters q1...q5 depend on
the concrete composition, concrete stiffness and strength, and
relative humidity. Over-proportionality for higher stress levels
is taken into account by FΩ (σc). In contrast to the other
three models the time-independent compliance q1 is defined
by 0.6/Ec,t0 instead of 1/Ec,t0 . This effectively separates
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Fig. 1: Discretization of concrete stress history into stress
increments Δσc

the short-term creep compliance which is included in the
experimental determination of Young’s modulus. The total
strain is calculated using Eq. (5).

B. Application of Models to Varying Stresses

The creep models described in the latter section are valid
only for constant stresses, which is a special case that does
not occur in reinforced concrete, prestressed concrete, or steel-
concrete-composite structures. Caused by the bond of the
materials steel and concrete a permanent redistribution of
stresses takes place so that the case of constant stress is not
practically relevant. Hence, the approaches explained in the
last section need to be modified into integral or differential
formulations in order to simulate variable stresses.

Assuming linear creep, the superposition principle for linear
visco-elastic materials from Boltzmann [2] can be applied.
This principle takes into account the loading and deformational
states for different beginnings of loading or durations of
loading. Hence, it is possible to consider the explicit loading
history of concrete when calculating the creep strains [12].
The stress history is unknown in advance so that a direct
integration of the stresses over time is impossible. Thus, a
numerical calculation of the creep strains is necessary. The
stress history is divided into stress increments Δσc, Fig. 1,
and the total displacement at time t results from the sum over
all N increments

εc,tot = σc (t0) Jc (t, t0) +
N∑
i=1

Δσc (ti) Jc (t, ti), (10)

with the actual time increment i, the time at beginning of an
increment ti, and its corresponding stress increment Δσc (ti).
In case of non-linear creep the extension of this method by
Diener [3] can be applied. In order to calculate the creep
strains at the actual time t the superposition principle requires
the summation over all previous time-steps which is, especially
for large structures, a time and computer-power demanding
procedure. Hence, different simplifications of the superposition
principle were developed to reduce the computational effort.

The simplest but most uncertain method is the Effective
Modulus Method (EMM). The compliance at time t is simply
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increased by the creep coefficient

Jc (t, t0) =
1 + ϕc (t, t0)

Ec
, (11)

and the total strain is calculated according to Eq. (5). The stress
history is not considered and only the stress at time t causes
creep deformations. Due to effects of redistribution at cross-
section level are these stresses always lower than at beginning
of loading, thus, the creep deformations are underestimated.
Nevertheless, due to its simplicity this method is used quite
often for practical applications.

A further simplification of the time-integration is the pro-
cedure according to Trost [12], also known as Age-Adjusted
Effective Modulus Method (AAEMM) established by Bažant
[13]. Assuming a time-independent elastic modulus and intro-
ducing the aging coefficient ρc (t, t0) the total strain becomes

εc,tot (t, t0) =
σc (t0)

Ec
[1 + ϕc (t, t0)]

+
1

Ec
[σc (t)− σc (t0)] [1 + ρc (t, t0)ϕc (t, t0)] .

(12)

The influence of aging of concrete on the creep behavior
in case of varying stresses for times t > t0 is described
by the aging coefficient. Many theoretical work has been
performed to calculate the aging coefficient. Analyzing the
limit values reveals that the aging coefficient is in the range
of 0.5 ≤ ρc (t, t0) ≤ 1.0. The value of ρc (t, t0) = 1.0 charac-
terizes the lower limit of the creep deformations so that this
method becomes similar to the Effective Modulus Method.
In case of ρc (t, t0) = 0.5 the creep strains are maximal.
For reasons of simplification, TROST proposes to assume
ρc (t, t0) = 0.8, which was also confirmed by the work of
Blessensohl [14] and which is used for most practicle appli-
cations.

III. METHOD OF SENSITIVITY ANALYSIS

Sensitivity analyses are a widely-used tool to apportion
the model output uncertainty to the model input parameters
[15], for example which material parameters mainly affect the
uncertainty of a stress-strain-relation of a constitutive model.
Most [16] extended the existing concepts to study the influence
of model selection on the output. In other words, apart from the
output variation originating from uncertain input parameters
the uncertainty coming from varying models is taken into
account, knowing that none of these models is perfect for the
description of a particular phenomenon. This idea is extended
in this paper and the influence of the model selection as well
as the influence of the chosen time-integration on the models’
prognoses is investigated by means of sensitivity analyses.

For this purpose variance based global sensitivity analyses
following the concept of Saltelli et al. [15] are applied. It is
assumed that a model output Y is a function depending on a set
of input parameters X, Y = f(X1, X2, . . . , Xn). The surveys
are generally divided into the calculation of first-order Si and
total-effects STi sensitivity indices. The first-order sensitivity

index Si [17] describes the exclusive influence of parameter
Xi on the model response and is determined with

Si =
VXi (EX∼i (Y |Xi))

V (Y )
= 1− EXi (VX∼i (Y |Xi))

V (Y )
. (13)

Herein, VXi (EX∼i (Y |Xi)) is the variance of the model
response Y due to the variation of Xi and V (Y ) is the
variance of the system response when all parameters vary
simultaneously. Further, EXi (VX∼i (Y |Xi)) is the expected
value of the variance when all parameters but Xi vary, denoted
as X∼i. If the sum of all Si is close to one, the model is
additive, no interaction of the parameters exist. A ΣSi < 1
means that some parts of the variance cannot be explained
when the interaction of the parameters is neglected.

In order to take into account coupling effects, the total-
effects sensitivity index STi was introduced [18]

STi = 1− V (E (Y |X∼i))

V (Y )
=
E (V (Y |X∼i))

V (Y )
, (14)

with the expected value of the variance E (V (Y |X∼i)) and the
variance V (E (Y |X∼i)) for the case that all parameters but
Xi itself vary. Besides the exclusive influence of the parameter
Xi on the variance of the response, the STi index considers
the interaction of Xi with further parameters X∼i. In general,
the numerical calculation of these indices requires a special
sampling procedure with a subsequent stochastic analysis,
explained in detail in [15].

Here, the sensitivity analysis is applied to study the influ-
ence of model selection and choice of the time-integration
on the resulting time-dependent deformations. Instead of the
sensitivity of the output to model parameters, the sensitivity
of the output to model selection M and time-integration I is
determined. Two uncorrelated, uniformly distributed, discrete
random parameter XM and XI are introduced

XM ∈ {1, 2, . . . , nM} and XI ∈ {1, 2, . . . , nI} , (15)

wherein the possible values of XM denote the choice of one of
the nM creep models and the possible values of XI account for
one of the nI time-integration method. For these two random
variables the sensitivity indices are calculated. Due to the fact
that discrete parameters are considered, a finite number of
possible parameter combinations ncomb exists

ncomb = nM · nI . (16)

Hence, the terms V (E(Y |Xi)), V (E(Y |X˜i)), and V (Y )

in Eq. (13) and (14) can be calculated directly and exactly
without the need for the full sensitivity scheme by Saltelli.

The resulting total-effects indeces SM
Ti and SI

T i indicate the
influence of the model selection and choice of time-integration
on the model output. The greater an index, the higher the
influence of the parameter, for example a high SM

Ti and a low
SI
T i symbolize that the selection of an appropriate creep model

is of higher importance for the model response than the choice
of the time-integration method. In case of the time-dependent
behavior of creep the resulting sensitivity indices are also time-
dependent.
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Fig. 2: Time-dependent concrete strains and stresses for various models and time-integration methods, ρ = 2.0%, t0 = 28d,
neglect post-hardening

TABLE I: Material, model and environmental input parameters

parameter value model

RH 65 % ACI209, MC10, B3, GL2000
fc,28 38 MN/m2 MC10, B3
Ec0,28 31900 MN/m2 MC10
Ecm,28 27150 MN/m2 ACI209, GL2000
c 362 kg/m3 B3
w/c 0.47 B3
a/c 5.16 B3
f − a 0.50 ACI209
sl 38 cm ACI209
a 0.015 ACI209
ks 1.15 B3
Es 200000 MN/m2 -

IV. NUMERICAL EXAMPLE

A. Geometry, Material Properties and Preliminary Results

The effect of the application of different creep models
and different time-integration methods on the time-dependent
response is demonstrated using the example of a rectangular
reinforced concrete cross-section with a width and a height of
w = h = 30 cm. The material considered is concrete C30/37
combined with reinforcing steel B500B, distributed symmet-
rical around the cross-section. The sensitivity analyses are
performed for different degrees of reinforcement, varying from
ρ = 0.0% up to ρ = 9.0%. The output quantity is the total
strain of the cross-section εtot, equivalent to the total concrete
strain εc,tot, under a time-independent constant compressive
force of F = −1000 kN. The material properties of concrete
and further boundary conditions are given in Tab. I. Further
parameters are: concrete age at beginning of drying td = 7d,
temperature T = 20C, and cement type CEM II 42.5N.

To give a primarily impression of the effects of different
creep models and time-integration methods, Fig. 2 depicts

the time-dependent total strains εtot and concrete stresses
σc for the given cross-section. In this case the degree of
reinforcement is fixed to ρ = 2.0%, the concrete age at
beginning of loading is chosen to t0 = 28d and post-
hardening is neglected. The abbreviations used in the legend
of the figure are the different identifiers of the creep models,
ACI209, MC10, GL2000, and B3, as well as the method of
time-integration, S for Superposition according to Boltzmann,
EMM for the Effective Modulus Method, and AAEMM for the
Age-Adjusted Effective Modulus Method. At the first glance
large discrepancies for the different model/integration combi-
nations are visible. Analyzing the total strains, Fig. 2a, a range
from εtot ≈ −0.80E–3 up to εtot ≈ −1.08E–3 is observed for
a load duration of 100 years. On a closer look it becomes
obvious that the different choice of one of the four creep mod-
els leads to larger variations, −0.83E–3≤ εtot ≤ −1.08E–3,
than the choice of the different integration methods, −0.80E–
3≤ εtot ≤ −0.83E–3. Whereas the variation of the different
creep models is high for all load durations, the differences
within the integration methods require a certain time to
emerge. This fact is explained with the continous decrease of
concrete stresses due to the redistribution of stresses at cross-
section level. As the stress differences from the beginning of
loading t0 to the actual time t increase, the significance of
the time-integration method increases simultaneouly. Similar
results are observed when the concrete stresses σc are studied,
Fig. 2b.

B. Results of Sensitivity Analysis

The results shown in Fig. 2 characterize only one sample for
the different influence of model selection and time-integration.
In order to achieve general valid results and to quantify
the importance of the model/integration, different degrees of
reinforcement need to be investigated in the framework of
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Fig. 3: STi of total strain εtot, t0 = 28d, neglect of post-hardening
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Fig. 4: STi of total strain εtot, t0 = 28d, including post-hardening

global sensitivity analysis, which will be presented in this
section. The method of sensitivity analysis described in sec-
tion III is applied to the example of the rectangular reinforced
concrete cross-section. The sensitivity analyses are performed
for different scenarios. First, it is distinguished between the
consideration and neglect of post-hardening of concrete. Sec-
ond, two different ages of concrete at beginning of loading are
taken into account, t0 = 28d and t0 = 7d. Post-hardening of
concrete is simulated using the model according to MC10 [7].
If post-hardening is combined with the superposition principle
of Boltzmann, the stresses of concrete need to be calculated
by time-integration as well, for details see [1].

The resulting total-effects sensitivity indices for model
selection SM

Ti and choice of the time-integration method SI
T i

are depicted in Figs. 3–6 for the different scenarios depending
on the degree of reinforcement ρ and load duration. The index
STi quantifies the influence of M and I taking into account
interactions between the selection of creep model and the
choice of time-integration method.

Analyzing Fig. 3, which depicts the results considering
t0 = 28d and neglects post-hardening, a high importance of
the creep model selection is observed with SM

Ti ≥ 0.80. In
contrast to this value, the sensitivity towards the choice of the
time-integration is small SI

T i ≤ 0.30. A general increase of
SI
T i with an increasing load duration is recognized, what can

be explained with larger differences of concrete stresses when
creep strains increase for higher load durations. Further, Fig. 3
points out that the influence of time-integration increases with
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Fig. 6: STi of total strain εtot, t0 = 28d, including post-hardening

an increasing degree of reinforcement as the redistribution
of stresses at cross-section level is more pronounced. The
more redistribution of stresses, the larger the stress differences
of concrete and the higher the effects of choosing different
time-integration method. For ρ = 0.0% the index SI

T i is
equal to zero, which results from the constant concrete stress
that occurs in this case. Consequently, no time-integration is
required.

The degrees of reinforcement considered in the scope of
this paper are generally high going up to ρ = 9.0%. For
ordinary RC structures ρ is less than 3.0 %, which results
to a maximum of SI

T i ≈ 0.15. Hence, the selection of creep
models is much more important for practical applications. The
small increase of SM

Ti for t− t0 ≥ 1000 d originates from the

increasing variation of the creep prognoses of the four models
for these large load durations, because the models differ in the
main assumption of long-term creep behavior: models ACI209
and MC10 assume an ultimate creep coefficient, equivalent to a
finite creep compliance, and models GL2000 and B3 postulate
a continous increase of creep compliance.

The same comparison of sensitivity indices is made in
Fig. 4, but this time additionally post-hardening of concrete is
taken into account. The general findings are similar to the latter
stanza, but small differences occur. Due to the post-hardening
the impact of the time-integration is more pronounced, thus
the total-effects sensitivity index increases up to SI

T i ≈ 0.4 for
very high degrees of reinforcement. Furthermore, in contrast
to the previous figure even without reinforcement, ρ = 0.0%,
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a small SI
T i is observed. This difference is caused by the

Effective Modulus Method, which does not consider any stress
history and which defines the strains at time t depending on
the actual Young’s modulus of concrete Ec,t instead of the
Young’s modulus at beginning of loading Ec,t0 .

The sensitivity indices for a concrete loaded at t0 = 7d
are depicted in Figs. 5 and 6. In comparison to t0 = 28d
a higher SI

T i occurs even for smaller load durations of
t− t0 = 10d . . . 100 d, thus, the importance of the time-
integration method increases. This finding arises from the
larger creep affinity of concrete when loaded in the early
ages, which results in a stronger stress redistribution requiring
an adequate time-integration method. Further, the effect of
post-hardening is more pronounced for t0 = 7d than for
t0 = 28d as the post-hardening of this young concrete is much
higher than for an elder concrete. Nevertheless, the influence
of the model selection is dominating against the influence
of the choice of time-integration method if the degree of
reinforcement is within practical relevant limits of ρ ≤ 3.0%,
quantified by values of SM

Ti ≥ 0.80.

V. CONCLUSION

The presented method of sensitivity analysis points out the
main influential parameter on the output uncertainty of creep
models - parameter in this case is understood as the selection
of creep models or the choice of time-integration methods.
The methodology is generally formulated and can be applied
to further problems of model selection or analysis methods.

The results of the numerical example show that the un-
certainty of creep prediction for varying stresses originates
rather from the selection of creep models than from the
choice of time-integration methods. With increasing degree of
reinforcement, increasing load duration, and the consideration
of post-hardening the influence of the time-integration method
increases, but it is still lower in comparison to the impact
of the various creep models. For practical relevant degrees
of reinforcement of ρ ≤ 3.0% the influence of creep model
selection on the output uncertaitny is much higher (SM

Ti ≥
0.80) than the influence of different time-integration methods
(SI

T i ≤= 0.25). Hence, future focus of practical engineers
should be more on the identification and subsequent selection
of the most appropriate creep model using evaluation methods
for their prediction quality [5] than wasting modeling and
computational effort by choosing a more sophisticated time-
integration method.

APPENDIX

The following symbols are used:

TABLE II: Notations

symbol meaning

a void volume of concrete [−]
a/c aggregate-cement-ratio [−]
β... correction factors [−]

Cc creep compliance
[
m2/MN

]
C0 basic creep compliance

[
m2/MN

]

symbol meaning

Cd drying creep compliance
[
m2/MN

]
c cement content

[
kg/m3

]
d addend of time-function [d]
E (. . .) expected value
Ec,0, Ecm tangent and secant stiffness of concrete[

MN/m2
]

Ec,t stiffness of concrete at time t
[
MN/m2

]
Es Young’s modulus of steel

[
MN/m2

]
εtot total strain [−]
εc,cr creep strain of concrete [−]
εc,tot total strain of concrete [−]
ϕc creep coefficient [−]
ϕc,∞ ultimate creep coefficient [−]
φ (tc) factor considering drying before loading [−]

fcm mean compressive concrete strength
[
MN/m2

]
FΩ (σc) over-proportionality factor [−]
f -a fine-aggregate-ratio [−]
γ... correction factors [−]
I index for choice of time-integration
Jc total compliance of concrete

[
m2/MN

]
M index for model selection
N number of time increments [−]
ncomb number of model combinations [−]
nI number of time-integration methods [−]
nM number of creep models [−]
Ψ exponent of time-function [−]

q... individual compliances
[
m2/MN

]
RH relative humidity [−]
ρ degree of reinforcement [−]
ρc aging coefficient [−]
Si, STi first-order and total-effects sensitivity index [−]

σc concrete stress
[
MN/m2

]
Δσc stress increment

[
MN/m2

]
sl slump [cm]
T temperature [C]
t, td, t0 actual time, time at beginning of drying and load-

ing [d]
V (. . .) variance
V /S volume-surface-ratio
w/c water-cement-ratio [−]
X vector of input parameters
XM

i discrete parameter to select creep model [−]
XI

i discrete parameter to select time-integration
method [−]

Y model response
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[11] Z. Bažant and S. Prasannan, “Solidificaton Theory for Concrete Creep.
II: Verification and Application,” Journal of Engineering Mechanics,
vol. 115 (8), pp. 1704–1725, 1989.

[12] H. Trost, “Auswirkungen des Superpositionsprinzips auf Kriech- und
Relaxationsprobleme bei Beton- und Spannbeton,” Beton - und Stahlbe-
tonbau, vol. 62, pp. 230–238 & 261–269, 1967.

[13] Z. Bažant, “Prediction of Concrete Creep Effects Using Age-Adjusted
Effective Modulus Method,” ACI Journal, vol. 69, pp. 212–217, 1972.

[14] B. Blessensohl, “Zur numerischen Berechnung der Auswirkungen des
Kriechens und Schwindens auf Betonverbundtragwerke - Grundlagen
und Algorithmen für die EDV,” Dissertation, Rhein-Westfälische Tech-
nische Hochschule Aachen, 1990.

[15] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola, Global Sensitivity Analysis. The Primer.
John Wiley and Sons, 2008.

[16] T. Most, “Assessment of Structural Simulation Models by Estimating
Uncertainties due to Model Selection and Model Simplification,” Com-
puters and Structures, vol. 89, pp. 1664–1672, 2011.

[17] I. M. Sobol, “Sensitivity Estimates for Nonlinear Mathematical Models,”
Mathematical Modeling & Computational Experiment, vol. 1, pp. 407–
414, 1993.

[18] T. Homma and A. Saltelli, “Importance Measures in Global Sensitivity
Analysis of Nonlinear Models,” Reliability Engineering and System
Safety, vol. 52, pp. 1–17, 1996.


