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Abstract—In this paper, we aim to investigate a new stability 

analysis for discrete-time switched linear systems based on the 
comparison, the overvaluing principle, the application of Borne-
Gentina criterion and the Kotelyanski conditions. This stability 
conditions issued from vector norms correspond to a vector 
Lyapunov function. In fact, the switched system to be controlled will 
be represented in the Companion form. A comparison system relative 
to a regular vector norm is used in order to get the simple arrow form 
of the state matrix that yields to a suitable use of Borne-Gentina 
criterion for the establishment of sufficient conditions for global 
asymptotic stability. This proposed approach could be a constructive 
solution to the state and static output feedback stabilization problems. 

 
Keywords—Discrete-time switched linear systems, Global 

asymptotic stability, Vector norms, Borne-Gentina criterion, Arrow 
form state matrix, Arbitrary switching, State feedback controller, 
Static output feedback controller. 

I. INTRODUCTION 
OWADAYS, switched systems have attracted a growing 
interest. Such systems are common through a various 

range of application areas. In fact, this field is not only of 
practical importance, but also to provide an elegant framework 
for dealing with a large number of applications, for example, 
in chemical processes, flexible manufacturing systems,  
robotic systems, automotive industry, aircraft and air traffic 
control, large-scale power systems, computer-controlled 
systems and communication networks can be modeled as 
switched systems. In addition, switched systems find 
considerable applications in many other engineering fields [1] 
– [5].  

The last decade has seen growing research activities in the 
field of discrete-time switched systems. In fact the stability 
and stabilization issues under arbitrary switching are 
fundamental in the design and analysis of such systems. This 
problem has been difficult and essential in researches, though 
it has attracted growing attention in the literature [6]–[11].   

Focusing on this matter, frequently, we are required to find 
conditions that guarantee the stability of the switched systems 
under arbitrary switching law; though, it’s well known that the 
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existence of a Common Lyapunov Function (CLF) is a 
sufficient condition for stability. Then, how to concept the 
CLF to study stability has a great importance. It is proving 
analytically in [12] that for switched systems which are stable, 
it wasn’t found a CLF for this seek. This result has incited the 
scientist’s community to look for other Lyapunov functions 
types which can be grouped in a general way under the name 
of Multiple Lyapunov Functions (MLF) [13]. Despite the 
development and diversity of approaches used in order to 
analyze the stability of discrete-time switched linear systems, 
whereas these letters are limited. This drawback has motivated 
us to recourse for another approach. 

Based on the vector norms notion [14]–[16], the 
aggregation techniques and the application of the Borne-
Gentina criterion in the discrete-time version [17], this paper 
present new stability conditions for discrete-time switched 
linear systems and under arbitrary switching.   

The major motivation to recourse for this approach that it 
deals with a very large class of switched systems, since no 
restrictive assumption is made on the state matrix such as 
orthogonality in [11]. Whereas, the existence of a Lyapunov 
function has not got a constructive solution currently, even for 
a family of linear stationary systems [5].   

The remainder of this paper is organized as follows: in the 
next section, we present the description and the problem 
formulation of the studied switched systems. In section III, 
sufficient stability conditions of these discrete-time switched 
linear systems based on vector norms approach are presented, 
a validation on examples is drawn, and finally, some 
concluding remarks are summarized in section IV.  

II.  SWITCHED SYSTEMS DESCRIPTION AND PROBLEM 
FORMULATION 

The discrete-time switched linear system is formed by N  
subsystems described by the following state equation [18]: 

( ) ( ) ( )( ) ( )
1

,1
N

i
i

ik x k k kx k A x
=

ζ+ = ∑                     (1) 

where ( ) nx k ∈ℜ  is the state vector of the system at time k , 

( )1,...,iA i N=  is a matrix of appropriate dimensions 
denoting the subsystems, and 1N ≥  denotes the number of 
subsystems.  
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The switching function iζ  is an exogenous function which 
depends only on the time and not on the state, it is defined 
through: 

 
1 if  is active
0 otherwise

i
i

   A
   

⎧
ζ = ⎨

⎩
and  ( )

1

1
N

i
i

t
=

ζ =∑
                   

(2) 

In this work, when the switched linear system is controlled, 
it will be considered in the controllable form, where the 
matrices iA  are given in the following form:  

 

1

0 1 0

0 0 1i

n
i i

A

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
− −⎣ ⎦                               

(3) 

III. STABILITY CONDITIONS PRESENTATION 
The switched systems has been considered all throughout 

this paper are represented in the canonical controllability base 
[19], described by the state matrix as Companion is 
transformed into a system characterized by state matrix in the 
arrow form [20], [21]. This particular form allows the 
application of the Borne-Gentina criterion [17].  

In [16], a change of base for the system given by (1) under 
the arrow form gives: 

 

( ) ( ) ( )
1

1
N

i i
i

z k k M z k
=

+ = ζ∑
                      

(4) 

 
where z Px= , iM  is a matrix in the arrow form and P  is the 
corresponding passage matrix: 

1 1

1

1 1
1 1

0 0
0

0
0 0

i i

n n
n n

i i i

M P A P−

− −
−

α β⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥

α β⎢ ⎥
⎢ ⎥γ γ γ⎣ ⎦

"
% % # #

# % % #
"

" "

                (5a) 

( ) ( ) ( )

( ) ( ) ( )

1 2 1
2 2 2

1 2 1

1 1 1
1 2 1

1 1 1 0
0

=
0

1

n

n

n n n
n

P

−

−

− − −
−

⎡ ⎤
⎢ ⎥
⎢ ⎥α α α⎢ ⎥
⎢ ⎥
α α α⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥α α α⎢ ⎥⎣ ⎦

…
…

… #
# # … #

…

              (5b) 

( )

( )

( )

1 1

1

1

0

1
1

1

  = 1, 2,..., 1

  1,2,..., 1

n

j j q
q
q j

j
i i j

n
n n q q

i i
q

n
n
i i j

j

 j n

P  j n

P a

a

−
−

=
≠

−
−

=

−

=

β = α − α ∀ −

⎧γ = − α ∀ = −
⎪⎪
⎨

λ = λ + λ⎪
⎪⎩

γ = − − α

∏

∑

∑

              (5c) 

 
The discrete-time switched linear system can be represented 

by:  
 

( ) ( )1z k Mz k+ =                                  (6) 
with:  

( )
1

N

i i
i

M k M
=

= ζ =∑
 

 

( ) ( ) ( )

1 1

1 1

1 1

1 1 1

0 0
0

0
0 0 n n

N N N
n n

i i i i i i
i i i

k k k

− −

−

= = =

α β⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

α β⎢ ⎥
⎢ ⎥
⎢ ⎥ζ γ ζ γ ζ γ
⎢ ⎥⎣ ⎦
∑ ∑ ∑

"
% % # #

# % % #
"

" "

         (7) 

 
In such conditions, if ( )p y denotes a vector norm of y , 

satisfying component to component the equality 
( ) 1 2, ,..., np y y y y= ⎡ ⎤⎣ ⎦ , it is possible by the use of the 

aggregation techniques [22] to define a comparison discrete-
time system ( ) nz k ∈ ℜ such that: 

 
( ) ( )1 Dz k M z k+ =                          (8) 

 
In this expression, the comparison matrix DM  for discrete-

time is deduced from the matrix M  substituting all its 
elements by their absolute values; it can be written as: 
 

( ) ( ) ( )

1 1

1 1

1 1

0 0
0

0
0 0

max max max

D

n n

n n
i i i

M
− −

−

⎡ ⎤α β⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥α β⎢ ⎥
⎢ ⎥
⎢ ⎥γ γ γ⎢ ⎥⎣ ⎦

"
% % # #

# % % #
"

" "
       

(9) 

 
By applying the discrete-time version of Borne-Gentina 

criterion [22] to the previous system, we can state the 
following theorem.  
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Theorem 1. The discrete-time switched linear system 
described by (1) is globally asymptotically stable if there exist 

 jα ( )1, 2,..., 1j n= − ,     j q j qα ≠ α ∀ ≠ ,  such as:  

 
i) 1 0j− α >  1, 2,... 1j n∀ = −                                      (10)  

ii) ( ) ( ) ( )
1 1

1

1 max ( max 1 0
n

n j
i i j j

j

− −

=

− γ − γ β − α >∑
    

(11) 

  
Remark  1.  

We note that the stability conditions given are very useful 
in many switching control problems. Suppose that we have on 
hand an open-loop system: 

 

( ) ( ) ( ) ( )( )
i 1

1 +
N

i i ix k k A x k B u k
=

+ = ζ∑
             

(12) 

 where ( )x k is the state, ( )u k  is the control input at k , iA , 

iB  are constant matrices of appropriate dimension and 

( )i kζ is the switched function. We also suppose that we can 

design a set of state feedback controllers ( ) ( )iu k K x k= − , 
1,2,...,i N= . 

We suppose that the linear models of the switched system 
are set in the controllable form given by: 

1 1

0 1 0

0 0 1i

n n
i i i

A

a a a−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

"
# % % #

"

"

and

0

0
1

iB B

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
     (13) 

 
So, the closed-loop switched discrete-time system is given 

by: 

( ) ( )( ) ( )
1

1
N

i i i
i

x k k A BK x k
=

+ = ζ −∑             (14) 

 
As an application of theorem 1, we will check these 

conditions through the following example. 
Example 1. We consider the discrete-time switched linear 
system described by:  

 
1

0 1 0
0 0 1 ,

2.226 5.329 4.104
A

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠  

2

0 1 0
0 0 1 ,

1.492 4.028 3.546
A

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠  

 

3

0 1 0
0 0 1

2.226 5.472 4.21
A

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ −⎝ ⎠

and 
0
0
1

B
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 

 
We can analytically prove that the three subsystems are 

unstable; then we will stabilize the switched system with a 
state feedback controller, holding to the conditions given by 
theorem 1 with a particular choice of the parameters: 

1 2 3
1 1 1 1   K k k k⎡ ⎤= ⎣ ⎦ , 1 2 3

2 2 2 2   K k k k⎡ ⎤= ⎣ ⎦ and 1 2 3
3 3 3 3   K k k k⎡ ⎤= ⎣ ⎦ .  

So, the closed-loop system can be written as follows:  

1 1 1
1 2 3
1 1 1

0 1 0
0 0 1

2.226 5.329 4.104

CA A BK
k k k

⎛ ⎞
⎜ ⎟= − = ⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

 

2 2 2
1 2 3
2 2 2

0 1 0
0 0 1

1.492 4.028 3.546

CA A BK
k k k

⎛ ⎞
⎜ ⎟= − = ⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

 

3 3 3
1 2 3
3 3 3

0 1 0
0 0 1

2.226 5.472 4.21

CA A BK
k k k

⎛ ⎞
⎜ ⎟= − = ⎜ ⎟
⎜ ⎟− − − −⎝ ⎠  

According to [21], the minimal overvaluing matrix 
relatively to the regular vector norm p : 

 

1 2 3( )  ,  , 
T

p x x x x= ⎡ ⎤⎣ ⎦                       (15) 

is such as: 

1 1
1

1 1 2 2
1 2 3
1 1 1

0
0 ,CM P A P−

α β⎛ ⎞
⎜ ⎟= = α β⎜ ⎟
⎜ ⎟γ γ γ⎝ ⎠

 

1 1
1

2 2 2 2
1 2 3
2 2 2

0
0CM P A P−

α β⎛ ⎞
⎜ ⎟= = α β⎜ ⎟
⎜ ⎟γ γ γ⎝ ⎠

 

and:                  
1 1

1
3 3 2 2

1 2 3
3 3 3

0
0CM P A P−

α β⎛ ⎞
⎜ ⎟= = α β⎜ ⎟
⎜ ⎟γ γ γ⎝ ⎠

 

with:  



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:11, 2012

1505

 

 

( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( )
( )

3 21 3
1 1 1 1 1 1

2 1
1 1 1

3 22 3
1 1 2 2 1 2

2 1
1 2 1

3 3
1 1 1 2

= 4.104

+ 5.329 2.226

= 4.104

+ 5.329 2.226

4.104 +

P k

k k

P k

k k

k

⎧ ⎡γ − α = − α + − + α⎢⎪ ⎣
⎪

⎤+ α + − +⎪ ⎦⎪
⎪ ⎡γ − α = − α + − + α⎨ ⎢⎣⎪
⎪ ⎤+ α + − +⎪ ⎦
⎪

γ = − − + α + α⎪
⎩

 

( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( )
( )

3 21 3
2 2 1 1 2 1

2 1
2 1 2

3 22 3
2 2 2 2 2 2

2 1
2 2 2

3 3
2 2 1 2

= = 3.546

+ 4.028 1.492

= = 3.546

+ 4.028 1.492

3.546 +

P k

k k

P k

k k

k

⎧ ⎡γ − α − α + − + α⎢⎪ ⎣
⎪

⎤+ α + − +⎪ ⎦⎪
⎪ ⎡γ − α − α + − + α⎨ ⎢⎣⎪
⎪ ⎤+ α + − +⎪ ⎦
⎪

γ = − − + α + α⎪
⎩

 

and:  
 

( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( )
( )

3 21 3
3 3 1 1 3 1

2 1
3 1 3

3 22 3
3 3 2 2 3 2

2 1
3 2 3

3 3
3 3 1 2

= 4.21

+ 5.472 2.226

= 4.21

+ 5.472 2.226

4.21 +

P k

k k

P k

k k

k

⎧ ⎡γ − α = − α + − + α⎢⎪ ⎣
⎪

⎤+ α + − +⎪ ⎦⎪
⎪ ⎡γ − α = − α + − + α⎨ ⎢⎣⎪
⎪ ⎤+ α + − +⎪ ⎦
⎪

γ = − − + α + α⎪
⎩

 

 
Then, the stability conditions deduced from theorem 1 are: 
 
i) 1 2, 1α α <  

ii) ( ) ( ) 11 1 1
1 2 3 1 1max , , 1 0

−
− γ γ γ β − α >  

 
When we take 1 20.1,  0.2α = α =  and we suppose that for 

particular constraints the choice of iK is imposed such that the 
pole placement is different for the three subsystems by 
taking: [ ]1 2.19 5  3.8K − , ]2 1.5 4 3.2K ⎡= −⎢⎣ and

]3 2.225 5.4  4K ⎡= −⎢⎣  
Then, condition (ii) is verified numerically: 

( )1 max 0.004 , 0.046 , 0.09− −  

( )10 1.25 max 0.02564 , 0.013 , 0.00776− × × − − −  

( )10 1.11 max 0.00514 , 0.0051 , 0.00834−− × × − − −  

1 0.09 0.0250 1.25 10 0.0083 1.11 10 0.518 0= − − × × − × × = >  
 

When f et kT= is fixed to 9s , the switched time 

1 1 2 23 ,  6e et k T s t k T s= = = =  the original state vector 

( ) ]0 1  1 1
T

x ⎡= ⎣ , the evolution of states with respect to time is 

given by Fig. 1.  

0 1 2 3 4 5 6 7 8 9
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 

 

x1
x2
x3

 
Fig. 1 Evolution of state vector for example 1 

 
For second order discrete-time switched systems, when α  
and 1

iγ  are positive, theorem 2 can be simplified to the 
following corollary. 
Corollary 2. The discrete-times switched linear system of 
second order is globally asymptotically stable if there exists 

] [0,1α ∈  such as:  

 
i) ( ) 0iP α < 1,2,...,i N=                                                 (16) 

ii)  ( )1 0iP > 1,2,...,i N=                                         (17) 
iii)   

1 0iaα + < 1,2,...,i N=                                     (18) 
  

Remark  2  
The stability conditions proposed are very useful in many 

switching control problems. Suppose that we have on hand an 
open-loop system: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

1

1

1
N

i i
i

N

i i
i

ik k k B u k

y k k C x t

x A x
=

=

⎧
+ ζ +⎪

⎪
⎨
⎪ = ζ⎪
⎩

= ∑

∑
             (19)

 
 
where ( )x k  is the state, ( )u k is the control input, iA , iB  are 

constant matrices of appropriate dimension and ( )i kζ is the 

switched function. We also suppose that we can design a set 
of state feedback controllers ( ) ( )iu k K x k= − , 1,2,...,i N= . 
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We suppose that the linear models of the switched system 
are set in the controllable form given by: 

 

1 1

0 1 0

0 0 1i

n n
i i i

A

a a a−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

"
# % % #

"

"

, 

0

0
1

iB B

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
  

and

1

1

i

T
i n

i
n
i

C

C
C

C

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
                                         (20) 

 
So, the discrete-time switched system in the closed-loop is 
given by: 

( ) ( )( ) ( )
1

1
N

i i i i
i

x k k A BK C x k
=

+ = ζ −∑              (21)  

 
In the following, we will treat the next example by using this 
corollary1.  
 
Example 2. We consider the discrete-time switched linear 
system of second order described by:  
 

1

0 1
09048 1.905

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎣ ⎦

,   2

0 1
0.8187 1.819

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥−⎣ ⎦

, 

 
0
1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

, [ ]1 0.3619  0.4C = −  and [ ]2 0.1725  0.1906C = −  

It is simple to see that the two subsystems are unstable; our 
task is to given a Stabilization domain for this switched 
system with a static output feedback controller characterized 
by the parameters 1K and 2K , holding to the conditions given 
by corollary 1.   

So, the closed-loop system can be written as follows: 
 

1 1 1 1
1 1

0 1
0.9048 0.3619 1.905 0.4

CA A BK C
K K

⎡ ⎤
⎢ ⎥= − = ⎢ ⎥− + −⎣ ⎦

 

and: 

2 2 2 2
2 2

0 1
0.8187 0.1725 1.819 0.1906

CA A BK C
K K

⎡ ⎤
⎢ ⎥= − = ⎢ ⎥− + −⎣ ⎦

 According to [21], the minimal overvaluing matrix relatively 
to the regular vector norm p  given by (15) is such as: 

  
1 1 2

1 1

1
M

α⎡ ⎤
= ⎢ ⎥γ γ⎣ ⎦   

and :   2 1 2
2 2

1
M

α⎡ ⎤
= ⎢ ⎥γ γ⎣ ⎦  

 
with: 

( )
( ) ( )

( )

1
1 1

2
1 1

2
1 1

=

1.905 0.4 0.9048 0.3619

1.905 0.4 +

P

K K

K

⎧γ − α =
⎪
⎪ ⎡ ⎤− α + − + α + −⎨ ⎦⎣⎪
⎪γ = − − + α⎩

 

 
and:  

( )
( )

( )

1
2 2

2
2 2

2
2 2

=

1.819 0.1906 0.8187 0.1725

1.819 0.1906 +

P

K K

K

⎧γ − α =
⎪
⎪ ⎡ ⎤− α + α − + + −⎨ ⎦⎣⎪
⎪γ = − − + α⎩

  

 
The stability conditions for example 2 given by corollary 1 

are the following: 
 

i) 1α <  

ii) ( ) ( )2
1 1 11.905 0.4 0.9048 0.3619 0P K K⎡ ⎤α = α + − + α + − <⎣ ⎦  

iii) ( ) ( )2
2 21.819 0.1906P K⎡α = α + − + α⎣  

]20.8187 0.1725 0K+ − <  

iv) ( ) ( )1 1 11 1 1.905 0.4 0.9048 0.3619 0P K K⎡ ⎤= + − + + − >⎣ ⎦  

v) ( ) ( )2 2 21 1 1.819 0.1906 0.8187 0.1725 0P K K⎡ ⎤= + − + + − >⎣ ⎦

 

vi) [ ]1
1 11.905 0.4 0a Kα + = α − + <  

vii) [ ]1
2 21.819 0.1906 0a Kα+ = α− + <  

 
When we take 0.1α= , conditions (ii), (iii), (iv), (v), (vi) 

and (vii) allows deducing the following stability conditions:  
 

1

2

2.539 4.519
4.8 9.018

K
K

⎧ < <⎪⎪⎨⎪ < <⎪⎩
 

 
So, the stability domain found by the controller 

parameter 2K   as a function of the controller parameter 1K   is 
given by Fig. 2.  
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Fig. 2 Stability domain given for example 2 obtained from corollary 

1 

IV. CONCLUSION 
This paper has investigated new stability conditions for 

discrete-time switched linear systems. These conditions were 
deduced from stability studies of overvaluing systems built on 
vector norms and the application of Borne-Gentina criterion.  

The main advantages of this approach are that it can be 
applied to a very large class of switching systems and it avoids 
the problem of existence of Lyapunov functions. 

As a validation, this approach is used in order to determine 
a stability domain of the conditions obtained according to 
controllers with state and static output feedback parameters. 
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