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Abstract Heterogeneity of solid waste characteristics as well as 

the complex processes taking place within the landfill ecosystem 
motivated the implementation of soft computing methodologies such 
as artificial neural networks (ANN), fuzzy logic (FL), and their 
combination. The present work uses a hybrid ANN-FL model that 
employs knowledge-based FL to describe the process qualitatively 
and implements the learning algorithm of ANN to optimize model 
parameters. The model was developed to simulate and predict the 
landfill gas production at a given time based on operational 
parameters. The experimental data used were compiled from lab-scale 
experiment that involved various operating scenarios. The developed 
model was validated and statistically analyzed using F-test, linear 
regression between actual and predicted data, and mean squared error 
measures. Overall, the simulated landfill gas production rates 
demonstrated reasonable agreement with actual data. The discussion 
focused on the effect of the size of training datasets and number of 
training epochs. 
 

Keywords Adaptive neural fuzzy inference system (ANFIS), 
gas production, landfill 

I. INTRODUCTION 
N the last few decades, biogas generation in landfills has 
been modeled via different methods that focused on 

describing the physical, chemical and biological processes 
inside landfills. An accurate landfill gas generation model can 
be used to design gas recovery systems, analyze the economic 
viability of gas recovery operations, and assess potential 
environmental impacts. Various mathematical models for 
simulating landfill gas are presented in the literature [1]-[3]. 
However, the uncertainties of solid waste characteristics, as 
well as the complex physical, chemical, and biological 
processes taking place within the landfill ecosystem, motivated 
advanced modeling techniques to be applied; stochastic 
modeling [4], [5], and fuzzy logic systems [6], [7]. 

Recently, soft computing methods such as the fuzzy logic 
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(FL) and the artificial neural networks (ANN) have been 
shown to be powerful modeling tools with several advantages 
over traditional techniques. However, their application is 
limited due to certain weaknesses in their modeling 
capabilities. The integration of the FL and ANN, referred to as 
the Neuro-Fuzzy System, combines the merits of both systems, 
and is a more powerful modeling tool [8]. The basic idea of 
incorporating both systems is to design an architecture that 
uses a FL system to represent knowledge in an interpretable 
manner and implements the learning algorithms of ANN to 
optimize its parameters. Hence, the drawbacks of both 
systems, such as the black box behavior of ANN and the 
problems of tuning the membership values in FL systems, 
could be avoided. 

The implementation of ANN as an adaptive learning 
technique in FL systems is known as the adaptive neuro-fuzzy 
inference system (ANFIS). The adaptive technique of ANN 
optimizes the parameters associated with the membership 
functions throughout a learning process. The computation of 
these parameters (or their adjustment) is facilitated by a 
gradient vector which provides a measure of the adequacy of 
the inference system in modeling the input/output data which 
can be optimized to tune the parameters so that the error 
between actual and simulated outputs is minimized [9].  

The present work develops an ANFIS model to simulate 
biogas generation in lab-scale landfill cells. The model 
incorporates the effect of leachate recirculation and sludge 
addition rates as controllable input variables that can predict 
the output variable, biogas generation rate. The model is 
trained, verified, and validated using published experimental 
data of lab-scale landfill cells. Additionally, this paper focuses 
on assessing the effect of the size of the training data and the 
number of training epochs on the performance and stability of 
the ANFIS model.  

II. METHODOLOGY 

A. Experimental Data 
Experimental data were compiled from the work by [10] 

which involved 8 liters lab-scale landfill cells containing a 
total mass and density of waste of 2.50 kg/reactor and 350 
kg/m3, respectively. Major components of the waste were 
paper (36.6%), food (36.2%), and yard trimmings (27.2%). 
The cells were recirculated with different rates of leachate and 
sludge that remained unchanged along the experiment. 

Experimental measurements included temporal biogas 
generation rate as well as supplemental addition rates. The 
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experimental results resulted in 350 data vectors in the form of 
(time, leachate recirculation rate, sludge addition rate, biogas 
generation rate). The compiled data vectors were split into 
three independent groups for training, checking, and testing of 
the neuro-fuzzy inference system. It should be noted that the 
grouping procedures were carried out without discrimination 
using a simple resampling method [11]. Additionally, in order 
to assess the effect of the training data size on ANFIS, the 
random value generator in Microsoft Excel was used to build 6 
training datasets of different sizes (50, 100, 150, 200, 250, and 
300 data vectors) in addition to a single checking and testing 
datasets each of 50 vectors. 

B. Fuzzy Logic Controller 
The components of fuzzy logic controller structure include: 

(1) inputs, (2) fuzzifier unit, (3) data base, (4) rule base, (5) 
fuzzy inference engine, (6) defuzzifier unit, and (7) outputs. 

Time Leachate Recirculation Rate Sludge Addition Rate 

Fuzzifier Unit 

Data Base 
 

Fuzzy Inference Engine 
 

Rule Base 

Defuzzifier Unit 

Biogas Production Rate  

 
Fig. 1 Typical structure of a fuzzy logic controller 

 
As shown in Fig. 1, the input variables included time (or 

operating phase), leachate recirculation, and sludge addition. 
Initially, the crisp values of the inputs are mapped into their 
corresponding universes of discourse in the fuzzifier unit. In 
other words, the numerical representation of the inputs is 
converted to suitable linguistic terms within the predefined 
membership functions. Any membership function ( ) is 
represented by a real number ranging between 0 and 1. 
Because of its smoothness and concise notation, the Gaussian 

sets. It is given by: 
 

]/2c)exp[-(x(x)i
22            (1) 

 
Where c is the 2 is the variance of the ith fuzzy 

set. Fig. 2 shows the membership functions defined for the 
three inputs of the ANFIS model. The linguistic labels used to 
describe the input rates were Low Rate (LR), Medium Rate 
(MR), and High Rate (HR). Time was defined by the five basic 
phases that typically characterize the landfill life span; Initial 
(I), Transition (T), Acid Formation (AF), Methane 
Fermentation (MF), and Final Maturation (FM). For more 

details on the basic characteristics of each phase, refer to [12]. 

 
Fig. 2 Membership functions for the inputs of the ANFIS model: 

phase (time), leachate recirculation, and sludge addition. 
 

The knowledge is introduced to the system in terms of data 
base and rule base. The data base is provided by defining the 
membership functions of the fuzzy sets used for each system 
variable. The rule base consists of fuzzy rules that describe the 
system behavior and replace the mathematical modeling of the 
system. These rules are built in the form of IF-THEN 
statements. In the present model, 45 statements were created to 
define the expected behavior at different operating scenarios. 
Based on that experienced knowledge, the fuzzy inference 
engine processes the fuzzy output. Finally, the defuzzifier unit 
is responsible for weighting and combining a number of fuzzy 
sets resulting from the fuzzy inference process in a calculation 
which gives a single crisp value for the output. In this work, 
defuzzification was processed according to the weighted 
average method in which the output is obtained by the 
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weighing the average of each output of the set of rules stored 
in the knowledge base of system. The output is computed as;  

 
n

1i

i
 i

n

1i

iO W /                (2) 

 
Where O is the defuzzified output, i is the membership of 

the output of each rule, and wi is the weight associated with 
each rule. This method is computationally faster and easier and 
gives fairly accurate result. After all the discussed steps and as 
a final point, the model gives the predicted output, biogas 
production rate, in its numerical (crisp) form. 

C. Fuzzy Inference System 
The present study applies the Takagi-Sugeno method for the 

fuzzy inference system. The Sugeno output membership 
functions are either linear or constant making them compact 
and computationally efficient and compatible to the use of 
adaptive techniques such as ANN. The learning algorithm of 
ANN is employed to tune the parameters of the membership 
functions along a training process. 

D. ANFIS Architecture 
The developed architecture included 11 input membership 

functions, 45 output membership functions, and 45 fuzzy rules. 
Due to the numerous interactions between system components 
in its complete structure, a simplified adaptive neuro-fuzzy 
inference system is shown in Fig. 3. The simplified ANFIS 
model includes two inputs T and P and one output f. The 
architecture of ANFIS, developed by [8], includes five layers; 
 

A1 

 

A2 

B1 

B2 
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w2 
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Fig. 3 Architecture of a minimized ANFIS model 

 
Layer 1: Every node in this layer is an adaptive node with a 

node function that can be computed as: 

(T)O Ai
1
i                    (3) 

 
Where T is the input to node i, and Ai is the linguistic label set 
associated with this node.  

Layer 2: Every node in this layer is a fixed node l
that represents the firing strength (W ) of a fuzzy rule. The 
output of each node is the product of the incoming signals: 

(P) (T)  WO BiAi1
2
i               (4) 

Layer 3: Every node in this layer is a fixed node (N) which 

all rules' firing strengths. The outputs of this layer are called 
normalized firing strengths and can be computed as: 

 

 ,21  i  ,
WW

W WO
21

1
i

3
i

            (5) 
 
Layer 4: Every node in this layer is an adaptive node with a 

node function (i.e., linear combination of input variables). If 
iii r  ,q  ,p  is the parameter set, then: 

 
)(i iii i i

4
i r  Pq  Tp WfWO           (6) 
 
Layer 5: The single node in this layer is a fixed node that 

computes the overall output as the summation of all incoming 
signals: 

i

i

i W

fW
fWO

 i

i i

i i
5
i              (7) 

E. Implementation of ANFIS Model 
The ANFIS model was built and trained using the Fuzzy 

restrain the application of the ANFIS model. Firstly, the 
inference system must be Takagi-Sugeno type, and the system 
should have a single output obtained using weighted average 
defuzzification technique. Moreover, all output membership 
functions must be of the same type, either linear or constant, 
and there should be no rule sharing or weighing. Table I 
illustrates the main methods and characteristics of the 
developed ANFIS model based on these conditions. 

 
TABLE I 

MAIN METHODS AND CHARACTERISTICS OF THE ANFIS MODEL 

Parameter Type / Method 

Fuzzy inference system type Takagi-Sugeno 
AND method Min 
OR method Max 
Defuzzification method Weighted Average 
Optimization method Back propagation 
Output membership function type Linear 

 
The flowchart of the ANFIS training algorithm in the Fuzzy 

Logic Toolbox is shown in Fig. 4. The process starts by 
loading the training and checking datasets which include input 
and output data vectors. Each input/output pair contains three 
inputs (time, sludge addition rate, and leachate recirculation 
rate) and one output (biogas generation rate). An error 
tolerance (ET) value is defined for the maximum acceptable 
difference between the actual and simulated output. The model 
starts the training process with the initial parameters of the 
membership functions, and the error for each data pair is 
calculated. If this error is larger than the ET value, the 
membership parameters are adjusted through an optimization 
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step, otherwise, the process ends. Simultaneously, the error of 
the checking dataset is calculated. Typically, it decreases down 
to a certain point, and then increases. This overturn represents 
the point of model overfitting. The program chooses the model 
parameters associated with the minimum checking error. 
Finally, the model is validated against independent testing 
dataset. 

 

Start 

Load FL Model Structure 
Load Training, Checking, and Testing Data 

Define Error Tolerance (ET) 

Run Model with Training and Checking Data 

Training 
Error 

Adjust Parameters of 
Membership functions 

Test Model 

End 

> ET 

< ET 

 Checking 
Error 

- ve 

+ ve 

 
Fig. 4 Flowchart of the developed ANFIS model 

 
The six training datasets, previously discussed, were used to 

train the ANFIS model separately. As a result, six sub-models 
were created with the same inputs, output, and basic structure. 
Table II shows the training data size, number of training 
epochs, and notation of the ANFIS sub-models. 

 
TABLE II 

NOTATION AND MAIN FEATURES OF THE ANFIS SUB-MODELS 

ANFIS Model Size of training dataset Training Epochs 
M-50 50 15 
M-100 100 120 
M-150 150 250 
M-200 200 250 
M-250 250 250 
M-300 300 250 

F. Model Evaluation Criteria 
The model is evaluated statistically using a group of criteria 

that was established prior to the evaluation process and 
included F-test, linear regression between actual and predicted 
data, and mean squared error (MSE) measures. Firstly, in 
comparing two independent samples, the F-Test provides a 
measure for the probability that they have the same variance. 
The null hypothesis, H0: 1

2 = 2
2, and the alternate hypothesis, 

HA: 1
2 2

2 -tailed test that is 
interested in both cases; 1

2 > 2
2 and 1

2 < 2
2. Secondly, the 

regression estimates of the intercept (a) and the slope (b) are 
good indicators of accuracy; the closer to zero and unity, 
respectively, the higher the accuracy. On the other hand, the 

correlation coefficient (R) is a good indicator of precision; the 
higher the R, the higher the precision [13]. 

Finally, the MSE is the mean of the squared errors around 
the regression line in a plot of model simulation against 
measured values. Following the approach developed by [14], 
the MSE was partitioned into three components to achieve 
further understanding of model performance; square bias (SB), 
non-unity slope (NU), and lack of correlation (LC). These 
MSE components, which add up to give the MSE, have simple 
and distinct geometrical interpretation. SB, NU, and LC 
indicate the translation, rotation, and scattering around the 
regression line, respectively. Additionally, the root mean 
square error (RMSE) is calculated by square-rooting the MSE. 
The RMSE indicates the mean difference between observed 
and predicted values. In order to facilitate the assessment, the 
RMSE is normalized by dividing its value by the mean of the 
measured data. 

III. DISCUSSION 
This work aims at evaluating the modeling capabilities of 

ANFIS model in simulating biogas production in landfills. The 
proposed model predicts the biogas generation rate in terms of 
time, leachate recirculation, and sludge addition. First, the 
model is verified by fitting adequacy of its predictions to the 
training datasets. Then, the model is validated using the testing 
dataset. Finally, two critical issues concerning the ANN 
learning algorithm are discussed; (1) the effect of the training 
data size on model efficiency, and (2) the effect of the number 
of training epochs on model stability and performance. 

A. Model Verification 
Fig. 5 shows the linear regression between model-based 

predictions and measured data for the six ANFIS sub-models. 
The values of slope, intercept, and coefficient of determination 
for the regression lines are shown on the same figures. It can 
be observed that, in all sub-models, the slope was close to 
unity and the intercept was close to zero. This could be a 
positive indication of the model accuracy. In addition, the 
slope did not exceed unity and the intercept was positive in all 
sub-models. This demonstrates that the ANFIS model 
underestimated the measured data in general. The model 
predictions were in excellent agreement with the training 
datasets (average correlation coefficient of 0.98). However, it 
should be clarified that this ideal correlation was achieved 
because the model was tuned on those datasets.   
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Fig. 5 Linear regression between modeled and actual data for ANFIS 

sub-models:  M-50, M-100, M-150, M-200, M-250, and M-300 
 

As shown in the statistical analyses in Table III, the 
simulation results were sufficiently agreeable to the 
experimental data based on paired F-test at a 95% confidence 
level (F calculation < F critical). Based on the MSE partitioning, LC 
was the main contributing component to MSE. The average 
percentages of SB, NU, and LC to MSE were 4%, 0%, and 
96%, respectively. Therefore, deviations could be attributed 
mostly to scattering around the regression line. The difference 
between actual and simulated values was expressed in terms of 
the normalized RMSE. ANFIS model achieved an acceptable 
normalized RMSE that ranged between 11.24% and 14.42%. 

B. Model Verification 
Model validation is used to examine the potential of the 

ANFIS model under untrained range of operating conditions. 
Commonly, the main concern in model validation is selecting a 
data set that is both representative of the data via which the 
model was developed, yet sufficiently distinct from it 
otherwise the validation process becomes meaningless. The 
biogas generation predictions of the ANFIS sub-models are 
plotted together with actual experimental points in Fig. 6. 
Generally, the ANFIS model fairly reproduced the generation 
rates for most of the testing scenarios. 

During the testing procedures, one critical observation was 
noticed regarding the model response to the noise and 
digressions which frequently occur due to the measuring 
accuracy and/or operating troubleshooting. As shown at week 
21, the ANFIS model dealt with the sudden drop in biogas 
production nonsensically, yet efficiently. This proves that the 
ANFIS system works well only if the data used for training its 
membership function parameters is noiseless and fully 
representative of the features of the modeled system. 

TABLE III 
STATISTICAL TESTING OF THE ANFIS MODEL AT DIFFERENT TRAINING SIZES 

Model F-test Mean Square Error 

F calculated F critical P SB NU LC MSE RMSE N-RMSE 
M-50 1.069 1.607 0.409 0.001 0.000 0.026 0.027 0.166 14.423 
M-100 1.018 1.394 0.465 0.001 0.000 0.020 0.022 0.147 11.236 
M-150 1.021 1.310 0.451 0.001 0.000 0.021 0.022 0.149 11.846 
M-200 1.051 1.263 0.364 0.001 0.001 0.019 0.021 0.145 12.290 
M-250 1.052 1.232 0.346 0.001 0.001 0.017 0.019 0.138 11.790 
M-300 1.049 1.210 0.341 0.001 0.001 0.015 0.017 0.132 11.380 

P, probability; SB, squared bias; NU, non-unity slope; LC, lack of correlation; MSE: mean square error; 
RMSE: root mean square error; N-RMSE: normalized root mean square error (in percent). 
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The simulations of ANFIS are tested using three statistical 

measures; F-test, linear regression, and mean square error as 
illustrated in Table IV. The correlation coefficient ranged from 
0.93 and 0.98 with an average value of 0.97. The simulation 
results were sufficiently agreeable to the actual data based on 
F-test at a 95% confidence level (F calculation < F critical). The sub-
models achieved an acceptable average N-RMSE of 17.36%. 

C. Size of Training Data 
There was not much difference between the performances of 

ANFIS sub-models; all sub-models achieved high correlation 
with their training datasets. The best fit was achieved by M-
300, the most trained model, whereas the least trained model, 
M-50, scored the lowest fit. During validation stage, the most 
distorted sub-models were M-50 and M-100. Statistically, the 
number of training vectors highly affected the performance of 
ANFIS to a certain point. Starting from M-150, a great 
enhancement was observed in terms of all statistical measures. 
However, beyond M-150, the model did not show significant 
improvement in response to a larger training dataset.  

D. Number of Training Epochs 
Fig. 7 shows the progress of the calculated error, during the 

learning algorithm, against the number of training epochs. The 
training dataset is indicated by the blue stars, whereas, the 
checking dataset is indicated by the blue circles. The main 
reason for using the checking dataset is to determine the 
optimum training effort needed for the system. Usually, the 
more epochs the system is trained with, the less the error will 
be until it reaches a certain point where overfitting starts. To 
avoid this, the program stops the training prior to the 
overfitting point. This point can be observed at iteration # 15 

of M-50 and at iteration # 120 of M-100. It should be noted 
that the overfitting problem did not occur in other sub-models 
within 300 epochs. 

 
Fig. 7 Training and checking error with training epochs for M-50 

(above) and M-100 (below) 

IV. CONCLUSIONS 
The complexity and heterogeneity of the landfill hinder 

conventional kinetic methods from modeling the system in an 
efficient and practical fashion. This work aimed at 
investigating the applicability of the advanced neural fuzzy 
technique in simulating and accommodating the uncertainties 
of such an ecosystem. The ANFIS model described the data 
that was used in its training stage ideally. Moreover, 

 
TABLE IV 

STATISTICAL TESTING OF THE ANFIS MODEL FOR THE TESTING DATASET 

Model 
F-test Linear Regression Mean Square Error   

F calculated F critical a b R2 MSE RMSE N-RMSE 

M-50 1.249 1.607 0.016 1.040 0.865 0.141 0.375 29.193 
M-100 1.169 1.607 0.083 1.024 0.898 0.109 0.33 25.661 
M-150 1.072 1.607 0.048 1.020 0.970 0.032 0.178 13.829 
M-200 1.012 1.607 0.033 0.979 0.971 0.023 0.152 11.852 
M-250 1.005 1.607 0.030 0.983 0.972 0.023 0.151 11.75 
M-300 1.001 1.607 0.030 0.986 0.972 0.023 0.152 11.848 

a, intercept of regression line; b, slope of regression line; R2, coefficient of determination. 
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Fig. 6 Actual and simulated biogas generation rate for the ANFIS sub-models with time 
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throughout the validation step, the model was in good 
agreement with actual data. This attested its capabilities in 
predicting biogas generation over the presented universe of 
discourse for the inputs. In general, the model achieved 
acceptable statistical measures in terms of linear regression, F-
test, and mean square error. On the other hand, the discussion 
revealed some limitations in the neural fuzzy model. First, its 
performance is highly dependent on the quality and quantity of 
training data as well as the number of training epochs. Besides, 
the overfitting problem may cause unexpected model 
distortion. On condition of proper training process, this 
technique can present a prospective alternative methodology in 
the modeling of landfill processes. 
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