
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:5, No:2, 2011

345

 

 

  
Abstract—This research proposes an algorithm for the simulation 

of time-periodic unsteady problems via the solution unsteady Euler 
and Navier-Stokes equations. This algorithm which is called Time 
Spectral method uses a Fourier representation in time and hence 
solve for the periodic state directly without resolving transients 
(which consume most of the resources in a time-accurate scheme). 
Mathematical tools used here are discrete Fourier transformations. It 
has shown tremendous potential for reducing the computational cost 
compared to conventional time-accurate methods, by enforcing 
periodicity and using Fourier representation in time, leading to 
spectral accuracy. The accuracy and efficiency of this technique is 
verified by Euler and Navier-Stokes calculations for pitching airfoils. 
Because of flow turbulence nature, Baldwin-Lomax turbulence 
model has been used at viscous flow analysis. The results presented 
by the Time Spectral method are compared with experimental data. It 
has shown tremendous potential for reducing the computational cost 
compared to the conventional time-accurate methods, by enforcing 
periodicity and using Fourier representation in time, leading to 
spectral accuracy, because results verify the small number of time 
intervals per pitching cycle required to capture the flow physics. 
 

Keywords—Time Spectral Method, Time-periodic unsteady 
flow, Discrete Fourier transform, Pitching airfoil, Turbulence flow 

I. INTRODUCTION 
NSTEADY flow calculations have been used extensively 
including in the flutter analysis, analysis of flow around 

helicopter blades and etc. In these matters, flow behavior is 
often unsteady but periodic. 

In analyzing these problems using algorithms that can use 
the periodic property of flow can be useful. Traditional time 
stepping methods do not consider this property. Explicit 
schemes for stability use small time steps that this is time-
consuming. Implicit schemes, although use a larger range of 
time step, but because the long repeat process to achieve 
solution convergence, these schemes are expensive especially 
for three-dimensional problems. Time accurate solvers like the 
implicit second-order Backward Difference Formula (BDF) 
requires Integration on several periods with small time steps to 
achieve periodic steady state. It takes a long time. 

What is important in the numerical solution is the balance 
between computation time and accuracy of solution. On 
traditional schemes, some method, such as adaptive grid 
methods because of limited time steps, are inherently time 
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consuming and on other schemes like BDF, if time steps are 
chosen large, accurate solution comes down, and when the 
time steps are small, time resolved intensity will increase. 
Therefore, an algorithm is suitable also reduce the time to 
solve also maintain good accuracy. 

In recent years, researchers have turned to using Fourier- 
based algorithms to significantly reduce the computational 
expense for analyzing unsteady periodic problems. 

Hall et al. [1] did the first study in this field. He introduced 
the harmonic balance method for solving nonlinear equations 
in frequency space. Subsequently, McMullen et al. [2] 
introduced non-linear frequency domain (NLFD) method. In 
this method, firstly equations are converted to frequency space 
and then solved in frequency space, the flow variables are 
returned into the physical space. From where the method is 
required fast Fourier transform (FFT) and inverse fast Fourier 
transform (IFFT), so to use this method, it is required 
substantial changes in existent flow solvers. Subsequently, 
Gopinath and Jameson [3] proposed using a Fourier 
collocation matrix for the temporal derivative term and time 
integration to prevent FFT, IFFT and the use of minimal 
changes in the time accurate flow solver. This scheme is 
called Time Spectral method. In this method, time derivative 
term couple all the time levels in the period through Fourier 
collocation matrix. Unlike finite difference methods that use 
only several of the term of solution variable to calculate the 
derivative term, Time Spectral method uses all the time levels 
in the period, in the derivative term calculation, thus has very 
high accuracy. Here, unlike time marching methods, have 
been solved the flow variables simultaneously at all time 
instances and this process repeat until to reach a periodic 
steady state. The detailed algorithm of this technique will be 
presented in next section. 

In this paper Time Spectral method has been used for 
simulation of 2D external aerodynamics test cases as pitching 
airfoils. These test cases are NACA 64A010 test case 6 (CT6) 
with small oscillation amplitude and weak shock waves and 
NACA 0012 test case 5 (CT5) with large oscillation amplitude 
and strong shock waves. The results numerical are compared 
with experimental data. Two different airfoils, the NACA 
64A010 and the NACA 0012, were tested by Davis [4] and 
Landon [5] respectively. The experimental data was published 
as part of AGARD report 702.  
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II. GOVERNING EQUATIONS 
The compressible flow around a pitching airfoil is physical 

problem that study in this research. Generally compressible 
flows are simulated by Navier-Stokes equation. 

A. Conservative Form of the Field Equations 
The two-dimensional conservative form of the Navier-Stokes 
equation in Cartesian coordinates is: 

 
( ) v vf gw f g

t x y x y
∂ ∂∂ ∀ ∂ ∂+ + = +

∂ ∂ ∂ ∂ ∂
 (1) 

 
Where the state vector w, inviscid flux vector f and g and 
viscous flux vector vf  and vg
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Where ρ is the density, u and v are component velocity at x 
and y directions respectively, tx  and ty  are component 
velocity of grid, p is pressure and e is the total energy per unit 
mass. As, temperature T and total energy e are determined by 
the ideal gas equation of state: 
 

2 21
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 (6) 
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Where R is the gas constant. Suppose cell volume ∀  does not 
vary in time, then semi-discrete form of the unsteady 
equations in Cartesian coordinates can be written as follow: 
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B. The Time Spectral Method 
The core of this method is based on discrete Fourier transform 
for solving periodic unsteady partial differential equations. 
The discrete Fourier transform of w, for a time period T, is 
given by 
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And its inverse transform, 
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Where the time period T is divided into N time intervals, 
∆t=T/N. 
The Fourier transform of the derivative approximations at nth 
time interval is computed by (see appendix A): 
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nd  is defined by 
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Since flow is periodic in time here, so the state vector w 
periodic in time, too. Therefore, its derivative can be 
expressed using (13).Using (2.6), the governing equations in 
semi-discrete form are: 
 

( ) 0n n

tD w R w∀ + =  (15) 

 
Introducing pseudo time, τ, to (2.13) in the same manner as 
the implicit dual time stepping scheme, 
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The solver used for this purpose is a conservative cell-
centered finite volume scheme. A local time stepping is used 
for accelerating convergence, in which a pseudo-time step 
with a five-stage Runge-Kutta scheme is performed at each 
level. The Jameson-Schmidt-Turkel (JST) [6] scheme is used 
as the artificial dissipation scheme where blended first and 
third order dissipation terms are introduced to suppress 
spurious modes and ensure stability. 

C. Baldwin-Lomax Turbulence Model 
The Baldwin and Lomax [7] turbulence model is an 

algebraic model for the determination of the eddy viscosity.  

turbμ as a function of the local boundary layer velocity profile. 
The model is suitable for high-speed flows with thin attached 
boundary-layers, typically present in aerospace and 
turbomachinery applications. It is commonly used in quick 
design iterations where robustness is more important than 
capturing all details of the flow physics. The dual layered 
eddy viscosity formulation is sufficient to complete the 
Reynolds Averaged Navier-Stokes equation. The turbulent 
eddy viscosity coefficient can be calculated as  
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Where  crossovery   is the minimum value of the dimensionless 

normal distance to the wall, crossovery  at which the inner and 
outer eddy viscosity formulations produce the same result. 
Finally, after turbμ  calculation (see Baldwin and Lomax [7]), 
viscosity of flow will be defined as 
 

lam turbμ μ μ= +  (18) 
 
Where lamμ  is laminar flow viscosity that is defined by 
Sutherland equation defined as 
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III. NUMERICAL RESULTS AND DISCUSSIONS 
This section presents the results of simulations using both 

the Euler and the Reynolds averaged Navier-Stokes equations 
using a Baldwin-Lomax turbulence model. 

A. Test Cases 
The Pitching airfoils are ample ground for validating the 

algorithm with experimental and other established numerical 
results.This research uses two different test cases, NACA 
0012 airfoil (CT5) and 64A010 airfoil (CT6). The important 
parameters used in the description of these cases are 
summarized in Table 1 [4], [5]. 

TABLE I 
CHARACTERISTICS OF THE PITCHING AIRFOIL TEST CASES 

Description Variable Davis 
Experiment 

Landon 
Experiment 

AGARD Case Number  CT6 CT5 

Airfoil  NACA 64A010 NACA 0012 

Mean Angle of Attack mα  0.0°  0.016°  

Angle of Attack 
Variation 0α  1.01± °  2.51± °  

Reynolds Number Re∞  6
12.56 10×  

6
5.5 10×  

Mach Number M ∞  0.796 0.755 

Reduced Frequency ck  0.202 0.0814 

Pitching Axis mx  24.8 25 

 
The sinusoidal pitching motion of the airfoil is given in terms 
of the variation of angle of attack as a function of time, 
 

0( ) sin( )mt tα α α ω= +  (20) 
 
Where mα is the mean angle of attack, 0α is the maximum 
pitching amplitude with respect to the mean, and ω the angular 
velocity, is expressed in terms of a non dimensional 
parameter, the reduced frequency, ck the reduced frequency is 
defined as 
 

2
c
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l
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∞
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Here cl , the characteristic length is the root chord length. 

The data for the 64A010 airfoil is for a transonic symmetric 
airfoil oscillating at a low reduced frequency over a limited 
range in angle of attack. Because of this fairly small variation 
in angle of attack, the numerical results are considered to be 
less sensitive to the choice of turbulence model than the data 
for the 0012 airfoil. Another factor contributing to its 
selection was its popularity in the numerical analysis 
community. Numerous existing numerical results are available 
for comparison with those produced by the Time Spectral 
method. In comparison to the data for the 64A010, the data for 
the 0012 was obtained at a lower Reynolds number but with 
an angle of attack variation approaching the stall boundary. 
The increased sensitivity of these results to the choice of 
turbulence model is a drawback. Therefore viscous results are 
represented only for NACA0012 test case. 

B.  Computational Grid 
The first step in numerical discretization is to represent the 

continuous domain by a mesh of discrete points, where the 
dependent variables of the governing equation are 
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represented. Mesh generation has become an important field 
of study to enable solutions for more complex geometries. The 
choice of the type of mesh is usually based on the complexity 
of the geometry and the desired level of accuracy and 
approximation of the continuous problem.In NACA 64A010 
results section , where only the Euler equations are employed, 
large gradients close to the surface of the airfoil except for the 
shock wave do not exist and more uniform and regular meshes 
are sufficient to provide accurate numerical approximations 
(Fig. 1.(a)). However, in NACA 0012 results section where 
the Navier-Stokes equations are used in the numerical 
simulation in a two-dimensional viscous flow environment, a 
high mesh resolution close to the surface of the airfoil is 
required to resolve the boundary layer and its interaction with 
the shock wave (Fig. 1.(c)). 
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(c) 

Fig. Nearfield resolution of O-mesh grids. (a) 271x61 points used in 
the Euler calculations for NACA 64A010 (b) 149x51 points used in 
the Euler calculations for NACA 0012 (c) 149x51 points used in the 

unsteady Navier-Stokes calculations for NACA 0012 

C. Inviscid results for NACA 64A010 airfoil 
C.1 Coefficient of Pressure Results 

Fig. 2 (a) to (d) show both the numerical and experimental 
Cp results along the airfoil at any quarter of period, 
phase 0.0° , 90° ,180° and 270° . Very good agreement 
between Time Spectral and experimental results are evident. 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

Fig. 2 Comparison of Cp data with experimental results for NACA 

64A010 airfoil (a) 0α = upward, phase 0.0°  (b)  1.01α = phase 

90°  (c) 0α =  downward, phase 180°  (d) 1.01α = − , phase 270°  
 

Coefficient of Lift Results 
Fig. 3 shows both the numerical and experimental Cl results as 
a function of the instantaneous angle of attack. A subfigure 
shows several ellipses each computed using a different 
number of time intervals. These plots show that the variation 
in time varying Cl as a function of the temporal resolution is 
negligible, and that results convergent to plotting accuracy can 
be obtained using only four time intervals. 

 

 
Fig. 3 Comparison of Cl data with Davis’s 64A010 experiment 

 
Instantaneous Pressure Distribution 

Finally, Fig 4 (a) and Fig 4 (b) show instantaneous pressure 
distribution around pitching airfoil at equally spaced time 
levels for NACA 64A010 airfoil. 
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(c)                                         (d) 

Fig. 4 Instantaneous pressure distribution around CT6 at equally 
spaced time levels 
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D. Inviscid and viscous results for NACA 0012 airfoil 
 Coefficient of Pressure Results 

Fig 5 (a) and  (b) show both the numerical and experimental 
Cp results along the NACA 0012 airfoil for inviscid and 
viscous flow at an angle of attack that experimental data were 
exist. With comparison Fig 5. (a) and (b) has been observed 
abrupt variation in Cp graphs that is produced due to shock 
wave, in viscous flow is smoother than inviscid flow because 
of boundary layer interaction with the shock wave. 

 

 
(a) 

 

 
(b) 

Fig. 5 Comparison of Cp data with experimental results for NACA 
0012 airfoil. (a) Inviscid flow (b) Viscous flow 

 
Coefficient of Lift Results 

Figures 6 (a) and 6. (b) show both the numerical and 
experimental  results as a function of the instantaneous 
angle of attack for inviscid and viscous flow. In viscous 
results analysis, has been used Baldwin-Lomax turbulence 
model. 
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(b) 

Fig. 6 Comparison of Cl data with experimental results for the 
AGARD CASE. (a) Inviscid flow (b) Viscous flow 

 
Instantaneous Pressure Distribution 
Finally, Fig 7. (a) and 7. (b) show instantaneous pressure 
distribution around pitching airfoil at maximum of pitch angle. 
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(a)                                         (b) 

Fig. 7 Instantaneous pressure distribution around CT5. (a)  , inviscid 
flow (b)  , viscous flow equally spaced time levels 
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So that has been alluded previously, because of boundary 
layer interaction with the shock wave in viscous flow, shock 
wave is weakly than inviscid flow. It has delineated by 
comparing Figures 7. (a) and 7. (b). 

IV. CONCLUSIONS 
The Time Spectral method is an intense method in Time-

periodic unsteady flow analysis. So, that presents a proper 
accuracy of the solution and a low time for convergence.  
Conforming to a time accurate existing solver is other 
preference of this method. Time Spectral method performs all 
the calculations in the time domain, and hence requires 
minimal modifications to an existing solver. This algorithm 
which is simpler to implement than the typical NLFD type 
solver because it does not require the multiple operations of 
Fourier   transforms and inverse Fourier transforms, while still 
achieving better convergence and reducing computational cost 
in comparison to the typical implicit schemes. 

The Baldwin-Lomax model is suitable for high-speed flows 
with thin attached boundary-layers, typically present in 
aerospace and turbomachinery applications. The model is not 
suitable for cases with large separated regions and significant 
curvature/rotation effects. 

APPENDIX A 

A. Fourier Collocation Matrix 
This section discusses details of compact representation of 

the spectral Fourier derivative operator in the physical space, 
instead of the wave space. The derivation is based on lecture 
notes of Moin [8]. 
 

Assume that f(x) is a function with a period of T defined on 
the grid, 
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The discrete Fourier transform of f(x) is given by 
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The spectral derivative of f(x) at point j is given by 
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Which is matrix-vector multiplication process where the 
elements of the matrix are j

nd  and the vector is ( )jf x . The 

elements j
nd  of the matrix can be computed analytically. 

First, the sum in equation (A.2) is computed. Let 
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Using the geometric series, the summation can be evaluated 

as, 
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Multiplying numerator and Denominator in equation (A.3)   

by 2
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This expression can be differentiated to yield the desired 
sum, 
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This expression can be simplified using trigonometric 

identities and noting that 2
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2) A.2 Odd Formulation 

For Odd Formulation, same calculation has been done. 
Finally: 
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