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Abstract—A fusion classifier composed of two modules, one 

made by a hidden Markov model (HMM) and the other by a support 
vector machine (SVM), is proposed to recognize faces with pose 
variations in open-set recognition settings. The HMM module cap-
tures the evolution of facial features across a subject’s face using the 
subject’s facial images only, without referencing to the faces of oth-
ers. Because of the captured evolutionary process of facial features, 
the HMM module retains certain robustness against pose variations, 
yielding low false rejection rates (FRR) for recognizing faces across 
poses. This is, however, on the price of poor false acceptance rates 
(FAR) when recognizing other faces because it is built upon within-
class samples only. The SVM module in the proposed model is de-
veloped following a special design able to substantially diminish the 
FAR and further lower down the FRR. The proposed fusion classifier 
has been evaluated in performance using the CMU PIE database, and 
proven effective for open-set face recognition with pose variations. 
Experiments have also shown that it outperforms the face classifier 
made by HMM or SVM alone.  

Keywords—Face recognition, open-set identification, hidden 
Markov model, support vector machines.  

I. INTRODUCTION 
HIS paper aims at open-set face recognition with pose 
variations. Open-set face recognition can be better inter-

preted using a gallery set and a probe set. A gallery set con-
tains the subjects enrolled to the system with one or a few fa-
cial images per subject, and a probe set refers to the facial 
images unseen to the system and presented to the system for 
recognition. The images in both sets are disjoint. When both 
sets have the same individuals, it is known as closed-set iden-
tification, and each probe face has one and only one matched 
subject in the gallery. Many former algorithms were evaluated 
using this scenario. The closed-set identification is often not 
the case in real life, but the open-set recognition is. In open-set 
recognition, the probe set is larger than the gallery set, and 
those in the probe set but not in the gallery act as imposters 
trying to break in the gallery. In such a scenario, one must first 
determine whether a probe face exists in the gallery, and if it 
exists, one will have to identify what the matched subject is 
from the gallery set. Open set face recognition is considered 
more general, and thus more difficult, than closed-set identifi-
cation because it actually adds in a detection task on top of an 
identification task. It is reported in [1] that in an open-set sce-
nario a small size of gallery is easier to recognize than a large 
size.  
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Poses, illumination conditions, and expressions are gener-
ally acknowledged as three challenging parameters in face 
recognition. Quite a number of methods for recognizing faces 
across poses use 3D approaches [1]-[7], and among them the 
3D morphable model [1, 2] may be the most well-known and 
considered an effective tool for handling poses. However, the 
3D approaches suffer from intensive computation, possible 
imprecise alignments, and undesirable artifacts generated on 
the model-based virtual views. Therefore, many researchers 
have been working on approaches with perspectives different 
from 3D ones.    

A geometry assisted probabilistic approach is reported in [8], 
which approximates a head with a 3D ellipsoid model, so that 
any face image is a 2D projection of such a 3D ellipsoid at a 
certain pose. Linear object classes (LOC) are introduced in [9, 
10], which are formed by the prototypical views to a specific 
class of objects, as faces for example. LOC has the properties 
that the virtual views of any object of the same class under 
uniform affine 3D transformations can be generated if the cor-
responding transformed views are known for the set of proto-
types. If a training set consists of frontal and rotated views of a 
set of prototypical faces, any rotated view of a new face can be 
generated from a single frontal view. Two issues have limited 
the application of LOC in practice, one is the finding of corre-
spondence between the model and an image, and the other is 
the completeness of available examples for building the proto-
types. The virtual view generation problem is reformulated as 
a prediction problem in [11], and solved by linear regression. 
This method is inspired by the idea that the linear mapping 
between non-frontal patches and frontal patches maintains 
better than that of the global case in the case of coarse align-
ment.  

This paper reports a model that fuses a Hidden Markov 
Model (HMM) with a Support Vector Machine (SVM), each 
of which has been applied to face identification and recogni-
tion, and each has some specific advantages and weakness 
[12]-[19]. The proposed fusion model can keep their advan-
tages and compensate for their weakness. It has been reported 
and also observed in our experiments that HMM is good for 
closed-set face identification with pose variations, but poor for 
open-set face recognition [20] with unacceptable false accep-
tance rates (FAR). The poor FAR is primarily caused by the 
HMM built upon within-class samples only. To exploit the 
HMM’s strength in recognizing faces across poses and effec-
tively diminish the FAR it induces, the proposed fusion model 
connects a HMM module with a SVM module following a 
special architecture. When enrolling a subject to the gallery, 
the HMM module, built from the subject’s facial images, 
searches for those in the gallery whose faces look similar to 
the subject’s face, and uses these similar faces as part of the 
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training sample for building the SVM module. Because of the 
HMM-selected training samples, the SVM module effectively 
builds in a hyperplane using the between-class samples, sub-
stantially suppressing the FAR while maintaining a good level 
of the false rejection rate (FRR).  

In the following, we will first review the face recognition 
algorithms using HMM or SVM in Section II, and then present 
the proposed fusion model in Section III. The fusion model 
has been evaluated in performance using the CMU PIE data-
base, and the results will be presented in Section IV. The con-
clusion of this study with highlights on the future work will be 
given in Section V.    

II. A REVIEW ON FACE RECOGNITION USING HMM AND SVM 

A. Face Recognition by Hidden Markov Models 
This approach considers the left-to-right and top-to-bottom 

variation in a face image an evolutionary process that can be 
described by a Hidden Markov Model (HMM). A HMM con-
sists of states, the observation symbols of each state, the state 
transition probability that governs the transition from one state 
to the others, the observation generation probability that gov-
erns the observations generated by the states, and the initial 
state transition and observation generation distributions [21]. 
Given a sequence of observation symbols s

jjO 1}{ = , a general 
problem in HMM is to determine the model parameters 

),,( πλ BA≡  so that the resultant HMM can best describe 
s
jjO 1}{ = , where }{ ,kjaA =  is the set of state transition prob-

abilities, kja ,  is the transition probability from state ki  to state 

ji ; }{ ,krbB =  is the set of state observation probabilities, krb ,  
is the probability of observing rO  at state ki ; }{ lππ =  is the 
set of initial state probabilities, lπ  is the probability of the 
initial state being at state li . Note that the number of states is 
assumed known in the above settings.   

For face recognition applications [12]-[15], the observa-
tions are extracted from a face image and must preserve the 
evolutionary geometric variation across the face. The work in 
[12] uses 1-D HMM that takes in the observations formed by 
the DCT coefficients of a series of partially overlapping rec-
tangle windows running from top to bottom across the face.  

The 1-D HMM model is extended in [13, 14], which use a 
2-D HMM, or an embedded HMM, which takes in as observa-
tions the DCT coefficients of a series of small square windows 
partially overlapped right to left and then top to bottom. The 
embedded HMM segments a face into a series of rows that 
represent some invariant features from top to bottom, such as 
the forehead, eyes, nose, and mouth [13], as shown in Fig. 1. 
These rows constitute the super-states. Embedded in each 
super-state, a number of regular states are assumed to capture 
the variation left to right in that super-state. The case shown in 
Fig. 1 shows that a face is segmented into 4 rows of super-
states for forehead, eyes, nose, and mouth. The forehead area 
is further segmented into 3 states, the eyes area into 5, and the 
nose and mouth areas each into 4. Assuming the generation of 
the observations governed by a mixture of Gaussians, one can 

apply the Viterbi algorithm to obtain the best HMM for de-
scribing the observations.  

Because the HMM model is built upon a subject’s facial 
images, we believe that it can characterize the evolutionary 
dynamics of the local facial features captured by the running 
windows across the subject’s face. The evolutionary dynamics 
of local features may remain the same for pose variations to 
some extent. It is reported in [20] and observed in our experi-
ments that an HMM facial model trained on one pose can well 
identify the same face in some neighboring poses in closed-set 
identification scenarios. However, because the HMM facial 
model is built upon the within-class samples only, which refer 
to the subject’s own facial images, it lacks the measure of the 
dissimilarity between two different faces, resulting in poor 
performance when rejecting imposters. In summary, the HMM 
facial model can work well in closed-set identification, but 
fails to do a good job in open-set face recognition.      

B. Support Vector Machines for Face Recognition 
Support Vector Machines (SVMs) establish the optimal 

separating hyperplane for solving binary classification prob-
lems. Given a training dataset, SVM can reach the right bal-
ance between the accuracy attained on this training dataset and 
the ability to classify other disjoint datasets, making it a classi-
fier with the best generalization performance [22]. For nonlin-
ear classification applications, SVM often takes a kernel 

),(     ⋅⋅K  that satisfies Mercer’s condition to build the best sepa-
rating hyperplane in the following form:  

 
                                                                                 
 

where sn
ii 1}{ =x are the support vectors, the most represent-tative 

ones from the training samples, and each is associated with a 
class labeled by }1,1{  −∈iy ; sn

ii 1}{ =α  and b are the coe-fficients 
given by solving an associated complex quadratic program-
ming problem. The kernel ),(     ⋅⋅K  maps the training samples 
to a high-dimensional space in which the nonlinear classifica-
tion becomes linear. The most popular kernels are linear, 
polynomial, and radial basis function (RBF) [22]. Given a 
probe image x, represented in some specific feature vector 
form, one can determine its class using the following distance 
function,                 
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Fig. 1 Segmentation of a face image into rows of super-states and 
each embeds a number of states left to right 
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The sign of d(x) shows on which side of the separating hy-

perplane x is located, and its magnitude gives the distance of x 
away from the hyperplane. The larger the distance, the more 
reliable the classification result.    

The feature vectors in [16, 17] are generated by Eigenface 
and Fisherface decompositions, and those in [18] are normal-
ized gray-valued pixel vectors formed by the face images after 
histogram equalization and lighting intensity subtraction. 
SVM is good at extracting the information for the discrimina-
tion of unclassified features, e.g., the features from PCA; how-
ever, it is prone to be over-trained with well-classified fea-
tures, e.g., the features from LDA [17].  

SVM aims at binary classification, but can be extended to 
multiple classification with two schemes. One is the one-to-
the-rest scheme. If there are n classes in the training set, the 
negative samples of one specific class are the conglomerate of 
all the rest n-1 classes. The other is pairwise approach, each 
classifier only involves two out of the n classes, so there will 
be n (n -1)/2 classifiers in total.     

The major disadvantage of the two schemes is the expensive 
computation due to the huge amount of training data. In the 
one-to-the-rest scheme, the support vectors of each class re-
quire the training upon the whole data set; and in the pairwise 
approach, there are too many classes to train. Training upon a 
large number of data poses a serious threat to the application 
scope of SVMs [22].      

III. FUSION OF HMM AND SVM 
Aiming at open set face recognition, we propose a fusion  

model, which keeps the advantages of both HMM and SVM 
methods, and effectively overcomes the weakness of each. 
The fused model is composed of a HMM module and a SVM 
module. In the enrollment stage, a subject’s HMM module is 
built from the subject’s facial images, and acts as a filter to 
select those in the gallery whose faces look similar to the sub-
ject’s face. These similar faces are then used as part of the 
training sample for building the SVM module, substantially 
reducing the amount of training samples for the SVM, and 
also effectively suppressing the HMM-induced FAR in the 
recognition stage. Furthermore, in the recognition stage the 
similarity between a probe face and each subject in the gallery 
can be readily measured by the subject’s HMM module, and 
the rank-n pool can be quickly determined which includes n 
subjects whose faces are considered similar to the probe face. 
The way of developing the HMM modules is similar to those 
reported in [12]-[15], the originality of this work is on (1) the 
fusion of the HMM module and the SVM module so that both 
can be integrated, and (2) the training of SVM using a generic 
negative sample set and a subject-oriented negative sample 
set.  

A. Features for the Fusion Model 
The features for the HMM module must preserve the varia-

tions of local facial features captured by the window moving 
from left to right and top to bottom. Similar to the work in [10, 
11, 12], the DCT coefficients taken from each patch captured 
by a moving square window are used in this work. Only the 
low frequency parts, i.e., those in the upper triangular of each 
patch’s DCT coefficients, are extracted. The DCT coefficients 
from the overlapping patches are good for building the HMM 
module. But they are inappropriate for building the SVM 
module, because of the high dimensionality of the feature 
space formed by these coefficients. Consider a case with a 
64x64 face and a 8x8 patch overlapped with its neighbors for 
3 pixels, if the largest 15 DCT coefficients are taken from 
each patch, it will result in a feature vector of 5415 in dimen-
sion. This size of dimension can paralyze a computer when it 
is running a SVM session with a large number of training 
samples.  

A solution to the above is to downsample the features and 
use some subset of the features. Assuming that each patch in 
the above example overlaps its neighbors for 2 pixels only and 
just the largest 9 DCT coefficients are taken, a feature dimen-
sion of 900 is attained. In our experimental study, we tried 5 
DCT coefficients from each patch, and the accuracy degraded 
at a negligible degree but came with faster training due to the 
reduced feature dimension of 500. 

B. Development of the SVM module in the Fusion Model 
We propose a special design to the generation of the SVM 

module for each subject when enrolling to the gallery set. This 
design consists of the following steps: 

1. For each subject, the positive sample set is formed by the 
subject’s own face images, but the negative sample set is 
composed of a generic (or white) set and a subject-
oriented set of face images.  

2. The generic negative set aims at carrying a wide spec-
trum of face variations across individuals, poses, illumi-
nations and other factors. The generic negative set can be 
made, or approximated, by selecting the representative 
samples from a large face database using self-organizing 
maps (SOM’s) and principal component analysis (PCA). 
Each subject in the gallery set shares this same generic 
negative set, but has a subject-oriented (or tailor-made) 
negative sample set.   

3. Using the easy-to-be-misclassified samples to strategi-
cally carve the SVM hyperplane, the subject-oriented 
negative sample set is meant to reduce the false accep-
tance rate (FAR) and improve the recognition rate. This 
sample set is formed by the face images of those in the 
gallery who look similar to the enrolling subject, and the 
similarity is measured by the subject’s HMM module. 
The subject’s HMM module can select a rank-m pool of 
m similar faces to form the subject-oriented negative 
samples. This subject-oriented negative set and the ge-
neric negative set constitute the complete negative train-
ing set for building the subject’s SVM module. We have 
tested a few kernels, and decided to use the radial basis 
function (RBF) because it gives better performance than 
others.  
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4. When a subject is enrolled to the gallery, the SVM mod-
ules of those in the rank-m pool who are considered simi-
lar in faces to the subject’s must also be reassessed. Each 
subject in the rank-m pool will use his HMM module to 
measure the similarity of the new enrolled face to his 
own, if the new enrolled one enters his rank-m pool list, 
his SVM module will be updated.  

The subject-oriented negative set sub-optimizes the separat-
ing hyperplane in the sense that it increases the gap between 
the subject’s samples and those who can be easily misclassi-
fied into the subject’s class. The SVM module built in this 
way can offer some similar classification performance to that 
built using the 1-to-the-rest training scheme, but the training 
can be much faster and the model size can be smaller because 
of the relatively small amount of samples considered in train-
ing.   

Given a face to be enrolled to the gallery set, the aforemen-
tioned training procedure for making its fusion model is flow-
charted in Fig. 2.  

C. Face Recognition using the Fusion Model 
When a probe face image is given to the fusion model with 

a gallery set, the HMM module of each subject in the gallery 
will give a likelihood score showing the similarity between the 
probe face and the subject’s face. We can select n subjects 
with n highest likelihood scores from the gallery and form a 
rank-n candidate pool, and then compare the distances meas-
ured by the SVM modules of the n candidates and determine 
the one with the shortest distance from the SVM hyperplane. 
This twofold scheme allows some manipulation to the FAR 
and FRR of the system, as discussed below: 
1. When we enhance the security level, this means that we ask 

for a lower FAR on the price of a higher FRR. We can 
take in less candidates given by the HMM module, i.e., a 
smaller n, so that each probe face only has a few chances 
to be matched. On the contrary, if we lower down the se-
curity level, a larger n can be chosen, and a probe face can 
have more chances to find a match.  

2. The SVM module can also be designed for different secu-
rity requirements using different sizes of negative training 

sets. The smaller the negative set, the higher the FAR and 
the lower the FRR. On the contrary, the larger the negative 
set, the stricter the security level will be. It is, however, by 
no means trivial to collect a sufficiently large set of good 
negative samples by approaches, such as bootstrapping. 
The proposed rank-n candidate pool pre-selected by the 
HMM module can easily adjust the size of the negative set 
according to the similarity between a subject and those 
who have better chances of being falsely recognized as the 
subject.   

IV. EXPERIMENTS FOR PERFORMANCE EVALUATION 
The performance of the proposed fusion model was evalu-

ated using the CMU PIE database [23]. Although PIE offers 
68 subjects and each with 13 different poses, 43 different il-
lumination conditions, and 4 different expressions, we selected 
5 poses from each subject, as an example shown in Fig. 3, and 
each pose with 7 different illumination conditions, as shown in 
Fig. 4. Because this study focuses on poses, it can be seen that 
the variation across the different illumination conditions in Fig. 
4 is not substantial.  

Fig. 3 Five poses from PIE database are considered in our 
experiments 

 HMM training and 
modeling 

SVM training and 

modeling 

Subject-oriented 
negative samples  

Preprocessing & 
feature extraction  

Feature 
extraction  

  Gallery set  

Generic 
negative 
samples  

Fig. 2 Flowchart of the training of a fusion model 
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A. Test Protocols for Performance Evaluation 
Two different test protocols were considered. One studied 

the impact of different number of images available for training 
each subject’s fusion model in the gallery set, and the other 
studied the performance variation with different gallery sizes. 
Details are as follows: 

Protocol-1. Different number of facial poses available for 
each subject to be enrolled to the gallery: for the fusion model 
we ran two different test scenarios. The Test-1 scenario 
started with 2 poses, frontal (F) and left-sided (L); and then 3 
poses, frontal (F), left-sided (L), and right-sided (R); then 4 
poses, F, L, R, and upward (U); and finally with all 5 poses, F, 
L, R, U, and downward (D). The Test-2 scenario again starts 
at 2 poses, but with F and U; then 3 poses, F, U, and D; and 
then 4 poses, F, U, D, and L. In each scenario, we randomly 
selected 34 subjects out of the 68 available from the PIE data-
base for enrolling to the gallery. For each subject in the gal-
lery, we randomly selected the facial image samples from one 
out of the seven selected illumination conditions for building 
the fusion model. The samples in the rest six illumination con-
ditions were used to compute the FRR (false rejection rate). 
The samples of the other 34 individuals were used to compute 
the FAR (false acceptance rate). The randomized selection 
scheme was repeated for 12 times, and the average rate was 
reported. The samples used in the Test-1 scenario were also 
used to build a SVM model and a HMM model for perform-
ance comparison. To attain a fair comparison, the thresholds in 
all algorithms were adjusted to make the FAR at 0.005, except 
for the HMM model. If the FAR of the HMM was set at 0.005, 
the FRR would have been over 0.9; therefore, the FAR was set 
to 0.15.  

Protocol-2. Different galley sizes and probe sizes: the gal-
lery size and probe size refer to the number of individuals in 
the gallery and probe sets, respectively. Given an upper bound 
of 68 subjects in the PIE database, we tested the gallery sizes 
of 10, 20, and 34 with the probe sizes of 20, 40, and 68, re-
spectively. Those in the gallery set were also in the probe set, 
but with different sets of images. The data partition was same 
as in the Protocol-1, but aims at open-set settings: for each 
gallery size, an equal size of imposters are there trying to 
break in. For each gallery size, we repeated the test with a 
random selection on the subjects for enrollment, and then a 
random selection of one out of the seven illumination condi-

tions to provide training samples. As this protocol aims at the 
performance of the proposed fusion model handling galleries 
of different sizes in open-set settings, we used all 5 poses 
available from the selected illumination condition for enroll-
ment.  

B. Sample Preprocessing and Test Results 
All faces were aligned by the eyes, and normalized to 64x64 

pixels in size according to the distance between the eyes. Each 
facial image was converted from the original color image into 
an 8-bit gray-scale image. We subtracted the best-fit linear 
plane from each image to reduce possible illumination im-
pacts, and then equalized its intensity histogram.  

To make the generic negative set for the SVM module, we 
collected a large number of face images from other benchmark 
databases, including FRGC [24, 25], AR [26], and XM2VTS 
[27], and some from the internet. Our collection had 8,156 
facial images with different poses, expressions, ethnic back-
grounds, and under various illumination conditions. 626 repre-
sentative ones were extracted using a self-organizing map 
(SOM) with facial features extracted by PCA (Principal Com-
ponent Analysis).   

Rank-5 candidate pool was used in all experiments, for ei-
ther training or testing, i.e., n, the number of similar faces se-
lected to train the HMM module is 5, and the number of can-
didates selected to validate a probe face is also 5. For the pro-
posed fusion model, 8x8 squares overlapped for 4 pixels have 
been chosen along with the major 15 coefficients from each 
square’s DCT map served as the features for the HMM mod-
ule. As mentioned in Section III-A, part of these features were 
used by the SVM module to form the feature vector of dimen-
sion 500. The HMM-only for comparison used the same fea-
tures as those used in the fusion model, but the SVM-only 
used the 666 low-frequency DCT coefficients extracted from 
each image.   

All test results are the average of 10 randomized selections 
of the gallery sets with the associated probe set. The perform-
ance for Protocol-1 is shown in Fig. 5 where the two ways of 
pose variations, Test-1 and Test-2, are compared with its 
SVM-only and HMM-only counterparts. With a pre-selected 
FAR at 0.005, the FRR of the fusion model with both Test-1 

Fig. 4 Seven similar illumination conditions were selected, and 
the yellow box shows the facial area considered in our experi-

ments 

Fig. 5 Performance of the fusion model varies with the number 
of images available for enrollment to the galley set, compared 

with the HMM and the SVM algorithms (FAR=0.005) 
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and Test-2, and the SVM-only case are shown, together with a 
pre-selected FAR at 0.18 for the HMM-only case. Choosing 
FAR 0.18 for the HMM is because that its FRR has been 
found to reach a level over 0.85 when the corresponding FAR 
reduces to below 0.05. Fig. 5 gives the following observations:  

1. The fusion model outperforms the SVM-only and the 
HMM-only algorithms, especially for the case of Test-1. 
Enrolled with two poses, frontal (F) and left-sided (L), 
the fusion model gives a FRR at 0.34, better than the 
SVM-only with FRR 0.42 using the same training sam-
ples but without the assistance of the HMM module for 
defining the candidate set.  

2. The performance of the fusion model degrades if only 
the F and U (upward) poses are available. It might imply 
that the L and R poses may better interpolate the U and 
D poses, but not vice versa; and this needs more experi-
ments to validate. When more poses are available, the 
performance of all algorithms improves. When the avail-
able poses are more than four, fusion model gives the 
best performance.  

Although the 68 subjects in the dataset may not be good 
enough for studying the influences of gallery sizes on open-set 
recognition, the false rejection rates (FRR) with 3 gallery sizes, 
10, 20, and 34 were still computed following the Protocol-2 
and 10 randomized selections on the subjects enrolled to the 
gallery. The result is given in Fig. 6. The performance was 
shown in terms of the FRR with a pre-selected FAR at 0.005 
for the fusion model and SVM-only. The HMM-only test was 
with FAR 0.18, as described in the Protocol-1 part of test. Fig. 
6 shows the following:  

1. The larger the gallery, the worse the FRR. This trend 
shows some similar observations to those reported in 
FRVT 2002 [1], reflecting the fact that some more ad-
vanced face recognition is needed to handle large galler-
ies. Although better than the HMM-only and SVM-only 
algorithms, the proposed fusion model needs to be fur-
ther improved for such a task.  

2. The poor performance given by the HMM-only algo-
rithm has again proven that HMM is not appropriate for 
open-set face recognition, although it was reported to 
have performed well for close-set identification. 

It should be noted, in addition to the result shown in Fig. 6, 
that the model size of the fusion model from this experiment is 
around 227±20 KB in average regardless of gallery sizes, but 
that of the SVM is 326 KB in average for galleries with 10 
subjects, and increases to 361 KB for galleries with 34 sub-
jects.  

V. CONCLUSION 
The important features and the continuing phase of the pro-

posed fusion model are summarized below:  
1. The fusion model maintains the advantage of HMM in 

recognizing faces with pose variations in the settings of 
closed-set identification, and substantially suppresses the 
high FAR for open-set recognition using a special fusion 
that combines HMM and SVM.  

2. The fusion model can reach a right balance between rec-
ognition performance, model size, and processing time. 
This model is especially effective in coping with the 
cases in which the subjects with similar faces may lead 
to a high FAR, and such cases can be common when the 
gallery set is large. 

3. Its two-fold scheme can be extended to other applications 
or ways of fusing two or more different classifiers. Many 
different types of classifiers have been made available in 
the last decade for research upon pattern recognition and 
computer vision. The ways of putting them together are 
yet to investigate, and the author believes that this can 
lead to some different perspectives and potentials of us-
ing these classifiers.  

4. Validated in the Protocol-1 test upon the PIE database, 
the performance of the fusion model can be improved 
when the enrollee’s (pose) samples increase. This im-
plies that if a system with the fusion model embedded 
can take in more sample images, its capability of open-
set face recognition can be improved over time. This is 
an on-going study conducted by the author, and the result 
will be reported in a following paper.   
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