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Abstract—Distant-talking voice-based HCI system suffers from
performance degradation due to mismatch between the acoustic
speech (runtime) and the acoustic model (training). Mismatch is
caused by the change in the power of the speech signal as observed at
the microphones. This change is greatly influenced by the change in
distance, affecting speech dynamics inside the room before reaching
the microphones. Moreover, as the speech signal is reflected, its
acoustical characteristic is also altered by the room properties. In
general, power mismatch due to distance is a complex problem. This
paper presents a novel approach in dealing with distance-induced
mismatch by intelligently sensing instantaneous voice power variation
and compensating model parameters. First, the distant-talking speech
signal is processed through microphone array processing, and the
corresponding distance information is extracted. Distance-sensitive
Gaussian Mixture Models (GMMs), pre-trained to capture both
speech power and room property are used to predict the optimal
distance of the speech source. Consequently, pre-computed statistic
priors corresponding to the optimal distance is selected to correct
the statistics of the generic model which was frozen during training.
Thus, model combinatorics are post-conditioned to match the power
of instantaneous speech acoustics at runtime. This results to an
improved likelihood in predicting the correct speech command at
farther distances. We experiment using real data recorded inside two
rooms. Experimental evaluation shows voice recognition performance
using our method is more robust to the change in distance compared
to the conventional approach. In our experiment, under the most
acoustically challenging environment (i.e., Room 2: 2.5 meters), our
method achieved 24.2% improvement in recognition performance
against the best-performing conventional method.

Keywords—Human Machine Interaction, Human Computer Inter-
action, Voice Recognition, Acoustic Model Compensation, Acoustic

I. INTRODUCTION

Communication is a basic form of human expression. In our
day to day lives, we interact with our peers by communicating
with them; be it through physical contact or through devices.
Nowadays, technology enables us to communicate at our own
convenience. With all the different modes to communicate,
speech is one of the most natural medium of them all. This
reason underscores the importance of harnessing speech in
achieving a more effective human-computer interaction (HCI).

The advancement of microprocessor technology has paved
the way to a more efficient and fast computers. Now is
the time of computing power sufficient enough to bring
into reality applications that once were just science fiction.
Consequently, device sensors have flooded the market which
fuels the demand for development of HCI applications. This
trend is gaining traction and is expected to maintain its
momentum in the next decade [1]. In recent years, we have
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been witnessing the advent of immersive gaming features of
consoles equipped with state-of-the-art HCI. The once hand-
held controller-restricted gaming has evolved to controller-less
experience using gestures and bodily movements for gaming
interaction. We see smartphones equipped with several sensors
(e.g. gyroscope, GPS, proximity, etc.) that interpret user’s
intention, enabling the hand-held device towards smart inter-
action. Another prominent household appliance that benefitted
from the makeover is the monitor display for television (TV)
set. It is currently referred to as smart TV or smart display, to
emphasize a human-centric design capable of interacting with
users through smartphones, gestures, etc. smart TV sports a
stark contrast to the conventional TV, in which the interaction
experience was limited to the use of bulky remote controls. In
the near future, most of the general appliances in the household
will be equipped with HCI features.

Recently, the feat in HCI experience has further pushed the
envelope with the inclusion of the speech modality. After all,
speech is human’s preferred mode of communicating. This
provision allows users to issue speech-based command for
interaction using their hand-held devices. Apparently, HCI
experience is very much dependent on the voice recognition
performance of the system. Surveys on the use of speech-
based technology in HCI show a correlation between voice
recognition performance (e.g. speech command are correctly
recognized) and the HCI experience [2]. In particular, the
level of satisfaction is high when the voice commands are
recognized correctly, and users’ dissatisfactions are imminent
when voice recognition fails in which users have to repeat
the voice command for a number of times [2]. Overall,
the addition of voice recognition feature has gained wide
acceptance among users.

When using hand-held devices such as smartphones, the
quality of the speech signal is in good acoustic condition when
observed by the microphone, as the device is held closely to
the mouth. In the case of smart TV and smart displays, we
need a hands-free system since the user is of considerable
distance away from the device [3][4]. In this scenario, the
speech signal is susceptible to acoustic changes as it travels
in free-space, and reflected within the room enclosure. This
phenomenon drastically affects recognition performance.

Model-based voice recognition systems employ acoustic
models trained with acoustic speech from speech database
[5][6]. Then, the pre-trained acoustic model is used against
the speech command at runtime. Such system is very sensitive
to mismatch, especially when speech acoustics at runtime
condition is different from the condition when the model
was trained [7]. Degradation in voice recognition performance0188 JAPAN.
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Fig. 1. Human computer interaction (HCI) set-up in a distant-talking and enclosed environment

is imminent at runtime depending on the severity of the
mismatch. There exist many kinds of mismatch such as noise,
speaking styles and speaker variability, among others [8]-[14].
Since research works on these particular issues have been
intensive, in this work, we focused on the mismatch caused
by the variation of the observed acoustic speech power due
to distance. Specifically, in this paper, we address the drop
in speech power as the user moves away from the system
inside an enclosed environment (e.g. room). In particular,
we addressed the effect of speech power vis-a-vis the room
properties.

The organization of the paper is as follows; in Sec. II we
introduce the problem of acoustic mismatch inside an enclosed
environment, and the conventional voice-based HCI system
in Sec. III. In Sec. IV, we present the proposed method that
addresses both speech and model mismatch, followed by the
experimental set-up in Sec. V. Recognition performance results
in real HCI environment is presented in Sec. VI. Lastly, we
conclude this paper in Sec. VII.

II. ACOUSTICS MISMATCH IN HUMAN COMPUTER
INTERACTION INSIDE AN ENCLOSED ENVIRONMENT

Consider the HCI set-up in Fig. 1. Interaction between the
smart display and the user is initiated with a speech command.
As a result, the system replies via synthetic speech through

the speakers which are hooked to an amplifier with variable
loudness control. It is assumed that the user is of considerable
distance, and the user changes position d, relative to the smart
display. In an enclosed room as shown in Fig. 1, both the direct
speech and the reflected speech are observed at the microphone
sensors [15]-[18]. As the speech is reflected from the walls
and ceilings, its acoustical characteristic is altered by the
room properties which is characterized by the room transfer
function (RTF) [19]. Hence, the observed speech power at the
microphone sensors is difficult to model as it includes both
the direct and the reflected speech. However, these two are
dependent on the distance d, between the smart display and
the source, so we can associate the observed power at the
microphone sensors to the distance d for simplicity. Thus, d
implicitly describes the observed power at the microphones.
Furthermore, as d increases, the observed power also de-
creases, thus, voice recognition performance is inferior at d2
than in d1 in Fig. 1. Conventional methods [20]-[26] fall short
to mitigate the degradation of voice recognition performance
as a result of distance variation due to the following :

• When employing microphone array technology,
conventional methods deal primarily on the effects
of the room properties and not on the change in power.
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Fig. 2. Conventional method that addresses only the acoustic speech while leaving the model out of the design problem.

• Limited focus to a fixed-distance design approach
between the speech source and the system. This generic
design is assumed to work with different distances
resulting to mediocre performance.

• Pre-trained generic model is assumed to work at runtime
with different d. Thus, mismatch between the model and
the observed speech is ignored in the conventional design.
This assumption fails when both training and runtime
conditions are completely dissimilar especially when d
varies considerably like that in Fig. 1.

This paper addresses the effect of distance-induced mis-
match in a holistic approach, by considering the synergy of
the mismatch between the observed speech and the pre-trained
acoustic model. Unlike the conventional methods [20]-[26], we
also compensate power issues in the model level at runtime,
depending on the acoustics of the observed speech. Thus, the
proposed method is robust to the degradation of voice recog-
nition performance as a function of d. Moreover, the system
can automatically adjust the loudness of the speaker depending
on the distance of the user. We evaluate the effectiveness of
the proposed method using real data and show it outperforms
the conventional methods in terms or recognition performance,
which is a main indicator of a users’ satisfaction in speech-
based HCI system [2].

III. CONVENTIONAL HCI SYSTEM

The block diagram of the conventional HCI system is shown
in Fig. 2. The incident speech as observed by the microphones
is processed using speech signal processing technique. The
separated speech û is used as input to the voice recognition
system, and the recognized command is fed into a dialog
manager that generates the audio reply of the system to the
speaker. Volume control of the speaker is manually set by the
user.

A. Speech Signal Processing
1) Microphone Array Processing: The use of multiple

microphone sensors provides a more enhanced separated
speech signal for improved signal-to-noise ratio prior to voice
recognition. Suppose that there are N sources and M (≥
N) microphones. Let uuu(ω) denote the input acoustic signal
of N sources in frequency domain, described as uuu(ω) =
[u1(ω), · · · ,uN(ω)]T , where T represents a transpose operator.
xxx(ω) = [x1(ω), · · · ,xM(ω)]T are the signals received by M mi-
crophones. The model for microphone array signal processing
is described as follows:

xxx(ω) = AAA(ω)uuu(ω)+nnn(ω), (1)

where AAA(ω) ∈ C
M×N is a Room Transfer Function (RTF)

matrix between a microphone array and sound sources; nnn(ω)
is an additive noise, which is assumed to be statistically inde-
pendent of uuu(ω). The RTF contains information regarding the
characteristics and properties of the room, and this information
is used to reflect room characteristics in the separated signal
discussed below.

2) Separation via Room Transfer Function: The sound
sources are spatially separated by a hybrid algorithm of beam-
forming and blind separation called Geometrically constrained
High-order Decorrelation based Source Separation (GHDSS).
Using the input signal xxx(ω), ûuu(ω) is usually defined by
ûuu(ω) =VVV (ω)xxx(ω) in frequency domain, where VVV (ω) is called
a separation matrix. GHDSS updates VVV (ω) so that it can
correctly estimate uuu(ω) in Eq. (1) by ûuu(ω). In order to
estimate VVV (ω), GHDSS introduces two cost functions, that
is, separation sharpness (JSS) and geometric constraints (JGC):

JSS(VVV (ω)) = ‖φ(ûuu(ω))ûuuH(ω)−diag[φ(ûuu(ω))ûuuH(ω)]‖2

JGC(VVV (ω)) = ‖diag[VVV (ω)AAA(ω)− III]‖2

where ‖ · ‖2 indicates the Frobenius norm, diag[·] is the
diagonal operator, and H represents the conjugate transpose
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Fig. 3. Block diagram of the processes needed for voice recognition (prepared offline).

operator. For a nonlinear function, φ(ûuu(ω)), we selected a
hyperbolic-tangent-based function [27] in this paper. Since
the best VVV (ω) is always changing in the real world, VVV (ω)
is adaptively updated as described in [28]. Consequently, the
separated signal û(ω) is extracted [28].

B. Voice Recognition

In recognizing a voice command, the system converts the
acoustic speech (separated speech) into text format referred
to as hypothesis. The three important components in voice
recognition prepared offline are,
• Vocabulary The list of words that are defined in a

corresponding task.

• Acoustic Model The model that capture the statistical
characteristics of the sounds in the vocabulary. In our
system we use the hidden markov model (HMM)[5][29].

• Language Model The model that contains the statistics of
word sequences in a given task. Aids the acoustic model
to generate the most likely hypothesis.

The process of preparing these components is shown in Fig.
3.

1) Training Data Collection: The speech waveform and its
corresponding text transcriptions are required prior to training.
Speech utterances are collected from different speakers to
ensure variety of speaking styles for a wide coverage of
possible acoustical variations. Moreover, It is important that
all possible sound units are well represented (i.e., phonetically
balanced) in the training database to ensure a sufficient amount
of data prior to acoustic model training. The recorded speech
data is required to be in digital format. When recording the
speech data, it is important to consider recording parameters
such as sampling frequency, resolution (bits), and the type
of microphone being used, as these may cause mismatch and
affect performance.

2) Training Data Processing:

• Text Processing:
The accompanying text is used to associate the acoustical
sound (one-to-one correspondence). Using the generated
transcripts during the recording phase, we extract the
words or vocabularies that come along with the speech
waveform. Given both the transcripts and the wave data,
supervised acoustic model training can be performed.
Voice recognition follows the same principle concerning
text queries, except for using speech as input. The more
text data used in language modelling, the better chance of
answering the queries. Thus, it is beneficial to gather text
data from external sources to model the most probable
queries. Language model contains the statistics of word
sequences. Specifically, it puts probability measure over
strings found in a document which generates the most
likely query. In short, language model aids the acoustic
model to generate the query when using speech input.

• Waveform Processing:
The speech waveform contains a huge amount of infor-
mation in the time domain, and most of these do not
bear meaningful information. Thus, we need to process
these data and extract observation vectors through spectral
analysis [30]. By performing spectral analysis, the time-
domain speech is represented in a more compact and
meaningful way. First, speech signal is emphasized to
flatten its response spectrally [31]. This makes sure that
all frequency components of the signal are treated equally.
Then, the time domain-signal is blocked into frames.
Each frame corresponds to a meaningful representation
of sound (e.g. a phone) with a defined duration [32].
The adverse effects of blocking the data into frames is
minimized through windowing. Finally cepstral analysis
is performed for each frame to capture speech features
that best describes the speech characteristics [30]-[31].
These low-dimensional features (as compared to the time-
domain counterpart) are the observation vectors used
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Fig. 4. Proposed method reflecting acoustical change in the separated speech to the acoustic model by means of compensation using distance-sensitive priors.

to train the acoustic model. The transformation of the
separated speech to features can be viewed as the trans-
formation o = T (û).

3) Acoustic Model Training: The acoustic model is the
heart of a model-based system [33]. Specifically, in our method
we use the Hidden Markov Model (HMM). The HMM,
contains the statistics of the speech data. Training an acoustic
model means optimizing the the parameters of the HMM

λ̂ = argmax
λ

R

∏
r=1

P(or|V;λ ), (2)

where λ is unknown model parameters and V is the word
sequence. or is the r-th training observation vector derived
from the speech utterance. The optimization of λ has to
be carried out separately for each of the training utterance
and the process is iterated until a reasonable performance is
achieved. Thus, iterative model training is employed. There
are several algorithms to train an acoustic model. In our case,
we use the Expectation Maximization approach through Baum
Welch [5][33]. Specifically, we optimized the the following
parameters of λ :

Cim =
Lim

∑M
m=1 Lim

, (3)

μ im =
mmmim

Lim
, (4)

Σim =
vvvim

Lim
− μ imμ im

T , (5)

ai j =
Li j

∑J
j=1 Li j

, (6)

where Cim, μ im, Σim, and ai j are the mixture weight, mean,
covariance matrix and updated transition probability respec-
tively. m denotes the mixture while i and j signify the state
(i is the current state). Lim, Li j, mmmim, vvvim are the accumulated
mixture occupancy, state transition occupancy, mean statistics
and variance statistics, respectively. In this paper we refer to
Lim, Li j, mmmim, vvvim as priors, and collectively denoted as β
which will be used for model conditioning (Sec. IV-B). The
details of these statistics are found in [5].

C. System Output

As soon as the speech command is recognized, the hy-
pothesis is then processed by the dialog manager [34]-[35]
that interprets the command to a corresponding action by the
system. In our case, an audio reply from the system in the form
of synthetic speech, is being fed to an amplifier and then to the
speaker. In this set up, the system does not automatically adjust
the volume of the amplifier as a function of the distance from
the user. Thus, the user has to manually set speaker loudness
level for each different position.

The problem with the conventional approach in Fig. 2 is that
it only addresses the effect of the RTF (room properties) [26]
in the separated speech, and does not take into consideration
the acoustic model λ . This is one major cause of mismatch
as the former may not be of the same condition as the pre-
trained model (i.e., different room properties and power level
variation).

IV. PROPOSED METHOD

The proposed method is shown in Fig. 4. After signal pro-
cessing, distance information is extracted from the separated
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Fig. 5. Parameter selection using distance-sensitive gaussian mixture model classifiers.

speech signal at runtime, which is used for parameter selection
needed to condition the generic model. Consequently, the
system automatically adjusts the loudness level as it interacts
through the speaker.

A. Intelligent Distance Sensing

The distance d is associated to the room acoustics in Sec.
I. And it implicitly describes the observed power in the
microphone array. Thus, by identifying d we can predict the
effects of power mismatch from a particular source location as
observed by the microphone. We note that the RTF affects the
observed power as it influences the acoustics of the reflected
speech. RTF A(ω) can be acquired through physical mea-
surement as described in [36], and this has been validated to
work in [20] [21]. However, it is impractical to measure room
RTF for every room where the system is deployed; and when
dealing with bigger rooms, the RTF may vary as a function
of distance. Conveniently, there exist several techniques in
approximating the RTF Â(ω) by modeling the effects of
the reflection using an exponentially decaying function as
introduced in [19][37]. Furthermore, we have also shown in
[38] the technique of compensating the effect of speech power
as a function of distance d with an interpolator f (d). Thus, we
can synthetically recreate a speech signal that contains both
RTF (room property) with different speech power as a function
of distance d by

û(d) = s(ω) f (d)Â(ω,d), (7)

where s(ω) is a clean speech signal using closed-talking
microphone, f (d) is the power compensation technique we
developed in [38] and Â(ω) is the RTF estimate [19][37]. Eq.
(7) models the separated speech which is analogous to the
actual separated speech when processed by the microphone
array. The only difference here is that we can simulate the
separated speech using Eq. (7) without physically recording it.
Specifically, we use Eq. (7) to synthetically generate speech
data at different d which will be used to train or distance-
sensitive classifiers and priors.

• Distance-sensitive Gaussian Mixture Models (GMM)Distance-sensitive Gaussian Mixture Models (GMM)Distance-sensitive Gaussian Mixture Models (GMM)
To effectively identify d, we design a GMM-based d
classifier α(d). Prior to the actual classification, speech
data û(d) for d = 1...D are synthetically generated using
Eq. (7) and used to train GMMs α(d). We use a large-
mixture GMM (i.e. 256 mix.) to better capture the room
characteristics and speech power variation at distance
d. The choice of the number of gaussian mixtures is
explained using Table I in Sec. V. In this work, we
experimentally set the step size of d to 0.5 m. covering
from 0.5m to 2.5m.
Although cameras or other device such as kinect are
good candidates to identify the distance between the
smart display and the user; these are sensitive to lighting
conditions, and may not work especially in the dark.
Moreover, distance d in this paper is not solely limited to
the distance measurement per se, but it is also associated
to room information (i.e. property) which is embedded
in the speech signal caused by reflections to the walls
and ceilings. And room information (property) cannot
be obtained through the use of camera. Thus, we focus
only with speech modality in this paper.

• Distance-sensitive PriorsDistance-sensitive PriorsDistance-sensitive Priors
Using the same synthetic data û(d) from Eq. (7) we
calculate the priors β (d) which consists of L(d)

im , L(d)
i j ,

mmm(d)
im , vvv(d)I′m and stored in the priors database for use

during model compensation at runtime. These are
the accumulated mixture occupancy, state transition
occupancy, mean statistics and variance statistics,
respectively. Thus, a total of d = D classes of priors.
We note that both the effects of power and RTF at a
particular d are infused in these statistics. Unlike the
GMMs, these statistics are prepared for HMMs since
these will be used in conditioning the HMM for voice
recognition.

• Parameter SelectionParameter SelectionParameter Selection
Optimal Parameter selection based on likelihood score is
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TABLE I
RESULTS IN IDENTIFYING THE CORRECT DISTANCE d USING DISTANCE-SENSITIVE GAUSSIAN MIXTURE MODEL (GMM) CLASSIFICATION.

Room 1 Room 2
No. of Gaussian Mixtures Loc 1 Loc 2 Loc 3 Loc 1 Loc 2 Loc 3

2 mixtures 10 % 8 % 9 % 3 % 1 % 2 %
4 mixtures 18 % 15 % 19 % 5 % 4 % 5 %
8 mixtures 29 % 27 % 27 % 12 % 15 % 14 %
16 mixtures 40 % 42 % 40 % 24 % 26 % 25 %
32 mixtures 57 % 55 % 59 % 37 % 40 % 38 %
64 mixtures 79 % 80 % 76 % 52 % 57 % 55 %
128 mixtures 90 % 91 % 88 % 68 % 71 % 70 %
256 mixtures 98 %98 %98 % 95 %95 %95 % 97 %97 %97 % 80 %80 %80 % 83 %83 %83 % 81 %81 %81 %
512 mixtures 98 % 96 % 97 % 81 % 84 % 81 %

employed using the pre-trained GMMs, and the classifi-
cation process is shown in Fig. 5. The separated speech
û from an unknown sound source location at runtime is
transformed to feature vectors T (û), and then fully evalu-
ated against the GMMs α(d) for d = 1..D. Subsequently,
the argument d̂ that maximizes the likelihood score is
selected and used to adjust the volume control for the
system’s speaker output. Consequently, d̂ is used to select
the corresponding prior β ˆ(d) from the priors database
which will be used in conditioning the generic HMM
λ (g) prior to voice recognition.

B. Distance Compensation

• Generic HMMGeneric HMMGeneric HMM
A generic model is trained as described by the training
procedure in Eq. (2) using a clean speech recorded from
close-talking microphone. We note that close-talking
condition is usually the standard practice in most speech
databases available (as opposed to distant-talking). The
resulting generic HMM λ (g) is void of RTF and power
variation information. We use this as our base model.

• Model ConditioningModel ConditioningModel Conditioning
Conditioning the HMM λ (g) means reflecting some statis-
tics from β (d̂) to λ (g). In our case, β (d̂) is employed in a
form of bias to the model parameters of λ (g). Thus, Eq.
(3)-(6) are modified and the parameters of λ̂ (distance-
compensated model) become

Ĉim =
L(g)

im + τ L(d̂)
im

∑M
m=1 L(g)

im + τ L(d̂)
im

, (8)

μ̂ im =
mmm(g)

im + τ mmm(d̂)
im

L(g)
im + τ L(d̂)

im

, (9)

Σ̂im =
vvv(g)im + τ vvv(d̂)im

L(g)
im + τ L(d̂)

im

− μ(d)
im μ(d)

im
T
, (10)

âi j =
L(g)

i j + τ L(d̂)
i j

∑J
j=1 L(g)

i j + τ L(d̂)
i j

, (11)

where Ĉim, μ̂ im, Σ̂im, and âi j are the distance-compensated
mixture weight, mean, covariance matrix and updated

transition probability respectively. m denotes the mixture
while i and j signify the state (i is the current state).
L(d̂)

im , L(d̂)
i j , mmm(d̂)

im , vvv(d̂)im are the priors β (d̂) which were
pre-computed in advance (to be used as bias); τ is the
multiplying constant that was experimentally determined.
In our experiment we used τ = 0.1.
The bias has two significant contributions. First, it has
the effect of shifting the statistics of the generic model
λ (g) which was frozen during training, closer to the
runtime condition as depicted by the distance d̂ (Note
that we associate overall room conditions with d). The
combinatorics of the model λ (g) was left open after
training and dynamically resolved at runtime depending
on the the current acoustics condition. In doing so, the
mismatch between training and runtime condition is
minimized in the HMM level. Second, it is important
to underscore that despite the perturbation caused by
the change in distance d, the HMM should not lose its
discriminative property to effectively recognize speech.
The base parameter λ (g) is considered to be ”complete”
model, being trained from reliable data as far as speech
recognition is concerned. In the bias mechanism Eq. (8)-
(11), we can maintain this status quo by setting τ <<1
rendering λ (g) to be the dominant statistics. Thus, we
can infuse environment information through β (d̂) while
maintaining the discriminatory property to recognize
speech in the new model (i.e., distance-compensated
model).

Although it is possible to correct the model through
the use of pre-existing adaptation techniques. Users
are asked to enrol adaptation data (apart from training
database) which is used to adapt the acoustic model. This
approach is impractical since there are many possible
values of d requiring separate sets of adaptation data.
Moreover, it takes some processing time to perform
model adaptation. Our method does not require any
adaptation data from the user (we generate synthetic data
from training database) and it is executed at runtime.
Thus, our method is more practical and convenient.

V. EXPERIMENTAL SET-UP

A. Training and Testing Database
The close-talking clean speech training database is from the

Japanese Newspaper Article Sentence (JNAS) corpus. This is
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Fig. 6. Basic Recognition Results.

used to train the distance-sensitive GMMs; compute the priors;
and train the generic HMMs. Recognition experiments are
carried out on our HCI task with 1K-word vocabulary. The
open test set is composed of 50 utterances coming from 10
speakers and the language model is a standard word trigram
model. The acoustic model is a phonetically tied mixture
(PTM) HMMs with 8256 Gaussians in total. Test experiment
is conducted using actual HCI set-up shown in Fig 1. The
microphone array is embedded on top of the smart display.

The test set is recorded inside two different rooms (Room
1 and Room 2) with reverberation time of 240 ms (mild
echo) and 640 ms (strong echo), respectively. Thus, Room 2 is
worse than Room 1 in terms of acoustic condition. Inside the
room, there is environment noise (i.e., computer noise) and the
sound that comes from the speakers of the smart display. The

microphone array is positioned to minimize the impact of the
environmental noise. A total of five different radial distances d
are considered {0.5m,1.0m,1.5m,2.0m,2.5m}. Thus, the test
set is recorded separately for different distances d in Room 1
and Room 2.

B. GMM Classification Performance

Distance identification is vital in selecting the appropriate
priors for model compensation and to set correct loudness
level. We show in Table 1 the classification rate (correctly
identifying d) with different gaussian mixtures and in different
rooms (Room 1 and Room 2). Moreover, in each room, we
randomly changed the location of the smart display 3 times
to check the consistency of the results at different locations
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(i.e., Loc. 1, Loc. 2 and Loc. 3). We have dyadically increased
the gaussian mixture in each training from 2 mixtures up to
512 mixtures. With lesser mixtures, the classifier is unable
to discriminate the acoustical dynamics for every change in
the distance d. This results to poor d identification rate. As
the mixtures are increased, the identification rate improves
and saturates at 256 mixtures. This means that with increased
mixtures, the classifier is more capable of capturing the room
dynamics as a function of d. Room 1 has better identification
rate than Room 2 because it is less echoic than the latter.

VI. RESULTS AND DISCUSSIONS

Recognition performance is one of the most impor-
tant measures for an effective HCI [2]. We show in
Fig. 6 the performance of the different methods used in
our experiment for both Room A and Room B, with
d={0.5m,1.0m,1.5m,2.0m,2.5m}. (A) is the performance
when there is no compensation in effect. (B) and (C) are
the results when the acoustics speech is processed with RTF
information during the microphone array processing (Conven-
tional method) [26]. Specifically, (B) employs an estimated
RTF using a mathematical model [19][37], while (C) uses a
physical measurement of the RTF [36]. Although (B) and (C)
improved the recognition performance as compared to (A),
the improvement is minimal. This is attributed to the fact that
compensating the acoustic speech alone does not minimize
the mismatch with the acoustic model. Lastly, the proposed
method is shown in (D), where a consistent improvement in
recognition performance is achieved in both rooms. Again,
Room 1 has better performance than Room 2 because it is
less echoic than the latter.

The proposed method is more robust to changes in distance
d as opposed to the conventional approach in (B) and (C) as
shown by the significant improvement of the word accuracy.
This result is a manifestation that addressing the acoustic
model in accordance to actual acoustic condition of the speech,
effectively minimizes the mismatch between the two. Thus,
improving the likelihood of recognizing the speech command
at various distances d. This makes sense because during train-
ing, the model combinatorics are frozen to ”training condition”
and there is no assurance that this condition is the same during
actual use at runtime. Since voice recognition requires both the
speech data and the acoustic model altogether, it is important
to consider mismatch issue between these two jointly. Thus,
the synergetic effect of compensation through RTF (acoustic
speech) and through the model brings significant impact to the
improvement of the recognition performance.

The robustness in voice recognition performance as a func-
tion of d results to an increased in HCI experience satisfaction
among users. Moreover, the users preferred the automatic
loudness control of the proposed method as opposed to the
manual setting of the conventional method. All the partici-
pants respond positively when asked regarding the automatic
loudness control of the system.

VII. CONCLUSION

We have presented an approach that addresses speech power
variation in a distant-talking environment. By associating the
acoustical dynamics of the observed speech to the distance
d, we have simplified the analysis of tackling the issue of
power variation. Modelling the speech power as observed by
the microphone array is a very difficult task due to the room
acoustics. And we simplified this procedure by identifying the
distance d instead. In this paper, we have shown the method of
synthetically generating the training data from a mathematical
model that best describes the acoustic speech (i.e., both the
effects of the RTF and power). From these data, we are able to
identify the acoustical condition of the actual speech utterance
at runtime. Moreover, we used the same synthetic data in
computing the priors, used to compensate the acoustic model
dynamically at runtime.

We have significantly reduced the mismatch between train-
ing (model) and runtime acoustic condition that renders the
recognition performance of the system robust to the change
in distance d as opposed to the conventional methods. We
note that in real HCI environment conditions d often varies,
and room acoustic condition is unpredictable. In the future,
we will focus on further improving performance from very
far distances (i.e., 1.5m - 2.5m). Moreover, investigation in
further improving performance in an acoustically challenged
environment (i.e., Room 2) will be conducted. We note that
issues may not be solely due to the change in distance, thus,
further study is needed.
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