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Abstract—Modeling transfer phenomena in several chemical 

engineering operations leads to the resolution of partial differential 
equations systems. According to the complexity of the operations 
mechanisms, the equations present a nonlinear form and analytical 
solution became difficult, we have then to use numerical methods 
which are based on approximations in order to transform a 
differential system to an algebraic one.Finite element method is one 
of numerical methods which can be used to obtain an accurate 
solution in many complex cases of chemical engineering.The packed 
columns find a large application like contactor for liquid-liquid 
systems such solvent extraction. In the literature, the modeling of this 
type of equipment received less attention in comparison with the 
plate columns.A mathematical bidimensionnal model with radial and 
axial dispersion, simulating packed tower extraction behavior was 
developed and a partial differential equation was solved using the 
finite element method by adopting the Galerkine model. We 
developed a Mathcad program, which can be used for a similar 
equations and concentration profiles are obtained along the column. 
The influence of radial dispersion was prooved and it can’t be 
neglected, the results were compared with experimental concentration 
at the top of the column in the extraction system: 
acetone/toluene/water. 
 

Keywords—finite element method, Galerkine method, liquid-
liquid extraction modelling, packed column simulation,  two 
dimensional model 

 

I. INTRODUCTION 
HE modeling of polyphasic transfer phenomena in many 
chemical engineering operations led to the resolution of 

partial differential equations systems. According to the 
complexity of the mechanisms involved, the equations 
generally present a nonlinear character and it is rare to 
determine an analytical solution, there is then recourse to 
numerical methods founded on approximations which 
transform the differential system into an algebraic one.[1]The 
basic idea of this method is to simplify the complex problem 
and replace it by another simpler whose solution is easier to 
obtain since its field is discredited by several under fields 
called finite elements. This will make it possible to find  

an approximation, near the exact solution. [2] 
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II EXTRACTION COLUMN MODELING 

A material balance by applying the dispersion model ([3,4]) 
on a differential element of the column (fig 1) and in the 
absence of any reaction, leads to the transient global 
differential equation that models the column behavior, taking 
into account axial and radial dispersions: 
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With equilibrium equation: y* = m x           (2) 

 m equilibrium slope 

 
 

Fig. 1  Column scheme and a differential element 
 
A material balance on the lower part of the column gives: 

(1-φ ) Vc x + φ  Vd ye = φ  Vd y + (1-φ ) Vc xsφ         (3) 
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By replacing equations (2) and (4) in (1) we have: 
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Boundary conditions used to solve the differential equation 
are: 

At  z = 0,  y = ye and at    z = H,  ∂
∂

y
z

 = 0        (7) 

The axial symmetry imposes the following boundary 
conditions in the radial direction: 
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At   r = 0,      ∂
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 = 0               (8) 

On the wall, at  r = R ,  )( ∞= −−= yy
E
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With  y∞ : fraction obtained at an infinite height of the column 
 

III NUMERICAL METHOD 
The finite element method is a numerical method that can be 
used to obtain a fairly accurate solution of complex problems 
in science and engineering. Initially the method was developed 
in 1956 by Turner, Clough, Martin and Topp for problems of 
aviation [5]. 
Over the years this method has been shown, the ability to 
solve different problems of applied science or engineering. It 
is now considered one of the best tools for solving many 
practical problems. 
The basic idea of this method  is to find a solution to a 
complex problem by replacing it by a simpler one, where the 
solution domain is discredited by several subdomains called 
finite elements. This will find an approximate solution, close 
to the exact one. Generally if this method can be adapted, 
some well-defined steps can be followed and which 
are:([1,2,5,6] 
• Discretization of the problem domain: in one-dimensional 

cases, linear elements are used and in two dimensional 
analysis, the isosceles triangle is the basic most adopted 
element. 

• Selecting an interpolation model to represent the variable 
fields in each element: the polynomial functions are the 
most used models. 

• Derivation of characteristic matrices and vectors of the 
element: Different procedures are used to derive the 
equations of the element, including the method of 
Galerkine. After integration we write the characteristic 
equation of the element e in the form:  

 [ ] )()()( eee PK =ϕ              (10) 
Where K(e) is the characteristic matrix of element e, P (e) is 
the characteristic vector and φ is the vector of unknowns at the 
nodes. 
• Assembly of matrices and characteristic vectors for the 

global equations: Once the matrices and vectors obtained, 
the next step is to establish the equations defining the 
overall system: 
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E is the total number of elements in the system 

• Solving the system of equations: After assembly, we 
can solve the system of equations after incorporation of 
boundary conditions. One of the direct methods used 
for solving such a system of equations is the Gauss 
elimination method. 
 

IV RESULTS AND DISCUSSION 
Solving the differential equation of a particular case is 

obtained using the finite element method and a Mathcad code 
was used. We will therefore study the effect of dispersion on 
the concentration profiles along the column. 

The results obtained in this work are compared with those 
obtained experimentally by Seibert and Humphrey [7] in their 
study of an extraction packed column in the treatment of the 
system: acetone-toluene-water, we used the same data and 
same operating conditions of their column: a packed column 
of 1.524 m height and 10.2 cm diameter, filled with Raschig 
rings of 1.27 cm diameter with an interfacial area of 347.72 
m2/m3 and a void fraction of 0.64. The experimental results of 
Seibert and Hamphrey [7], gives only the mole fraction at the 
outlet of the column ys, which will be used to validate the 
simulation results 
A.Axial dispersion effect 

We solve the differential equation obtained for the permanent 
case taking into account axial dispersion, which can be 
summarized in the following differential equation: 
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Ez: the coefficient of axial dispersion in the dispersed phase 
expressed as a dimensionless number of Ped calculated 
according to the operating point considered: Vc, Vd 
The boundary conditions used are as follows: 

At  z = 0,  y = ye and at    z = H,  

∂
∂

y
z  = 0       (13) 

We use 12 linear elements with two nodes per element (Fig 2) 
and a Lagrange polynomial of degree one. In steady state, the 
change in mole fraction along the column is shown on the 
graph in Figure 3. It decreases with the height of the column. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Discretization of the field with 12 linear elements 
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Fig 3 Variation of the along the column (Vc=2.10mm/s, 

Vd=4.75mm/s  Ez = 1.66  10-3 m2/s or Ped=0.023) 
 

To study the effect of axial dispersion on the profile of the 
mole fraction along the column, we compare the results 
obtained without the effect of dispersion. For the latter case 
the differential equation is simplified and an analytical 
solution giving the variation of mole fraction as a function of 
the column height is given by: 
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The values obtained are given in Table 1. From these 
results, the mole fractions increase slightly in the presence of 
axial dispersion along the column, but its effect is considered 
negligible and even vanishes when approaching the exit of the 
column. The relative error between experimental value of the 
mole fraction and calculated one at the column outlet is: 28%  
 

TABLE I 
 EFFECT OF AXIAL DISPERSION ON THE AXIAL PROFILE OF THE MOLE FRACTION 

Mole fractions of solute in the dispersed phase Height 
(m) Without dispersion 

(analytic) 
Axial dispersion 

0 0,0553 0,0553 
0,127 0,04339062 0,04344338 
0,254 0,03593471 0,03600168 
0,381 0,03126692 0,03132914 
0,508 0,02834463 0,02839757 
0,635 0,02651512 0,02655552 
0,762 0,02536976 0,02540146 
0,889 0,02465269 0,02467429 
1,016 0,02420378 0,02422119 
1,143 0,02392273 0,02393264 
1,27 0,02374678 0,02375658 
1,397 0,02363662 0,02363985 
1,524 0,02356766 0,02357419 
ys (exp) 0.0328 

 

B. Effect of radial dispersion 
The treatment of two-dimensional problem allows us to study 
the effect of radial dispersion on the concentration profile 
along the column. The differential equation to be solved: 
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The radial dispersion Er has often been neglected because 
the radial profiles obtained were flat, and this result was 
attributed by [9] in their modeling of a distillation column, to 
the fact that used boundary conditions on concentration 
gradients at the wall and at the axis of the column was equal to 
zero: 

 By performing numerical experiments and assigning the 
gradient at the wall values different from zero (no physical 
sense), these authors found that the radial profile was flatter 
and the radial concentration changed according to the values 
of the limit imposed .In the case of liquid-liquid extraction the 
gradient at the wall is nonzero and is given by some authors 
[7, 8] by equation (9)The column is discredited by linear 
triangular elements in natural coordinates to simplify the 
differentiation and integration of terms of matrices and 
characteristic vectors of elements. It was used 36 linear 
triangular elements (3 elements for the radius and 7 for the 
height) and 48 elements (we increased the number of elements 
used radially). Figure 4 shows the mesh used to discretize the 
column.  

 
 

Fig. 4 Discretization mesh :  a) 36 elements et b) 48 elements 
 

In Tables 2 and 3 are shown the results obtained using a non-
zero gradient for the boundary condition at the wall of the 
column for the two meshes shown above. The radial variation 
is small but it is more important than the zero gradient case 
(fig 6), and in addition there is also a difference by increasing 
the number of elements radially. Dimensional profile as a 
function of mole fraction (Fig. 5) is almost flat compared to 
that of Figure 7, a slight variation occurs near the wall and the 
outlet of the column. 
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Fig 5 Profile of the mole fraction with nonzero gradient at the wall 

(48 elements) 
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Fig 6 Profile of the mole fraction with zero gradient at the wall  (48 

elements) 
 

TABLE II 
 VARIATION OF THE MOLE FRACTION WITH NONZERO GRADIENT AT THE WALL 

(36 ELEMENTS) 
Mole fraction at : Height 

 
(m) 

Mole 
fraction 

 
analytic 

0 R/3 2R/3 R 

0 

0.254 

0.508 

0.762 

1.016 

1.270 

1.524 

0.0553 

0.03593 

0.02833 

0.02536 

0.02419 

0.02374 

0.02356 

0.0553 

0.046771 

0.041437 

0.037995 

0.035798 

0.034484 

0.033997 

0.0553 

0.046835 

0.041494 

0.038048 

0.035846 

0.034529 

0.03405 

0.0553 

0.04698 

0.041626 

0.038167 

0.035957 

0.034636 

0.034167 

0.0553 

0.04722 

0.041839 

0.038361 

0.03614 

0.034811 

0.034353 

ys (exp) 0.0328     
 

To further verify the influence on the radial profile we defined 
a relative molar fraction: 
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By plotting the variation of this last fraction versus radius of 
the column, a difference from the flat profile appears and it is 
more pronounced in the case of non-zero gradient as in the 
zero gradient fig 7 et 8.  
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Fig 7 Profile of the relative fraction with nonzero gradient at the wall 

(48 elements) 
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Fig 8 Profile of the relative fraction with zero gradient at the wall (48 

elements) 
 

TABLE III 
 VARIATION OF THE MOLE FRACTION WITH NONZERO GRADIENT AT THE WALL 

(48 ELEMENTS) 
Mole fraction at : Height 

 
(m) 

Mole 
fraction 
 
analytic 

0 R/4 R/2 3R/4 R 

0 
0.254 
0.508 
0.762 
1.016 
1.270 

1.5240 
 

0.0553 
0.0359 
0.0283 
0.0254 
0.0242 
0.0237 
0.0236 

0.0553 
0.04678 
0.04145 
0.03800 
0.03581 
0.03449 
0.03401 

0.0553 
0.046820 
0.041481 
0.038035 
0.035834 
0.034517 
0.034039 

0.0553 
0.046902 
0.041555 
0.038102 
0.035897 
0.034578 
0.034105 

0.0553 
0.047034 
0.041674 
0.038211 
0.035999 
0.034675 
0.034209 

0.0553 
0.047227 
0.041841 
0.038363 
0.036141 
0.034812 
0.034352 

 
ys(exp) 0.0328      

  
Thus, we note that the influence of radial dispersion is 

important on the values of mole fraction at the axe of the 
column and the relative error between the value of mole 
fraction at the output given by this model and experimental 
one reduces to 3.6% (Table III).We thus arrive at the 
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following result: the two-dimensional model with non-zero 
gradient at the wall boundary condition is best which governs 
the behavior of the column, even if the effect of radial 
dispersion is not manifested much radially, it must be taken 
into account when modeling the columns because it has 
considerable influence on the axial profile, this result is shown 
on the graph in fig 9. 
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Fig 9 Influence of dispersions: axial and radial on the axial profile of 

the molar fraction of dispersed phase 
 

V. CONCLUSION 
In this work we presented a numerical model that simulates 

a packed column of liquid-liquid extraction using the finite 
element method, the results are similar to those obtained 
analytically or experimentally and also shows that the 
assumption of negligible radial dispersion is not always 
reliable, because even if the radial profile is almost flat, radial 
dispersion influences the axial profile and thus can not be 
neglected for a more accurate resultThe mathcad code 
developed offers the ability to change systems to process, 
properties and dimensions of columns used. 
 

NOTATION 
a : interfacial area (m2/m3) 
Er  : radial dispersion coefficient (m2 / s) 
Ez  : axial dispersion coefficient (m2 / s) 
E : total  number of elements 
H  : column height (m) 
Ko: global mass transfer coefficient (m / s) 
m : distribution coefficient  
r : radial coordinate (m) 
R : column radius (m) 
t : time (s) 
V : phase superficial velocity (m/s) 
x :  continuous phase mole fraction 
y dispersed phase mole fraction 
z : axial coordinate (m) 
 
Greek letters 
 
α : constant 

β : constant 
φ : dispersed phase holdup 
 
Indices 
 
c : continuous phase 
e : at inlet 
d :dispersed phase 
s : at outlet 
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