
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1098

An Agent Oriented Approach to Operational Profile
Management

Abstract—Software reliability, defined as the probability of a
software system or application functioning without failure or errors
over a defined period of time, has been an important area of research
for over three decades. Several research efforts aimed at developing
models to improve reliability are currently underway. One of the
most popular approaches to software reliability adopted by some of
these research efforts involves the use of operational profiles to
predict how software applications will be used. Operational profiles
are a quantification of usage patterns for a software application. The
research presented in this paper investigates an innovative multi-
agent framework for automatic creation and management of
operational profiles for generic distributed systems after their release
into the market. The architecture of the proposed Operational Profile
MAS (Multi-Agent System) is presented along with detailed
descriptions of the various models arrived at following the analysis
and design phases of the proposed system. The operational profile in
this paper is extended to comprise seven different profiles. Further,
the criticality of operations is defined using a new composed metrics
in order to organize the testing process as well as to decrease the time
and cost involved in this process. A prototype implementation of the
proposed MAS is included as proof-of-concept and the framework is
considered as a step towards making distributed systems intelligent
and self-managing.

Keywords—Software reliability, Software testing, Metrics,

Distributed systems, Multi-agent systems

I. INTRODUCTION
HE Internet era that we are currently a part of has result in
a proliferation of data and information which has, in turn,

increased the demand for software applications and software
systems to handle and manage this data. Software systems
have become such an integral part of our world that life
without them has become inconceivable. Today, software
applications and systems are used in almost all walks of life
including industry, education, medicine, business and so on.
Millions of users all over the world depend entirely on these
applications to conduct their daily activities such as flight
booking and bank transactions. Given such a large scale
infiltration of software systems into our daily lives and our
dependence on the same, any failure or breakdown in these
programs would result in substantial financial loss, and,
sometimes, even the loss of human lives. Therefore, software
reliability engineering is essential in order to improve software
operation, thereby saving money and lives.

Authors are with The University of Western Ontario, Dept of Electrical &
Computer Engineering, London, Ontario, Canada, N6A 5B9
Telephone: (519) 661- 2111 ext. 85478
Fax: (519) 850-2436 E-mail: mcapretz@eng.uwo.ca

Software reliability refers to the probability of execution

without failure for some specified interval of natural units or
time [1]. The reliability measurement process is shown in
Fig. 1 [2]. The most important step in this process is
efficiently constructing an operational profile, which refers to
the set of operations or processes for a software application,
and the probabilities of occurrence of those operations or
processes [3]. Identifying an operational profile and using it to
guide testing is an efficient approach because it detects
failures, and hence the faults causing them in the order of how
often failure occurs [1]. This enables the tester to dedicate
more testing time and resources to operations that are most
used and that need the most attention. However, as software
systems become larger, being composed of thousands of
operations and processes, the operational profile defined by
Musa [3] may not be an accurate reflection of the real use of
the system as depicted by Sommerville [2].

Fig. 1 The reliability measurement process [2]

Further, in distributed systems, software testing presents

two fundamentally difficult problems: choosing test cases and
evaluating test results. Choosing test cases is challenging
because there is an astronomical number of possible test
inputs and sequences, yet only a few of those will succeed in
revealing a failure. The other problem, evaluation, requires
generating an expected result for each test input and
comparing this expected result to the actual output of a test
run [4].

In addition, current software systems are aiming to be more
intelligent and self-managing. This requires more automated
and reliable testing in order to keep costs within an acceptable
and reasonable range. Yet another challenge involves
computing the operations criticality in a distributed system.
Operation criticality refers to the importance of an operation in
terms of the safety or the value added by satisfactory
execution; it also considers the risk to human life, the cost, or
the damage resulting from failure [1]. The testing process
should be focused on the operations that have high criticality
value. This is where the operational profile approach offers
significant advantages in terms of identifying the most used
operations and faults that have most effect on reliability, and
allocating test cases and testing resources in conformance with

Sunitha Ramanujam, Hany El Yamany, and Miriam A. M. Capretz

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1099

the usage of the operations. This leads to a decrease in the
time and cost of the testing process by guaranteeing that the
essential operations are working well and ensuring that the
whole product is efficient. Furthermore, the operations
criticality can be used as a metric to organize the testing of the
different paths in a distributed system instead of selecting
them randomly as in [1].

This paper introduces a novel multi-agent framework to
automatically regenerate the operational profile for distributed
systems after their release into the market. Agents in the
proposed framework are broadly classified into server agents
and client agents and their functionalities are described
through the roles model and the services model while their
communication mechanisms are illustrated through the
interaction and acquaintance models. Furthermore, this paper
proposes new composed metrics to determine the operations
criticality.

The remainder of this paper is structured as follow. Section
2 presents research related to building operational profiles for
distributed systems. Section 3 gives an overview of the system
objectives and the technology chosen to realize those
objectives. The proposed multi-agent framework and the
agents’ functionalities are described in Section 4 while Section
5 illustrates the functionalities of the agents comprising the
system through the various models derived during the system
analysis and design phases. An implementation for
determining the operations criticality using the proposed MAS
is presented in Section 6 and, finally, section 7 summarizes
and concludes the paper and provides some future directions.

II. RELATED WORK
The operational profile is a quantitative characterization of

how a system will be used and is applied to guide test
selection [3]. Developing an operational profile involves
progressively narrowing perspective from customers down to
operations. The main premise of creating the operational
profile is to improve the software reliability for an application
through supervision of its testing process. It consists of five
steps as follows [3]: Find the customer profile, establish the
user profile, define the system-mode profile, determine the
functional profile, and finally determine the operational profile
itself. Some of the later steps may be unnecessary in a
particular application.

Testing driven by the operational profile is efficient,
especially in communication software systems, because it
identifies failures in order of how often they occur, and hence,
the faults causing them. This approach rapidly increases the
reliability and reduces the intensity of failures per unit of
execution time. However, the performance of this testing
technique could be further improved by adjusting many vital
factors, such as reducing the number of operations and
selecting critical operations in order to schedule the operations
testing as well as eliminate any redundancy that may have
occurred in that process. Controlling these factors would
efficiently increase software reliability and decrease the time
and cost of software testing.

Whittaker et al. [5] indicate that a simple distribution of
inputs from a human user does not come close to describing
the situation. The operating environment of the software can
affect the operation of the software even if the user follows the
tested traditional operational profile. The operating system
enforces the limits on memory and makes decisions based on
the requirements of the other applications in the operating
environment [5], [6]. Thus, aspects such as the nature of the
data structures, data size and data types are important issues to
be considered when executing test cases that deal with the
operations and thus have to be taken into account [7], [8].
Therefore, the operational profile must include further
information about the operating environment, information
about other applications in the operating environment and
external data that is used by the application. As a result, an
extended operational profile can be built [9].

In addition to the normal operational profile, the extended
operational profile includes two additional profiles; the
structure profile and the data profile. The structural profile
contains both the structure of the system on which the
application is running and the configuration of the actual
application itself. Data structures can often be characterized by
attributes that have numerical value and may change over
time. The data profile consists of an application’s input values
from many users.

Furthermore, the extended operational profile depicts a
higher level of reflection than the normal operational profile
for any applications in the software market. This extended
profile will help organizations validate their systems, and
consequently, improve their reliability. However, the selection
of test cases is not addressed and also, there is no specified
identification for the operation criticality that could help in the
testing organization. Moreover, the automatic regeneration of
the operational profile is not considered in that work [9].

The greatest challenges that organizations face in validating
their applications are those of choosing tests and evaluating
test results; this is due to the great variation of test cases and
the high cost of the assessment process. The automated model-
based testing approach described in [4] could assist in solving
those issues. The automated system is designed to support the
rapid incremental development of complex distributed
systems. It is able to revise the profile, regenerate it, and then
run different test suites. In this latter technique, the most
important issue involves generating fresh test suites every time
the testing is running using discrete event simulation and AI-
based meta-techniques. These fresh test cases are more likely
to discover newer defects since re-running the same profile-
based test suite is inefficient and useless. As high volume
automated testing is generated, the output of the system should
be monitored. The output checking requires the development
and evaluation of expected results, so that, along with fresh
test inputs, the system is extended to automatically produce
new and expected results to evaluate the test run output. On
the other hand, AI-based meta- programming architecture in
this approach did not scale well as it imposed a high
maintenance cost.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1100

This paper proposes an innovative technique for building a
distributed operational profile (DOP) for generic distributed
systems using a multi-agent based framework. The DOP will
consist of seven steps utilizing the benefits of the normal
operational profile in [3] and the extended operational profile
in [9]. The first version of DOP will be built statically as
suggested in [3], [9]. Consequently, the multi-agent system
will automatically modify and regenerate the DOP according
to the changes in the distributed system. This regeneration will
be done, after releasing the software product in the market; it
will be accomplished by monitoring its usage with many
clients (i.e. customers) and detecting the changes that might
occur at the vendor site due to modification in requirements
and or system enhancements.

III. SYSTEM OBJECTIVES and TECHNOLOGY
The primary objective of this research is to automate the

process of monitoring customers’ software usage in order to
establish a connection between the defects and the software
usage in the customer environment. Agent technology and
software agents were chosen as the design paradigm for the
work proposed in this paper due to their ability to augment the
human capabilities of reasoning and problem-solving with
capabilities of software systems such as multi-tasking and
extremely reliable and fast information storage, retrieval, and
processing.

A software agent is a piece of software that can be viewed
as perceiving its environment through sensors and acting upon
that environment through effectors [10]. Changes in a software
system and its environment may require changes in the testing
strategy. Software agents [10]-[12] are adaptive and can adjust
their behaviors based on changes in their environment. They
are also autonomous; they can continuously monitor
customer’s system usage and thus report errors as they are
found. The agents that are part of the multi-agent system
proposed in this research are also goal-oriented (pro-active),
they can generate an operational profile and calculate the
required statistics to track the total number of failures as well
as the interval between failures. For all of these reasons, we
believe that a software agent framework is the best solution
for automatically revising and regenerating the operational
profile for distributed systems, especially after their release
into the market.

In order to achieve the primary objective of this research,
there are two major sets of data necessary for collection. The
first set is related to the static and dynamic information
associated with the customer environment. This includes
information on the machine, the operating system, the
software configuration, the data held within the database, the
movement of data, and the overall operations. This
information will assist in revising and regenerating a new
DOP that will represent a true reflection of the running
distributed system. The second set of information is on the
defects that are found by the customers themselves.

As mentioned, the DOP will consist of seven steps; each
one will include a different profile. The first five steps are
derived from [3] (1. find the customer profile, 2. establish the

user profile, 3. define the system-mode profile, 4. determine
the functional profile, and finally 5. determine the operational
profile itself), the sixth one is comprised of the profiles
suggested in [9] (6. the structure profile and the data profile)
and the last one describes the influence of the surrounding
environment, including the hardware and software.
Consequently, the descriptions of the modified profiles are:

1) Determine the data profile: A definition of the types
or patterns of data and an analysis of its structure.

2) Determine the machine profile: A specification of
each environment in which the system will run. This
profile would help the vendor to track the system
behavior in different operating environments.

After the release of the product into the market, the multi-
agent based system presented in this paper will start
monitoring the product’s behavior. The software agents
comprising the Operational Profile MAS will be performing
four major tasks: monitoring, detection, diagnosis and repair.
Monitoring involves observance at both the point of sale and
at the customer’s location leading to the generation of reports,
and conception and/or enhancement of the customer’s
operational profile. The second task deals with building the
agent’s capabilities to detect defects by making use of the
operational profiles generated by data collected at different
customers’ sites. Subsequently, after detecting an error, agents
work on the diagnosis and attempt to estimate the required
actions and tests to fix the error. Eventually, with accumulated
knowledge acquired from the environment, agents should be
able to not only implement the determined test in the former
step but also to automatically repair the found errors.

The next few sections present a detailed conceptualization
of the Operational Profile MAS system components with
particular emphasis on the functionality, analysis, and design,
of each agent in the proposed MAS.

IV. THE MULTI-AGENT FRAMEWORK
As mentioned earlier, the foremost aim of the work

proposed in this paper is to rebuild new versions of an
operational profile for a distributed system after its release
into the market. The new versions of the operational profile
should realistically reflect the distributed system as it is
running in a given environment. The first version of the
operational profile is built statically as mentioned in [3], [9].
This version contains the basic knowledge that will be used to
generate the subsequent versions.

Operational criticality is a key input to the generation of
operational profiles and is used as a basis upon which to guide
testing. It addresses and eliminates two weaknesses of current
operational profiles. The first of these is that the efficiency of
operational testing decreases as the testing progresses, since
more and more parts of the software code have already been
examined [13]. Secondly, the random order of executed test
cases further reduces the efficiency of testing, because it
requires more navigation between different parts of the
program [14]. Determining criticality value for the operations
of a distributed system helps to decrease the time and cost

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1101

involved in testing by focusing on critical operations to ensure
effectiveness of the distributed system.

In the work in this paper, composed metrics are used to
determine the function criticality. Since, according to [1],
particular functions comprise each operation, it will be easier
to measure the operations criticality when the functions
criticality is known. The proposed metrics include function
Complexity (C), Size (S), the Number of Input States (IS) and
the Frequency (F) of the function usage. These metrics have
been selected based on the criteria mentioned in [15] including
the fact that they are quantified, continuous and defined on the
basis of the function definition. The description of each metric
is as follows:

1) Complexity: It evaluates the complexity of an
algorithm in a function. A function with a high
complexity might be considered a critical function
due to the fact that it may contain a greater number of
faults [16].

2) Size: It can be measured in a variety of ways
including the number of all physical lines of code, the
number of statements, and the number of blank lines.
In this work, we measure the size by the physical
lines of code. A function of large size might be
considered as a critical function.

3) Input States: It is the set of the input values of
variables associated with a function and either used
by it or affected by it.

4) Frequency: This is the number of times that a
function is executed during a period of time.

Given the above information, the functionalities of the
proposed multi-agent framework can be broadly classified into
two categories – server-side functionalities and client-side
functionalities. The activities performed by the two categories
can be summarized as follows.

A. Server-side activities
1) Interaction with vendors/testers to obtain initial

operating conditions and subsequent system changes.
2) Interaction with clients and other servers to gather

specific metrics values or to receive information on
errors/defects, if any, occurring on the client
machines.

3) Determination of appropriate testing plans and error
resolution techniques for critical defects.

4) Establishment of a communication scheduling
mechanism to appropriately receive and process
information coming in from multiple clients.

5) Calculation of criticality values for operations
comprising the distributed system in order to re-
compute the operational profile if necessary.

6) Generation of new operational profiles based on data
from the vendors’ servers, the vendors developers,
and customer usage.

7) Construction and maintenance of a database to store
the various metric values used to determine function
criticality, operation criticality values, and newly
generated operational profile details.

8) Generation of consolidated reports containing error
and resolution information or operational profile
details for vendor/tester perusal.

B. Client-side activities
1) Monitoring of client side user log files to gather

statistics on usage of functions comprising the
distributed system.

2) Calculation of frequency of usage metric values from
statistics collected from log files and transmission of
the same to the server-side for further processing.

3) Monitoring of client side system for any
errors/defects and transmission of the same to the
server side for additional processing/resolution.

As stated in earlier sections, software agents have been
chosen as an appropriate solution for the automatic and
dynamic generation of operational profiles and the analysis
and design of the proposed agent-based system is presented in
the following section.

V. ANALYSIS and DESIGN of the OPERATIONAL
PROFILE MAS

The design model of the Operational Profile MAS has been
derived using the GAIA methodology for agent-oriented
analysis and design [17]. The output of the GAIA analysis
phase results in the Role and Interactions models which are
described in the following sections within the context of the
proposed MAS.

A. SYSTEM ANALYSIS
System analysis is the process through which

developers/designers gain an understanding of the system and
its structure at a high level, without focus on the
implementation details. During the analysis of the Operational
Profile MAS, four major roles were identified. These roles and
their functionalities are as follows.

Master Centralized Controller Role (MCC): The Master
Centralized Controller is responsible for calculating the
criticality values of operations for its servers, collating the
criticality values of the other Centralized Controller agents,
and generating new operating profiles based on data from
vendor servers and customer usage. It registers within its
database any changes in system functionalities and any defects
encountered by the system, determines the appropriate testing
procedures to be performed to resolve the encountered errors
and generates a defect report for all encountered errors. It also
performs scheduling functionalities to organize the messages
received from other Centralized and Client Controllers.

Centralized Controller Role (CC): The Centralized
Controller performs a subset of the activities of the Master
Centralized Controller role. It calculates the criticality values
of operations for its servers and transmits the same to the
Master Centralized Controller for consideration during the
generation of new operational profiles. It registers within its
database any changes in system functionalities and any defects
encountered by the clients under its jurisdiction, determines
the appropriate testing procedures to be performed to resolve

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1102

Fig. 2 Roles Model for the Operational Profile MAS

Role Schema: Master Centralized Controller
(MCC)

Description:

The role is responsible for collating and calculating the criticality
values of operations for all servers, and generating new operational
profiles based on the values. It performs scheduling functionalities to
organize messages received from other roles in the system and
generates reports (operational profile reports, errors reports) whenever
applicable.

Protocols and Activities:
GetInitialOpProfile, GetSystemChanges, TransmitSystemChanges,
GetMetricValues, CalculateMetricValues, GetCriticalityValues,
CalculateCriticalityValues, RegisterChanges, GenerateNewOpProfile,
GetErrorDetails, DetermineTestingType, GenerateConsolidatedReport

Permissions:
Reads Metric Values // from Vendor and ClientControllers
 Criticality Values // from other CentralizedControllers

Changes MCC Database // contains changes and defects
 encountered during distributed system
 operation

Operational Profile

Generates Consolidated Report // contains information on
 errors/defects encountered by system

Responsibilities:
MasterCentralizedController=(GetInitialOpProfile||GetSystemChange)+.(
TransmitSystemChange.(GetMetricValues||CalculateMetricValues).(Get
CriticalityValues||CalculateCriticalityValues).RegisterChanges.Generate
NewOpProfile)w||(GetErrorDetails.[DetermineTestingType]*.GenerateCo
nsolidatedReport)*

Role Schema: Client Controller (ClientC)

Description:
This role monitors the user log files, calculates and transmits the
frequency metric. It also monitors the system to identify any
errors/defects generated in the system and communicates the same to
the CentralizedController role for appropriate handling.

Protocols and Activities:
MonitorLogFiles, CalculateUsageFrequency, TransmitMetricValues,
MonitorSystem, TransmitErrorDetails

Permissions:
Reads User Log Files

Generates Usage Frequency Metrics

Error Details

Responsibilities:
CustomerController=(MonitorLogFiles.CalculateUsageFrequency.Trans
mitMetricValues)w||(MonitorSystem.TransmitErrorDetails)w

Role Schema: Vendor/Tester

Description:
This role represents the human entity who provides the initial
complexity metric values and the initial operational profile. It also
transmits any system changes to the Master Centralized Controller and
examines operational profile and error reports for appropriate action.

Protocols and Activities:
SpecifyIntialProfile, TransmitSystemChanges, ExamineReport

Permissions:
Read New Operational Profile

Consolidated Error Reports

Responsibilities:
Vendor/Tester=SpecifyInitialProfile+.TransmitSystemChanges*||Examin
eReport*

Role Schema: Centralized Controller (CC)

Description:

The role is responsible for calculating and transmitting (to the MCC)
the criticality values of operations for its servers. It performs
scheduling functionalities to organize messages received from its
ClientControllers and generates reports (operational profile reports,
errors reports) whenever applicable.

Protocols and Activities:
GetSystemChanges, CalculateMetricValues, GetMetricValues,
CalculateCriticalityValues, RegisterChanges,
TransmitCriticalityValues, GetErrorDetails, DetermineTestingType,
GenerateErrorReport

Permissions:
Reads Metric Values // from ClientControllers

Changes CC Database // contains changes and defects
 encountered during distributed system
 operation

Generates Error/Defect Report // contains information on
 errors/defects encountered by its

clients

Responsibilities:
MasterCentralizedController=GetSystemChange+.((GetMetricValues||Ca
lculateMetricValues).CalculateCriticalityValues.RegisterChanges.Trans
mitCriticalityValues)w||(GetErrorDetails.[DetermineTestingType]*.Gener
ateErrorReport)*

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1103

Fig. 3 Interaction Model for the Operational Profile MAS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1104

Where n : Number of servers at the vendors’ sites

 m : Number of clients at the customers’ site

 + : One or more

the encountered errors and generates a defect report for all

errors encountered within its clients and transmits the same to
the Master Centralized Controller for consolidation. It also
performs scheduling functionalities to organize the messages
received from its Client Controllers.

Client Controller Role (ClientC): This role monitors the
user log files in order to gather user usage statistics and,
consequently, calculates frequency of usage of each function
of the distributed system. It also monitors the system to
identify any errors/defects that may be generated during
system operation and communicates the same to the
Centralized Controller role for appropriate handling.

Vendor/Tester Role: This role represents the human entity
who provides the Centralized Controller with the initial
complexity metric values to serve as a base for further/future
calculations. It also updates the MCC’s knowledge-base with
any modifications of the distributed system components and is
responsible for examining the defect/error reports and
determining the appropriate course of action to resolve the
same.

The Roles model and the Interaction models developed for
the Operational Profile MAS during the GAIA analysis phase
are discussed in further detail in the following sub-sections.

1) Roles Model
The key entities (roles) in the system, the permissions

associated with them, the activities and protocols they engage
in, and the functionalities (responsibilities) of the entities/roles
are identified and illustrated in the roles model. The roles
identified for the proposed MAS, and their details, are
described in Fig. 2.

2) Interaction Model
The dependencies, relationships, and the links between the

various roles comprising a MAS are captured through the
GAIA Interaction model. The interaction models for the
proposed MAS framework are presented below. The purpose
of each of the protocol definitions identified for the
Operational Profile MAS is listed in Table 1 below while
Fig. 3 illustrates the interaction model along with the initiator,
responder, input, output, and processing of each protocol.

B. SYSTEM DESIGN
While the analysis phase stays away from the

implementation details, the primary focus of the design phase
is the transformation of the high-level (abstract) models that
were formulated in the analysis phase into lower-level models
that can be implemented with ease. The three models created
during the GAIA design phase, namely, the Agent Model, the
Acquaintance Model, and the Service Model, are described in
further detail in the following sections.

1) The Agent Model
The various agent types that comprise the system and the

number of agent instances that will be created at run-time for
each of the agent types is illustrated in the Agent Model. The
agent model for the proposed framework is depicted in Fig. 4.
As shown, there is a one-to-one correspondence between the
roles identified in the roles model and the agent types.

The Master Centralized Controller is just a Centralized
Controller Agent with additional functionalities of
coordination and consolidation. In the current version, the
Vendor/Tester Agent is assigned the responsibility of
designating one of the CCAs as the MCCA. However, in
future versions, the CCAs will coordinate and negotiate
amongst themselves and choose as the MCCA the most
appropriate candidate to perform those additional tasks based
on various factors such as load on the CCA servers,
processing power available to the CCA servers, number of
clients managed by the CCAs, and so on.

Fig. 5 depicts a high-level, conceptual view of the proposed
Operational Profile MAS framework in light of the roles and
agent types identified in the previous sub-sections.

Vendor/Tester Agent
(VUA)

ClientController Agent
(ClientCA)

m

CentralizedController Agent
(CCA)

n-1

Centralized Controller Client Controller Vendor/Tester

+

Master Centralized
Controller Agent (MCCA)

1

Master Centralized

Fig 4 Agent Model for the Operational Profile MAS

Client
Controller

Agents

Customers-
Site

MCCA

CCA 1

CCA 2

CCA 3

Fig. 5 A Multi-Agent System DOP Management

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1105

TABLE I
PURPOSE OF THE PROTOCOL DEFINITIONS

2) The Acquaintance Model
The acquaintance model highlights the communication

links that exist between the various agent types comprising
the system and the model for the proposed framework is
illustrated in Fig. 6.

3) The Services Model
The last model in the GAIA methodology system design

phase, the services model, is used to identify the services
associated with each agent type and to describe properties
(such as inputs, outputs, pre-conditions, post-conditions,
etc.) of the services. The service model for each of the
agent types in the proposed framework is given in Table 2.

Fig. 6 Acquaintance Model for the Operational Profile MAS

Protocol Purpose

SpecifyInitialProfile This protocol enables the human Tester/Vendor to specify the initial Operational Profile (which is
used as a starting point) to the MCC role

TransmitSystemChanges This protocol is used by the human Tester/Vendor to transmit any changes that occur within the
distributed system to the MCC role and by the MCC role to propagate those changes to the CC role

GetInitialOpProfile MCC role uses this protocol to receive, (and update in its database), the initial operational profile
details (along with the initial values for the criticality metrics) from the human Tester/Vendor

GetSystemChanges Any changes to the distributed system components are received from the human Vendor/Tester by
the MCC through this protocol

GetMetricValues This protocol permits MCC and CC to request, from their ClientCs and other CCs (in the case of the
MCC), the specific metrics required to recalculate operation criticalities

GetCriticalityValues This protocol enables MCC to request and receive criticality values for operations on servers
managed by the CC role

GenerateNewOpProfile MCC role uses this protocol to generate a new operational profile based on new criticality values

GetErrorDetails MCC uses this protocol to receive any errors/defects identified by CC which, in turn, uses this
protocol to receive errors/defects identified by the ClientC role

GenerateConsolidatedReport This protocol is used by MCC to consolidate the reports received from CC into one common report
for the entire distributed system. This report is transmitted to the Vendor/Tester for further action

GetSystemChanges CC uses this protocol to receive any distributed system changes from the MCC role

TransmitCriticalityValues This protocol is used by CC to transmit the calculated criticality values for operations on its server
to the MCC

TransmitMetricValues This protocol enables the ClientC role to transmit the requested metric values to CC

TransmitErrorDetails ClientC uses this protocol to transmit any errors/defects it encounters during routine system
monitoring to the CC role for further handling.

GenerateErrorReport This protocol is used by the CC role to generate a report with details on all the errors/defects
encountered in the client systems under the CC’s jurisdiction as well as in the CC’s servers

MasterCentralized
Controller Agent (MCCA)

Vendor/User Agent
(VUA)

ClientController Agent
(ClientCA)

CentralizedController
Agent (CCA)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1106

TABLE II
SERVICES MODEL FOR THE OPERATIONAL PROFILE MAS

 Vendor/Tester

Service Inputs Outputs Pre-condition Post-condition

Specify Initial Profile --- Initial Metric Values,
Initial Operational Profile

MAS up and
running ---

Transmit System
Changes --- Changes to the Distributed

System components --- Master Centralized Controller
database updated

Examine Report

Consolidated Report
containing errors/defects

encountered or report
containing new operational

profiles generated

Error resolution procedures
(when the report contains

Errors information)

Procedures for error
resolution initiated (in the

case of an Error report)

 MasterCentralizedController

Service Inputs Outputs Pre-condition Post-condition

Get Initial OpProfile Operational Profile from
Vendor/Tester --- --- MCCA database updated

with Operational Profile

Get System Changes
Changes to distributed

system components from
Vendor/Tester

Changes have
occurred in the

system

MCCA database updated
and System changes
propagated to CCA

Transmit System Changes --- Changes to distributed
system components

Changes have
occurred

Criticality values
recomputed by CCA

Get Metric Values Metric Values from other
agents --- --- MCCA database updated

with values

Calculate Metric Values
Data from Vendor/Tester,
data from system usage/
MCCA knowledge-base

Updated Metric Values --- MCCA database updated
with new values

Get Criticality Values Criticality Values from
CCA --- --- MCCA database updated

with values

Calculate Criticality
Values

Metric Values for the four
criticality metrics

Criticality values for each
function/operation in the

system
--- Values used to generate

new operational profile

Generate New OpProfile
Criticality Values, data
from servers, customer

usage data

New/updated Operational
Profile ---

MCCA database updated
with new operational

profile details

Get Error Details Error details from CCA or
MCCA’s clients --- Errors encountered Error report generated

Register Changes
Error details, system

changes, updated
metrics/profile

--- MCCA DB up and
running

MCCA database updated
with current information

Determine Testing Type Error/Defect details Suggested Testing
procedures

Errors/Defects
encountered

Testing suggestions
updated in Error report

Generate Consolidated
Report

Details of all
errors/defects encountered

or details of new
operational profiles

generated by MCCA

Consolidated Report
Errors encountered
or new operational
profile generated

Error resolution
procedures initiated (in
case of an Error report)

 CentralizedController

Service Inputs Outputs Pre-condition Post-condition

Get System Changes
Changes to distributed

system components from
MCCA

Changes have
occurred in the

system
CCA database updated

Get Metric Values Metric Values from its
client agents --- --- CCA database updated

with values

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1107

Calculate Metric Values
Data from MCCA, data

from system usage/ CCA
knowledge-base

Updated Metric Values --- CCA database updated
with new values

Calculate Criticality
Values

Metric Values for the four
criticality metrics

Criticality values for each
function/operation in the

CCA servers
--- Criticality values

transmitted to MCCA

Transmit Criticality
Values --- Operation criticality

values for CCA’s servers ---
Values used by MCCA to
generate new operational

profile

Get Error Details Error details from
ClientCA --- Errors encountered Error report generated

Register Changes
Error details, system

changes, updated
metrics/criticality values

--- CCA DB up and
running

CCA database updated
with current information

Determine Testing Type Error/Defect details Suggested Testing
procedures

Errors/Defects
encountered

Testing suggestions
updated in Error report

Generate Error Report

Details of all errors/
defects encountered in
CCA’s or ClientCAs’

servers

Consolidated Report for
CCA’s domain of control Errors encountered

Error report transmitted to
MCCA for inclusion in

consolidated report

 ClientController

Service Inputs Outputs Pre-condition Post-condition

Monitor Log Files Users’ Log Files Errors/defects, if any;
usage details System up and running Function usage details

captured

Calculate Usage
Frequency

Function usage
details Frequency metric Usage details available

from log files ---

Transmit Metric Value --- Frequency metric --- Operation Criticality
calculated by MCCA/CCA

Monitor System --- Errors/defects, if any;
changes, if any System up and running

Any encountered
errors/changes transmitted to
CCA and, in turn, to MCCA

Transmit Error Details Log files, system
usage Errors/changes, if any Errors/changes

encountered
MCCA/CCA database

updated with changes/errors

VI. IMPLEMENTATION
The chief goal of this implementation is to demonstrate that

the suggested composed metrics are efficient enough to
compute the operations criticality. A simple financial-based
distributed system that belongs to a small company working in
the electronics field was studied. Their financial system is
composed of many operations; three of them are considered
the most important operations. The first operation is creating
invoices; each invoice operation is composed of many
functions, which include customer data selection, product data
retrieval, product price, product stock availability, invoice
computation and invoice data storing. The second operation is
product manufacturing, whereby a product is built from many
parts. This process includes some functions such as parts
selection, parts stock availability, parts ordering and product
registration. The third operation is creating purchase order for
parts. The operation’s functions are: supplier’s data selection,
parts’ data selection, parts’ price retrieving, producing and
storing purchase order data.

An application was implemented to compute the complexity
value for each function and produce the criticality degree for

each operation in that system. The possible values for
criticality in the current implementation are high, medium or
low. Fig. 7 is a snapshot of this application. First, the values
for the first three metrics (complexity, size and input states)
for each previous function were calculated and the metrics’
values were stored in the MCCA’s/CCA’s database. Also,
frequency was computed by analyzing the users’ log files for
this system and stored in the same database. Each user log file
includes an Operation Id, a Function Id and the frequency
value for the function. Frequency for a function is equal to the
average of all users’ usage for this function.

Consequently, the CCA/MCCA adds all the metrics’ values
separately for each function to compute its criticality. The
operation criticality value is calculated by taking the average
of the criticality values of its own functions. In this work, the
range between the maximum and the minimum values of the
operations criticality is computed and then divided into three
distinct levels to produce the operations criticality degree for
all operations in that system. The results show that the three
operations mentioned above have a higher criticality degree as
compared to other operations in the system. Fig. 8 shows the
results.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:4, 2008

1108

Fig. 7 A Snapshot of Operations’ Metrics Calculation

Fig. 8 A Snapshot of Operations’ Criticality Results

VII. CONCLUSIONS & FUTURE WORK
An innovative multi-agent framework to automatically

regenerate the operational profile for distributed systems after
their release into the market has been presented in this paper
along with a detailed illustration of various models (namely,
roles, interaction, agent, acquaintance, and services model)
derived during the analysis and design phases. Agent
technology is used as the design paradigm and the proposed
framework is comprised of intelligent agents that monitor
system changes and user usage at the vendor and client sites in
order to efficiently build new versions of the operational
profile that represent a more accurate reflection of the
distributed system components. This research is aimed at
decreasing the time and cost required for testing, thereby
increasing the performance and reliability of the distributed
system.

Additionally, new composed metrics to determine
operations criticality, namely, complexity, size, input states,
and frequency, have been proposed in this paper. Using these
metrics to determine the criticality value for the distributed
system’s operations ensures that testing probability is directly
proportional to the operation criticality value. This enables
testing operations to be focused and organized such that

operations are tested according to decreasing order of their
criticality values – this guarantees that the testing process will
cover all paths of a distributed system.

The proposed framework in this paper is considered a step
toward making distributed systems intelligent and self-
managing and future work includes incorporation of
coordination and negotiation aspects into the CCA agents to
enable them to autonomously and intelligently nominate an
MCCA amongst themselves. Development of a tool to further
validate this model as well as conducting additional testing on
other distributed systems to optimize the model’s functionality
is also under consideration as an extension to the work
proposed in this paper.

REFERENCES

[1] J. Musa, Software Reliability Engineering: More Reliable Software
Faster and Cheaper, McGraw-Hill. 2004.

[2] I. Sommerville, Software Engineering, Addison-Wesley, 7th Edition,
Chapter 24, 2004.

[3] J. Musa, "Operational Profile in Software Reliability Engineering,"
IEEE Software, Vol. 10, No. 2, Mar. 1993, pp. 14-32.

[4] R. V. Binder, "Automated Testing with an Operational Profile", The
Software Tech News, Vol. 8, No. 1. Dec. 2004, pp. 7-10.

[5] J. A. Whittaker and J. Voas, "Toward a more reliable theory of software
reliability", IEEE Computer, Vol. 33, No. 12, Dec. 2000, pp. 36-42.

[6] J. Voas, "Will the real operational profile please stand up", IEEE
Software, Vol. 17, No. 2, Mar./Apr. 2000, pp. 87-89.

[7] D. M. Woit, "Specifying operational profile for modules". In
Proceedings of the ACM International Symposium on Software Testing
and Analysis, ACM, 1993.

[8] D. M. Woit, "Operational profile specification, test case generation, and
reliability estimation for modules", Technical report, Queen’s
University, Kingston, Ontario Canada, 1994

[9] M. Gittens, H. Lutfiyya, and M. Bauer, "An Extended Operational
Profile Model", In the proceedings of the Fifteenth International
Symposium on Software Reliability Engineering, Nov. 2004.

[10] N. R. Jennings, K. Sycara, M. Wooldridge, "A Roadmap of Agent
Research and Development," Journal of Autonomous Agents and Multi-
Agent Systems, Vol. 1, No. 1, 1998, pp. 5-38.

[11] J. Lind, "Patterns in agent-oriented software engineering," in
Proceedings of AOSE Workshop, 2002, pp. 47-58.

[12] M. Wooldridge, "Agent-based software engineering," IEE Proceedings
Software Engineering, Vol. 144, 1997, pp. 26-37.

[13] Mitchell, B.; Zeil, S. J.: A Reliability Model Combining Representative
and Directed Testing, Technical Report TR 95-18, Old Dominon
University, 1995.

[14] M. Grottke and K.D-Zieger, "Systematic vs. Operational Testing: The
Necessity for Different Failure Models," in Proc. of the 5th Conference
on Quality Engineering in Software Technology, 2001, pp. 59 - 68.

[15] Critical Software Practices for Performance-Based Management:
Available: http://www.spmn.com/16CSP.html (URL).

[16] V. R. Basili, and W. L. Melo, "A Validation of Object Oriented Design
Metrics as Quality Indicators", IEEE Transactions on Software
Engineering, Vol. 22, No. 10, Oct. 1996, pp. 751-761.

[17] M. Wooldridge, N. R. Jennings and D. Kinny, The Gaia Methodology
for Agent-Oriented Analysis and Design in Journal of Autonomous
Agents and Multi-Agent Systems, Vol. 3, No.3, 2000, pp. 285-312.

