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Nonlinear model predictive control for solid oxide
fuel cell system based on Wiener model

T.H. Lee, J.H. Park, S.M. Lee and S.C. Lee

Abstract—In this paper, we consider Wiener nonlinear model for
solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists
of a linear dynamic block and a static output non-linearity followed
by the block, in which linear part is approximated by state-space
model and the nonlinear part is identified by a polynomial form. To
control the SOFC system, we have to consider various view points
such as operating conditions, another constraint conditions, change
of load current and so on. A change of load current is the significant
one of these for good performance of the SOFC system. In order to
keep the constant stack terminal voltage by changing load current,
the nonlinear model predictive control (MPC) is proposed in this
paper. After primary control method is designed to guarantee the fuel
utilization as a proper constant, a nonlinear model predictive control
based on the Wiener model is developed to control the stack terminal
voltage of the SOFC system. Simulation results verify the possibility
of the proposed Wiener model and MPC method to control of SOFC
system.
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I. INTRODUCTION

As high efficiency and more environment-friendly energy
sources, fuel cell (FC) among many kinds of distributed
resources is considered the most important one. The FC plant
efficiency can be as high as 40 − 55% because FC generates
electrical energy directly from chemical reactions, unlike heat
engine or gas turbine. Until now, various types of fuel cell is
investigated, but recently among the these types of fuel cell,
solid oxide fuel cell (SOFC) has attracted considerable interest
as it offers wide application ranges, flexibility in the choice of
fuel, high system efficiency and possibility of operation with
an internal reformer [1]. It is well known that SOFC systems
are sealed, and work in a high-temperature (600 − 1000◦ C)
environment. So, the heat generation from the electrochemical
reactions and the high-temperature environment can be used
for cogeneration applications increasing the efficiency up to
70%.
During the last several years, SOFC modelling of the nonlin-
ear dynamics have been investigated [2]-[4], for SOFC is a
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dynamic device which will affect the dynamic behavior of the
power system to which it is connected. However, most of these
models indicated the detailed electrochemical processes. These
models are very useful to analyze the transient characteristics
of the SOFC, but they are too complicated to be used in con-
troller design. So, for developing effective control strategies,
the system identification for SOFC is needed. Recently, a study
which identified SOFC system to various system model such
as Hammerstein model, neural network, nonlinear ARX model
and so on, has been introduced [5]-[6].
A special class of nonlinear models is block oriented one
in which a linear time invariant dynamic block is preceded
and followed by a static non-linearity. These models, such as
Hammerstein and Wiener, do not require much fundamental
knowledge about a system only require input-output data, and
they are relatively easy to be constructed using process data.
The Wiener model consists of a linear dynamic block and a
static output non-linearity followed by the block. Although
Wiener models only represent a small subclass of all non-
linear models, they have appeared useful in modeling several
nonlinear processes encountered in the process industry, such
as distillation columns [7] a heat exchanger [8] and pH
neutralization processes [9].
As is well-known, model predictive control (MPC), also
known as receding horizon control (RHC), is a popular tech-
nique for the control of slow dynamical systems, such as those
encountered in chemical process control. At every time instant,
MPC requires the on-line solution of an optimization problem
to compute optimal control inputs over a fixed number of
future time instants. Although more than one control input is
generally calculated, only the first one is implemented. At the
next sampling time, the optimization problem is reformulated
and solved with new measurements obtained from the system.
The on-line optimization can be typically reduced to either
a linear program or a quadratic program. Since MPC can
consider a finite horizon cost function, it can easily handle
time varying tracking commands, input and output constraints
and so on. For this reason, it has been widely investigated in
academia and in industry [10]-[12].

There are several methods to relax the computational de-
mand of the nonlinear optimization problem. Wang and Hen-
driksen [13] suggest the use of a prediction horizon equal to
one, in which the optimal solution can be found by solving
a polynomial equation. An approach used by Gerksic et al.
[14] is to linearize the predictions around a control sequence
obtained from previous iterations. Norquay et al. [15] use the
specific structure of Wiener models to relax the computational
demand. This is done by inverting the static nonlinearity, thus
essentially removing it from the control problem, which en-
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ables the use of linear MPC techniques for the remaining linear
block. By the way, every suggested Wiener model predictive
control (WMPC) algorithms are considered on regulation and
tracking problems based on state feedback or state observer
based form.
In this paper we propose a design method of MPC for SOFC.
In order to design the model predictive controller, we identify
SOFC model to Wiener model. The proposed control law
is based on integral action form to provide zero offset for
constant command signals and the closed loop stability is guar-
anteed under linear matrix inequality (LMI) conditions on the
terminal weighting matrix using the decreasing monotonicity
property of the performance. Through a simulation example,
we show that the proposed schemes can be appropriate track-
ing controllers for Wiener models

Nomenclature
E open− circuit reversible potential(V )
E0 standard reversible cell potential(V )
F Faraday′s constant(c mol−1)
I stack current(A)
IL limiting current(A)
KH2 valve molar constants for hydrogen(mol s−1Pa)
KH2O valve molar constants for water(mol s−1Pa)
KO2 valve molar constants for oxygen(mol s−1Pa)
Kr constant
n number of electrons participating in the reaction
N0 number of cells in the stack
pH2 partial pressure of hydrogen(atm)
pH2O partial pressure of water(atm)
pO2 partial pressure of oxygen(atm)
qf mature gas flow rate(mol s−1)
qinH2

input hydrogen flow(mol s−1)
qoH2

output hydrogen flow(mol s−1)
qrH2

hydrogen flow that reacts(mol s−1)
qinO2

inputoxygenflow(mol s−1)
rH−O hydrogen− oxygenflowratio
R gas constant(J mol−1K)
Rohm Ohmic resistance(Ω)
T cell temperature(K)
uf fuel utilization
V compartment volume(m3)

Greek letters
β Tafel slope
ηact activation losses(V )
ηconc concentration losses(V )
ηohm Ohmic losses(V )
τH2 response time for hydrogen flow(s)
τH2O response time for water flow(s)
τO2 response time for oxygen(s)
∂ Tafel constant

II. SOFC DYNAMIC MODEL

Until now SOFC dynamic model has been widely investigated.
Thus we briefly review SOFC dynamics based on previous
researches ([2]-[4], [16]-[17]). Fig. 1 displays whole of SOFC
process in this section.

A. Basic reaction of SOFC

Two ceramic electrodes are the basic components of the
SOFC which are anode and cathode channel. In the fuel cell,
fuel is supplied to the anode and air is supplied to the cathode.
At the cathode-electrolyte interface, oxygen molecules accept
electrons coming from the external circuit to form oxide ions.
The electrolyte layer allows only oxide ions to pass through
and at the anode.electrolyte interface, hydrogen molecules
present in the fuel react with oxide ions to form steam
and electrons get released. These electrons pass through the
external circuit and reach the cathode.electrolyte layer, and
thus the circuit is closed. The electrochemical reactions are
given as follows:

Anode : H2 +O2− −→ H2O + 2e−

Cathode : 1/2O2 + 2e− −→ O2−

Totalreaction : H2 + 1/2O2 −→ H2O.
(1)

B. The partial pressure

The output voltage is the most important variable in SOFC
because most of control purpose is to make actual voltage tra-
jectory and desired voltage trajectory as same. As considering
results in previous study, output voltage is consisted of partial
pressure of hydrogen, oxide and water by Nernst’s equation.
Thus to control the output voltage, we should know dynamics
of each partial pressure. In many paper about SOFC, it is
clearly developed. The Laplace transformed partial pressure
inside the channel of hydrogen, oxygen and water are as
follows :

pH2(s) =
1/KH2

1 + τH2s
(qinH2

− 2KrI) (2)

pO2(s) =
1/KO2

1 + τO2s
(qinO2

−KrI) (3)

pH2O(s) = 2KrI
1/KH2O

1 + τH2Os
. (4)

C. The output voltage

The SOFC consists of hundreds of cells connected in series
or in parallel. By regulating the fuel valve, the amount of fuel
into the SOFC can be adjusted, and the output voltage of the
SOFC can be controlled. The Nernst’s equation determine the
average voltage magnitude of the fuel cell stack. In addition,
if we consider terms of voltage loss then we can get more
perfectly voltage equation of SOFC. Hence, applying Nernst’s
equation and terms of voltage loss, the output voltage of the
SOFC can be modeled as follows:

Vdc = E − ηact − ηconc − ηohm, (5)

where

E = N0

(
E0 +

RT

2F
ln

pH2p
1/2
O2

pH2O

)
(6)

ηact = ∂ + β log I (7)

ηconc =
RT

2F
ln(1− I/IL) (8)

ηohm = IRohm. (9)
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Fig. 1: SOFC dynamic model

D. Fuel utilization

Fuel utilization is defined as:

uf =
qinH2

− q0H2

qinH2

=
qrH2

qinH2

=
N0I

2FqinH2

. (10)

It is one of the most important operating variables affecting
the system performance of FC. When the stack is operated at
a high fuel utilization, the voltage density decrease. Further-
more, if fuel utilization is too large, it becomes impossible for
the SOFC to sustain the voltage across the load. However, it is
a waste under a low fuel utilization when there is no cycling
of the anode gas flow. Therefore, the fuel utilization should
be carefully selected to achieve the high SOFC performance.
From Eq. (10), the SOFC stack is operated with constant
steady-state utilization by controlling the natural gas input flow
to the stack as:

qf =
N0I

2Fufs
, (11)

where ufs is the desired utilization in steady-state.

III. MODEL PREDICTIVE CONTROL

In this section, we briefly introduce main framework of
model predictive control method for Wiener model which is
studied by Lee et al [18].

Nonlinear Wiener model consists of a linear dynamic
block and a static output non-linearity followed by the block.
Let us consider the following identified Wiener model
equation described by

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

z(k) = h(y(k)), (12)

where A,B,C and D are the system matrices of the linear
dynamic block, x(k) ∈ Rn is the state, u(k) ∈ Rm and

y(k) ∈ Rl are the input and output of the linear block
respectively. z(k) ∈ Rl is the output of the nonlinear block
and h(y(k)) is the nonlinear mapping from y(k) to z(k). The
static nonlinear function h(·) is assumed to be known and
invertible.
The goal of this paper is to obtain static output feedback model
predictive tracking control law which stabilizes (12) and makes
outputs follow given command signals.
The considered controller has the following structure

u(k) = F (k)z(k) +N(k), (13)

where F (k) and N(k) are design variables.
In this section, we consider integral action form because it
provides zero-offset for constant command signals. We assume
the control increment δu(k) � u(k + 1)− u(k) and δy(k) �
y(k+1)−y(k). We replace u(k) with δu(k) and then we obtain
the incremental model and performance index as follows:

xe(k + 1) = Aexe(k) +Beδu(k)

y(k) = Cexe(k)

z(k) = h(y(k)), (14)

where

Ae =

[
I C
0 A

]
, Be =

[
D
B

]
,

Ce =
[
I 0

]
, xe =

[
y(k)
δx(k)

]
,
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and

�J(k) =

N−1∑
i=0

[
{z(k + i|k)− zr(k + i|k)}TQ×

{z(k + i|k)− zr(k + i|k)}
+δu(k + i|k)TRδu(k + i|k)

]
+

[
y(k +N |k)− yr(k +N |k)

δx(k +N |k)
]T

P e(k +N)

×
[

y(k +N |k)− yr(k +N |k)
δx(k +N |k)

]
, (15)

where zr(k + i) is given reference signals, N is fixed finite
horizon and Q and R are positive definite diagonal weighting
matrices. For our goal, the above performance index is mini-
mized at the time k.

According to process in [18], we can obtain upper bound
on the performance index :

�J(k) < x̄e(k)T P̄ e(k)x̄e(k). (16)

In order to design the optimized controller for Wiener model,
it is key point to find minimalized P̄ e(k+N). So we can find
proper P̄ e(k +N) by following process:

• We obtain P e(k+N) = P e
f = P̄ e(k+N){1, 1} to stable

Wiener systems.
- We assume zr = 0 and calculate P e

f .
- Nonlinearities are considered by Norquay’ inversion
method which is referred in preliminaries.

• We find P̄ e(k + i), F (k + i) and N(k + i) with given
P̄ e(k + i + 1) recursively for tracking problem during
fixed finite horizon.
- Weighting matrix H(k + i) is changed with respect to
command signals.

• Repeat same work at the next time.
- We repeat this until the desired time.

The basic concept of this Wiener MPC algorithm is presented
in [19] and consists of inverting the output nonlinearity, thus
removing it from the control problem. The performance index
(15) is changed into

�J(k) =
N−1∑
i=0

[
{y(k + i|k)− yr(k + i|k)}T Q̂×

{y(k + i|k)− yr(k + i|k)}
+δu(k + i|k)TRδu(k + i|k)

]
+

[
y(k +N |k)− yr(k +N |k)

δx(k +N |k)
]T

P e(k +N)

×
[

y(k +N |k)− yr(k +N |k)
δx(k +N |k)

]
, (17)

where

Q̂(k + i) =
( δh(y)

δy

∣∣∣∣
y=h−1(zr(k+i))

)T

Q×
( δh(y)

δy

∣∣∣∣
y=h−1(zr(k+i))

)

= H(k + i)TQH(k + i).

TABLE I: SOFC operating point

Parameter Unit Value
T K 1273
F Cmol−1 96485
R J(molK)−1 8.314
N0 - 384
E0 V 1
Kr mol(sA)−1 0.996× 10−3

KH2 mol(sPa)−1 8.32× 10−6

KH2O mol(sPa)−1 2.77× 10−6

KO2 mol(sPa)−1 2.49× 10−5

τH2 s 26.1
τH2O s 78.3
τO2 s 2.91
Rohm Ω 0.126
qinH2

mol s−1 Variable
β - 0.11
∂ - 0.05
IL A 800
n - Variable
I A Variable
ufs - 0.8

And nonlinearity output and control input can be written as:

z(k + i) = h(y(k + i)) = H(k + 1)y(k + i)

δu(k + i) = F (k + i)H(k + i)y(k + i) +N(k + i)

Steps of Section 3 in this paper was proposed in [18] already.
By using the Theorem 2 in [18], we will show results of
control of Wiener model for SOFC in next section.

IV. SIMULATION RESULTS

In this section, we present numerical experiments to show
the validation of the identified Wiener model for SOFC and the
proposed MPC scheme. In addition, constant fuel utilization
control is presented.

A. The result of system identification for SOFC

To establish the desired Wiener model, we use the SOFC
simulator [20] in MATLAB which is developed by Wang
and Nehrir. The operating conditions of SOFC simulator is
specified in Table 1. Now, identified parameters are as follows:

A =

⎡
⎣ 0.9995 −0.2824 −0.0752

0.0143 0.9896 0.6329
0.0001 −0.0076 0.9536

⎤
⎦ ,

B =

⎡
⎣ −47.0236

11.0719
0.0128

⎤
⎦

C =
[ −0.2750 −0.4587 0.5252

]
,

D = 2.9167e+ 003

h(y) = 0.0937y3 − 0.3156y2 + 1.0193y + 0.0348.

To verify whether identified Wiener model is compatible,we
conduct a experiment which demonstrate relationship between
input (hydrogen flow) and output (voltage). When a fuel flow
is changed from 0.9 × 10−3 to 1.4 × 10−3[mol s−1] at I =
70A, the output voltage of the SOFC simulator and the output
voltage of the Wiener model are represented in Fig. 2. It shows
that two graphs are almost same and the suitability of identified
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Fig. 2: Output voltage of actual and Wiener model
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Fig. 3: Load current

Wiener model is outstanding. To evaluate the suitability of
identified Wiener model, the VAF is used which compute the
percentage variance accounted for(VAF) between two signals.
The VAF of two signals that are the same is 100%. If they
different, the VAF will be lower. The VAF is often used to
verify the correctness of a model, by comparing the real output
with the estimated output of the model. VAF is defined as
follows:

VAF =
(
1− y − yest

y

)× 100[%]. (18)

So, VAF of Fig.2 is 99.6%, it meas identified Wiener model
for SOFC in this paper can replace actual SOFC system.

B. Fuel utilization and output voltage control

We can regulate the input hydrogen flow by using Eq.(11).
To prove the effectiveness of the control strategies, we
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Fig. 4: Constant fuel utilization control

choose the current disturbance as a multiple step signal which
increase from 70A to 100A at 200 s, and reduce from 100A
to 80A at 400 s. The load current disturbance is shown in
Fig.3. Fig. 4 displays fuel utilization of this simulation. From
Fig. 4, we can see the fuel utilization of the SOFC can be
controlled as steady-state constant by regulating the natural
gas input flow according to the stack current.

In order to prove the validity of our MPC based on
Wiener model for SOFC, we conduct constant output voltage
control at the same current disturbance. For this simulation,
following parameter for MPC method is selected

Q = 10, R = 0.01, N = 3.

0 100 200 300 400 500 600

65

70

75

80

85

90

time

V
ol

ta
ge

MPC
Reference

Fig. 5: Constant voltage control based on MPC

If finite horizon step, N , is increased then performance of
controller is more good but amount of calculation of MPC
controller is increased. The other side, small N has low
probability about to get feasible MPC controller. Fig. 5 shows
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that the output voltage using MPC controller can achieve the
desired value in changing load current. And the hydrogen input
flow, qinH2

[mol s−1], in this constant voltage control using MPC
is indicated in Fig. 6.
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Fig. 6: The hydrogen flow at MPC

V. CONCLUSIONS

To effectively control the SOFC system, the Wiener model is
used to identify nonlinear dynamic behavior of SOFC system.
By regulating the input hydrogen flow, SOFC system can be
controlled as each control purpose. As results in Section 4,
we prove that our control schemes, constant fuel utilization
control and constant voltage control based on MPC, are valid.
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