On Graded Semiprime Submodules Farkhonde Farzalipour and Peyman Ghiasvand Abstract—Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper we define graded semiprime submodules of a graded R-module M and we give a number of results concerning such submodules. Also, we extend some results of graded semiprime submodules to graded weakly semiprime submodules. Keywords—graded semiprime, graded weakly semiprime, graded secondary. #### I. INTRODUCTION EAKLY prime ideals in a commutative ring with nonzero identity have been introduced and studied by D. D. Anderson and S. Smith (see [1]). Weakly primary ideals in a commutative ring with nonzero identity have been introduced and studied in [4]. Also, weakly prime submodules have been studied in [5]. Graded prime ideals in a commutative G-graded ring with nonzero identity have been introduced and studied by M. Refaei and K. Alzobi in [11]. Also, graded weakly prime ideals in a commutative graded ring with nonzero identity have been studied by S. Ebrahimi Atani (see [2]). Graded prime submodules and graded weakly prime submoduled have been studied in [6] and [3] respectively. Here we study graded semiprime and graded weakly semiprime submodules of a graded R-module. For example, we show that graded semiprime submodules of graded secondary modules are graded secondary. Throughout this work R will denote a commutative G-graded ring with nonzero identity and M a graded R-module. Before we state some results let us introduce some notation and terminology. A ring (R,G) is called a G-graded ring if there exists a family $\{R_g:g\in G\}$ of additive subgroups of R such that $R = \bigoplus_{g \in G} R_g$ such that $R_g R_h \subseteq R_{gh}$ for each g and h in G. For simplicity, we will denote the graded ring (R,G) by R. If $a \in R$, then a can written uniquely as $\sum_{g \in G} a_g$ where a_g is the component of a in R_g . Also, we write $h(R) = \bigcup_{g \in G} R_g$. Moreover, if $R = \bigoplus_{g \in G} R_g$, is a graded ring, then R_e is a subring of R, $1_R \in R_e$ and R_g is an R_e -module for all $g \in G$. A ideal I of R, where R is G-graded, is called G-graded if $I = \bigoplus_{g \in G} (I \cap R_g)$ or if, equivalently, I is generated by homogeneous elements. Moreover, R/I becomes a G-graded ring with g-component $(R/I)_g = (R_g + I)/I$ for $g \in G$. Let I be a graded ideal of R, graded radical I of R, $Grad(R) = \{r \in R : x_g^{n_g} \in I \text{ for } g \in I\}$ some $n_g \in N$ }. A graded ideal I of R is said to be graded prime if $I \neq R$; and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. A proper graded ideal P of R is said to be graded weakly prime if $0 \neq ab \in P$ where $a, b \in h(R)$, F. Ffarzalipour and P. Ghiasvand are with the Department of Mathematics, Payame Noor University, Tehran 19395-3697, Iran, e-mail: (f_farzalipour@pnu.ac.ir and p_ghiasvand@pnu.ac.ir). Manuscript received Desember 19, 2011; revised January 11, 2012. implies $a \in P$ or $b \in P$. A graded ideal I of R is said to be graded maximal if $I \neq R$ and if J is a graded ideal of R such that $I \subseteq J \subseteq R$, then I = J or J = R. A graded ring Ris called a graded integral domain if ab = 0 for $a, b \in h(R)$, then a = 0 or b = 0. A graded ring R is called a graded local ring if it has a unique graded maximal ideal P, and denoted by (R, P). Let R_1 and R_2 be graded rings. Let $R = R_1 \times R_2$, clearly R is a graded ring. We write $h(R) = h(R_1) \times h(R_2)$. If R is G-graded, then an R-module M is said to be Ggraded if it has a direct sum decomposition $M=\bigoplus_{g\in G} M_g$ such that for all $g,h \in G$; $R_gM_h \subseteq M_{gh}$. An element of some R_g or M_g is said to be homogeneous element. A submodule $N\subseteq M$, where M is G-graded, is called G-graded if $N = \bigoplus_{g \in G} (N \cap M_g)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M/N becomes a Ggraded module with g-component $(M/N)_q = (M_q + N)/N$ for $g \in G$. A proper graded submodule N of a graded module M over a commutative graded ring R is said to be graded prime if whenever $r^k m \in N$, for some $r \in h(R)$, $m \in h(M)$, then $rM \subseteq N$ or $m \in N$. A proper graded submodule N of a graded R-module M is said to be graded weakly prime if $0 \neq rm \in N$ where $r \in h(R)$, $m \in h(M)$, then $m \in N$ or $rM \subseteq N$. Let R be a G-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1}R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g$ where $(S^{-1}R)_g = \{r/s : r \in R, s \in S \text{ and } g = (degs)^{-1}(degr)\}$. We write $h(S^{-1}R) = \bigcup_{g \in G} (S^{-1}R)_g$. Let M be a graded Rmodule. The module of fraction $S^{-1}M$ over a graded ring $S^{-1}R$ is a graded module which is called the module of fractions, if $S^{-1}M=\bigoplus_{g\in G}(S^{-1}M)_g$ where $(S^{-1}M)_g=\{m/s:m\in M,s\in S\text{ and }g=(degs)^{-1}(degm)\}.$ Let P be any graded prime ideal of a graded ring R and consider the multiplicatively closed subset of S = h(R) - P. We denote the graded ring of fraction $S^{-1}R$ of R by $R_{\mathcal{P}}^g$ and we call it the graded localization of R. This ring is graded local with the unique graded maximal ideal $S^{-1}P$ which will be denoted by PR_P^g . Moreover, R_P^g -module $S^{-1}M$ is denoted by M_P^g (see ## II. GRADED SEMIPRIME SUBMODULES In this section, we define the graded semiprime submodules of a graded R-module M and give some of their basic properties. Definition 2.1: Let R be a graded ring and M a graded R-module. A proper graded submodule N of M is said to be graded semiprime, if $r^k m \in N$ for some $r \in h(R)$, $m \in h(M)$ and $k \in Z^+$, then $rm \in N$. It is clear that every graded prime submodule is a graded semiprime submodule, but the converse is not true in general. For example, let $R=Z_{30}[i]=\{a+bi:a,b\in Z_{30}\}$ that Z_{30} is the ring of integers modulo 30 and let $G=Z_2$. Then R is a G-graded ring with $R_0=Z_{30}$, $R_1=iZ_{30}$. Let $I=<6>\bigoplus<0>$. The graded ideal I is graded semiprime, but it is not graded prime. Because $(2,0).(3,0)\in I$, but $(2,0)\not\in I$ and $(3,0)\not\in I$. Definition 2.2: Let N be a graded submodule of graded R-module M and $g \in G$. We say that N_g is a semiprime submodule of R_e -module M_g , if $r_e^k m_g \in N_g$ where $r_e \in R_e$, $m_g \in M_g$, then $r_e m_g \in N_g$. Proposition 2.3: Let M be a G-graded R-module and $N=\bigoplus_{g\in G}N_g$ a graded submodule of M. If N is a graded semiprime submodule of M, then N_g is a semiprime submodule of R_e -module M_g for any $g\in G$. **Proof:** Let $r_e^k m_g \in N_g$ where $r_e \in R_e$, $m_g \in M_g$ and $k \in Z^+$. So $r_e^k m_g \in N_g \subseteq N$, hence $r_e m_g \in N$ since N is a graded semiprime submodule. Since $R_e M_g \subseteq M_{eg} = M_g$, so $r_e m_g \in N_g$, as required. The following Lemma is known, but we write it here for the sake of references. Lemma 2.4: Let M be a graded module over a graded ring R. Then the following hold: - (i) If I and J are graded ideals of R, then I+J and $I\bigcap J$ are graded ideals. - (ii) If N is a graded submodule, $r \in h(R)$ and $x \in h(M)$, then Rx, IN and rN are graded submodules of M. - (iii) If N and K are graded submodules of M, then N+K and $N \cap K$ are also graded submodules of M and $(N:_R M)$ is a graded ideal of R. - (iv) Let N_{λ} be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodues of M. Proposition 2.5: Let M be a graded R-module, N a graded semiprime submodule of M and $m \in h(M)$. Then - (i) If $m \in N$, then (N : m) = R. - (ii) If $m \notin N$, then (N : m) is a graded semiprime submodule of M. Proof: (i) It is clear. (ii) Let $x^ky \in (N:m)$ where $x,y \in h(R)$ and $k \in Z^+$. Hence $x^kym \in N$, so $xym \in N$ since N is graded semiprime. Therefore $xy \in (N:m)$, as needed. Proposition 2.6: Let M be a graded R-module and I a graded ideal of R. If N is a graded semiprime submodule of M such that $I^kM\subseteq N$ for some $k\in Z^+$, then $IM\subseteq N$. Proof: Let $am \in IM$ where $a \in I$ and $m \in M$. So $a = \sum_{g \in G} a_g$ that $a_g \in I \cap h(R)$ and $m = \sum_{g \in G} m_h$ that $m_h \in h(M)$. Hence for any $g,h \in G$, $a_g^k m_h \in I^k M \subseteq N$, so $a_g m_h \in N$ since N is a graded semiprime submodule. Therefore $am \in N$, as needed. A graded R-module M is called graded multiplication if for any graded submodule N of M, N = IM for some graded ideal I of R (see [9]). Proposition 2.7: Let M be a graded multiplication R-module and K a graded submodule of M. If N is a graded semiprime submodule of M such that $K^n \subseteq N$ for some $n \in Z^+$, then $K \subseteq N$. Moreover, if $K^n = N$ for some $n \in Z^+$, then K = N. *Proof:* Since M is a graded multiplication module, so K=IM for some graded ideal I of R. Hence $K^n=(IM)^n=I^nM\subseteq N$, then $K\subseteq N$ by Proposition 2.6. Clearly, if $K^n=N$ for some $n\in Z^+$, then K=N. Proposition 2.8: Let $R=R_1\times R_2$ where $R_i,\ i=1,2,$ is a graded commutative ring with identity for i=1,2. Let M_i be a graded R_i -module and let $M=M_1\times M_2$ be the graded R-module with action $(r_1,r_2)(m_1,m_2)=(r_1m_1,r_2m_2)$ where $r_i\in R_i$ and $m_i\in M_i$. Then the following hold: - (i) N_1 is a graded semiprime submodule of M_1 if and only if $N_1 \times M_2$ is a graded semiprime submodule of M. - (ii) N_2 is a graded semiprime submodule of M_2 if and only if $M_1 \times N_2$ is a graded semiprime submodule of M. *Proof:* (i) Let N_1 be a graded semiprime submodule of M_1 . Suppose $(a,b)^k(m,n) \in N_1 \times M_2$ where $(a,b) \in h(R) = h(R_1) \times h(R_2)$, $(m,n) \in h(M) = h(M_1) \times h(M_2)$ and $k \in Z^+$. So $a^k m \in N_1$, and $am \in N_1$ since N_1 is a graded semiprime submodule. Hence $(a,b)(m,n) \in N_1 \times M_2$, as required. Let $N_1 \times M_2$ is a graded semiprime submodule of M. Let $a^k m \in N_1$ where $a \in h(R_1)$, $m \in h(M_1)$ and $k \in Z^+$. So $(a,1)^k(m,0) \in N_1 \times M_2$ where $(a,1) \in h(R)$ and $(m,0) \in h(M)$, thus $(a,1)(m,0) \in N_1 \times M_2$ since $N_1 \times M_2$ is a graded semiprime submodule. Hence $am \in N_1$, as needed. (ii) The proof is similar to that in case (i) and we omit it. ■ A graded R-module M is called a graded secondary module provided that for every homogeneous element $r \in h(R)$, rM = M or $r^nM = 0$ for some positive integer n (see [7]). Theorem 2.9: Let M be a graded secondary R-module and N a nonzero graded semiprime R-submodule of M. Then N is graded secondary R-module. Proof: Let $r \in h(R)$. If $r^nM = 0$ for some positive integer n, then $r^nN \subseteq r^nM = 0$, so r is nilpotent on N. Suppose that rM = M; we show that r divides N. Let $n \in N$. We may assume that $n = \sum_{g \in G} n_g$ where $n_g \neq 0$. So for every $g \in G$, $n_g = rm$ for some $m \in h(M)$. We have rm' = m for some $m' \in h(M)$, hence $rm = r^2m' \in N$, so $m = rm' \in N$ since N is graded semiprime. Hence $n = rm \in rN$. Thus rN = N, as needed. Corollary 2.10: Let M be a graded R-module, N a graded secondary R-submodule of M and K a graded semiprime submodule of M. Then $N \cap K$ is graded secondary. *Proof:* The proof is straightforward by Theorem 2.7. ■ Proposition 2.11: Let R be a graded ring and $S \subseteq h(R)$ be a multiplication closed subset of R. If N is a graded semiprime submodule of M, then $S^{-1}N$ is a graded semiprime submodule of $S^{-1}M$. *Proof:* Let $(r/s)^k.m/t \in S^{-1}N$ where $r/s \in h(S^{-1}R), m/t \in h(S^{-1}M)$ and $k \in Z^+$. So $r^km/s^kt = n/t'$ for some $n \in N \cap h(M)$ and $t' \in S$, hence there exists $s' \in S$ such that $s't'r^km = s's^ktn \in N$, so N graded semiprime gives $rms't' \in N$. Hence $rm/st = rms't'/sts't' \in S^{-1}N$, as needed. Proposition 2.12: Let (R,P) be a graded local ring with graded maximal ideal P and S=h(R)-P. Then N is a graded semiprime submodule of graded R-module M if and only if N_P^g is a graded semiprime submodule of graded R_P^g -module M_P^g . *Proof*: Let N be a graded semiprime submodule of M, then N_P^g is a graded semiprime submodule of M_P^g by Proposition 2.11. Let $r^k m \in N$ where $r \in h(R)$, $m \in h(M)$ and $k \in Z^+$. So $r^k m/1 = (r/1)^k m/1 \in N_P^g$. Hence $rm/1 \in N_P^g$, and rm/1 = c/s for some $c \in N \cap h(M)$ and $s \in S$. So there exists $t \in S$ such that $strm = tc \in N$. So $rm \in N$, because if $rm \notin N$, then $(N:rm) \neq R$, and $st \in (N:rm) \cap S \subseteq P \cap S = \emptyset$, which is a contradiction. Therefore N is a graded semiprime submodule of M. ■ Proposition 2.13: Let $K \subseteq N$ be proper graded submodules of a graded R-module M. Then N is a graded semiprime submodule of M if and only if N/K is a graded semiprime submodule of M/N. Proof: (\Rightarrow) Let $r^k(m+K) \in N/K$ where $r \in h(R), m \in h(M)$ and Z^+ . So $r^k m \in N$, N graded semiprime gives $rm \in N$. Hence $r(m+K) \in N/K$. (\Leftarrow) Let $r^k m \in N$ where $r \in h(R)$, $m \in h(M)$ and $k \in Z^+$. So $r^k m + K = r^k (m + K) \in N/K$. Then $r(m + K) \in N/K$ since N/K is graded semiprime. Hence $rm \in N$, as required. ## III. GRADED WEAKLY SEMIPRIME SUBMODULES In this section, we define the graded weakly semiprime submodules of a graded R-module and we extend some results of graded semiprime submodules to graded weakly semiprime submodules. Definition 3.1: Let R be a graded ring and M a graded R-module. A proper graded submodule N of M is said to be graded weakly semiprime, if $0 \neq r^k m \in N$ for some $r \in h(R)$, $m \in h(M)$ and $k \in Z^+$, then $rm \in N$. It is clear that every graded semiprime submodule is a graded weakly semiprime submodule. However, since 0 is always graded weakly semiprime, a graded weakly semiprime submodule need not be graded semiprime, but if R be a graded integral domain and M a faithful graded prime module, then every graded weakly semiprime is graded semiprime. Definition 3.2: Let N be a graded submodule of a graded R-module M and $g \in G$. We say that N_g is a weakly semiprime submodule of R_e -module M_g , if $r_e^k m_g \in N_g$ where $r_e \in R_e$, $m_g \in M_g$ and $k \in Z^+$, then $r_e m_g \in N_g$. Proposition 3.3: Let M be a graded R-module and $N = \bigoplus_{g \in G} N_g$ a graded submodule of M. If N is a graded weakly semiprime submodule of M, then N_g is a weakly semiprime submodule of R_e -module M_g for any $g \in G$. Proof: Let $0 \neq r_e^k m_g \in N_g$ where $r_e \in R_e$, $m_g \in M_g$ and $k \in Z^+$. So $r_e^k m_g \in N_g \subseteq N$, hence $r_e m_g \in N$ since N is a graded weakly semiprime submodule. Since $R_e M_g \subseteq M_{eg} = M_g$, so $r_e m_g \in N_g$, as required. Theorem 3.4: Let R be a graded ring, M a graded R-module, N a graded submodule of M and $g \in G$. Consider the following assertion. - (i) N_a is a weakly semiprime submodule of M_a . - (ii) For $a \in M_g$, $Rad(N_g:_{R_e}a) = (N_g:_{R_e}a) \cup Rad(0:_{R_e}a)$. (iii) For $a \in M_g$, $Rad(N_g:_{R_e}a) = (N_g:_{R_e}a)$ or $Rad(N_g:_{R_e}a) = Rad(0:_{R_e}a)$. Then $(i) \Rightarrow (ii) \Rightarrow (iii)$. $(ii) \Rightarrow (i)$ It is well known that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them. An R_e -module M_g is called prime module if the zero submodule is prime. Remark 3.5: An R_e -module M_g is prime if and only if $(0:_{R_e}M_g)=(0:_{R_e}m_g)$ for any $0\neq m_g\in M_g)$. Theorem 3.6: Let R be a graded ring, M a graded R-module, N a graded submodule of M, and $g \in G$. Then the following assertion are equivalent. - (i) N_g is a weakly semiprime submodule of M_g . - (ii) For $a \in M_g$, $Rad(N_g:_{R_e}a) = (N_g:_{R_e}a) \cup Rad(0:_{R_e}a)$. (iii) For $a \in M_g$, $Rad(N_g:_{R_e}a) = (N_g:_{R_e}a)$ or $Rad(N_g:_{R_e}a) = Rad(0:_{R_e}a)$. Proof: It is enough to show that $(iii) \Rightarrow (i)$. Let $0 \neq r^k m \in N_g$ where $r \in R_e$, $m \in M_g$ and $k \in Z^+$. So $r \in Rad(N_g:_{R_e}m)$. If $r \in Rad(0:m)$, then $r^n m = 0$ for some $n \in Z^+$. Let t be the smallest integer such that $r^t m = 0$. If t > k, then 0 < t - k < t; $r^t m = r^k(r^{t-k}m) = 0$; $r^k \in (0:_{R_e}r^{t-k}m) = (0:_{R_e}M_g)$ since M_g is a graded prime module. Hence $r^k M_g = 0$, so $r^k m = 0$, a contradiction. Let $k \geq t$. Thus $r^k m = r^{k-t}(r^t m) = 0$ which is a contradiction. Therefore $r \notin Rad(0:_{R_e}m)$. So $r \in (N_g:m)$, hence $rm \in N_g$, as needed. Proposition 3.7: Let $R=R_1\times R_2$ where R_i for i=1,2, is a commutative graded ring with identity. Let M_i be a graded R_i -module and let $M=M_1\times M_2$ be the graded R-module. Then the following hold: (i) If N₁ × M₂ is a graded weakly semiprime submodule of M, then N₁ is a graded weakly semiprime submodule of M₁. (ii) If M₁ × N₂ is a graded weakly semiprime submodule of M, then N₂ is a graded weakly semiprime submodule of M₂. Proof: (i) Let $N_1 \times M_2$ is a graded weakly semiprime submodule of M. Suppose $0 \neq a^k m \in N_1$ where $a \in h(R_1)$, $m \in h(M_1)$ and $k \in Z^+$. So $0 \neq (a,1)^k(m,0) \in N_1 \times M_2$, then $(a,1)(m,0) \in N_1 \times M_2$ since $N_1 \times M_2$ is a graded weakly semiprime. Hence $am \in N_1$, so N_1 is a graded weakly semiprime submodule of M_1 . (ii) The proof is similar to that in case (i). Theorem 3.8: Let M be a graded secondary R-module and N a nonzero graded weakly semiprime R-submodule of M. Then N is graded secondary. Proof: Let $r \in h(R)$. If $r^nM = 0$ for some positive integer n, then $r^nN \subseteq r^nM = 0$, so r is nilpotent on N. Suppose that rM = M; we show that r divides N. Let $0 \ne n \in N$. We may assume that $n = \sum_{g \in G} n_g$ where $n_g \ne 0$. So for any $g \in G$, $n_g = rm$ for some $m \in h(M)$. We have rm' = m for some $m' \in h(M)$, hence $0 \ne rm = r^2m' \in N$, so $m = rm' \in N$ since N is a graded weakly semiprime submodule. Thus $n_g \in rN$, so $n \in rN$. Therefore rN = N, as needed. Corollary 3.9: Let M be a graded R-module, N a graded secondary R-submodule of M and K a graded weakly semiprime submodule of M. Then $N\cap K$ is graded secondary. *Proof:* The proof is straightforward by Theorem 3.8. Proposition 3.10: Let R be a graded ring and $S \subseteq h(R)$ be a multiplication closed subset of R. If N is a graded weakly semiprime submodule of M, then $S^{-1}N$ is a graded weakly semiprime submodule of $S^{-1}M$. Proof: Let $0/1 \neq (r/s)^k.m/t \in S^{-1}N$ where $r/s \in h(S^{-1}R), m/t \in h(S^{-1}M)$ and $k \in Z^+$. So $0/1 \neq r^km/s^kt = n/t'$ for some $n \in N \cap h(M)$ and $t' \in S$, hence there exists $s' \in S$ such that $0 \neq s't'r^km = s's^ktn \in N$ (because if $s't'r^km = 0$, $r^km/s^kt = s't'r^km/s't's^kt = 0/1$, a contradiction), so N graded weakly semiprime gives $rms't' \in N$. Hence $rm/st = rms't'/sts't' \in S^{-1}N$, as needed. Proposition 3.11: Let (R,P) be a graded local ring with graded maximal ideal P and S=h(R)-P. Then N is a graded weakly semiprime submodule of graded R-module M if and only if N_P^g is a graded weakly semiprime submodule of graded R_P^g -module M_P^g . Proof: Let N be a graded weakly semiprime submodule of M, then N_P^g is a graded weakly semiprime submodule of M_P^g by Proposition 3.10. Let $0 \neq r^k m \in N$ where $r \in h(R)$, $m \in h(M)$ and $k \in Z^+$. So $0/1 \neq r^k m/1 = (r/1)^k m/1 \in N_P^g$ because if $0/1 = r^k m/1$, then $s(r^k m) = 0$ for some $s \in S$, so $s \in (0:r^k m) \cap S \subseteq P \cap S = \emptyset$, a contradiction. Hence $rm/1 \in N_P^g$, and rm/1 = c/s for some $c \in N \cap h(M)$ and $s \in S$. So there exists $t \in S$ such that $strm = tc \in N$. So $rm \in N$, because if $rm \notin N$, then $(N:rm) \neq R$, and $st \in (N:rm) \cap S \subseteq P \cap S = \emptyset$, which is a contradiction. Therefore N is a graded weakly semiprime submodule of M. Proposition 3.12: Let $K\subseteq N$ be proper graded submodules of a graded R-module M. Then the following hold: (i) If N is a graded weakly semiprime submodule of M, then N/K is a graded weakly semiprime R-submodule of M/N. (ii) If K and N/K are graded weakly semiprime submodules of M and M/K respectively, then N is a graded weakly semiprime submodule of M. Proof: (i) Let $0 \neq r^k(m+K) \in N/K$ where $r \in h(R)$, $m+K \in h(M/K)$ and $k \in Z^+$. So $0 \neq r^k m \in N$, N weakly semiprime gives $rm \in N$. Hence $r(m+K) \in N/K$. (ii) Let $0 \neq r^k m \in N$ where $r \in h(R)$, $m \in h(M)$ and (ii) Let $0 \neq r^k m \in N$ where $r \in h(R), m \in h(M)$ and $k \in Z^+$. So $r^k m + K = r^k (m + K) \in N/K$. If $0 \neq r^k m \in K$, then $rm \in K \subseteq N$ since K is graded weakly semiprime, as needed. Let $0 \neq r^k (m + K) \in N/K$, then $r(m + K) \in N/K$ since N/K is graded weakly semiprime. Hence $rm \in N$, as required. #### ACKNOWLEDGMENT We would like to thank the referee(s) for valuable comments and suggestions which have improved the paper. ### REFERENCES - D. D. Anderson and E. Smith, Weakly prime ideals, Hoston J. of Math. 29 (2003), 831-840. - [2] S. Ebrahimi Atani, On graded weakly prime ideals, Turk. J. of Math. 30 (2006), 351-358. - [3] S. Ebrahimi Atani, On graded weakly prime submodules, Int. Math. Forum. 1 (2006), 61-66. - [4] S. Ebrahimi Atani and F.Farzalipour, On weakly primary ideals, Georgian Math. Journal. 3 (2003), 705-709. - [5] S. Ebrahimi Atani and F.Farzalipour, On weakly prime submodules, Tamkang J. of Math. 38 (2007), 247-252. - [6] S. Ebrahimi Atani and F. Farzalipour , Notes On the graded prime submodules, Int. Math. Forum. 1 (2006), 1871-1880. - [7] Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turk. J. Math. 31 (2007), 371-378. - [8] F. Farzalipour and P. Ghiasvand, Quasi Multiplication Modules, Thai J. of Math. 1 (2009), 361-366. - [9] P. Ghiasvand and F. Farzalipour, Some Properties of Graded Multiplication Modules, Far East J. Math. Sci. 34 (2009), 341-359. - [10] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982. - [11] M. Refaei and K. Alzobi, On graded primary ideals, Turk. J. Math. 28 (2004), 217-229.