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superconducting properties in the 1D NbN. W=10-nm nanowire 
shows the superconductor–insulator transition, and W=25-nm 
nanowire begins to show the superconducting fluctuation. 
From the differential resistance-current density characteristic 
curves, the signatures of the Josephson junction are observed. 
We anticipate that NbN nanowire on the suspended CNTs will 
provide more applications involving single photon detectors.  
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