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Abstract—The numerical simulation of the slip effect via 

vicoelastic fluid for 4:1 contraction problem is investigated with 

regard to kinematic behaviors of streamlines and stress tensor by 

models of the Navier-Stokes and Oldroyd-B equations. Two-

dimensional spatial reference system of incompressible creeping flow 

with and without slip velocity is determined and the finite element 

method of a semi-implicit Taylor-Galerkin pressure-correction is 

applied to compute the problem of this Cartesian coordinate system 

including the schemes of velocity gradient recovery method and the 

streamline-Upwind / Petrov-Galerkin procedure. The slip effect at 

channel wall is added to calculate after each time step in order to 

intend the alteration of flow path. The result of stress values and the 

vortices are reduced by the optimum slip coefficient of 0.1 with near 

the outcome of analytical solution. 

 

Keywords—Slip effect, Oldroyd-B fluid, slip coefficient, time 

stepping method. 

I. INTRODUCTION 

HIS article is concentrated upon the application of the slip 

effect for Oldroyd-B constitutive model in the field of 4:1 

contraction flows to adopt a semi-implicit Taylor-Galerkin 

pressure-correction finite element method (STGFEM) as a tool 

for solving a problem for this flow. The influence of shear 

stress in sharp corner 4:1 contraction domains is analyzed and 

corrected by adding the slip function on the boundary of 

channel wall. 

The 4:1 contraction flow is a well know problem to study 

kinematic behavior of viscoelastic flows whilst flow path has 

sudden change in the kind of this geometry especially for two-

dimensional system. There are strong elongation and violent 

shear stress at contraction position. The experimental work, 

Walters and Rawlinson [1] have set up the experiment of 

planar contraction flows for Boger fluid. Boger [2] has solved 

the numerical solution of circular contraction for both 

Newtonian and Non-Newtonian fluids and the comparison 

with the experimental result has been presented in 1987. 

Instead of solving analytic solution of viscoelastic problem 

through which it is extremely hard to find the non-linear 
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partial differential equations in the mathematical model of the 

conservation of mass and momentum equations (including 

constitutive equation); one can utilize the numerical 

techniques which can efficiently eliminate inconvenient 

problems. n this fashion, there are variety numerical schemes 

such as finite difference method (FDM), finite volume method 

(FVM) and finite element method (FEM) to calculate the 

approximate solution together with non-significant error. In 

1999, Phillips and Williams [3] have taken a semi-Lagrangian 

FVM to solve a 4:1 planar contraction of Oldroyd-B fluid for 

creeping and inertial flows. Shortly after, they [4] 

have typically using different data of the same problem by 

expanding a new axisymmetric flow but this time the grids 

have been fixed in Eulerian methods. Aboubacar et al. [5], [6] 

have shown that the technique of a cell-vertex hybrid finite 
volume/element method is appropriate to compute highly 

elastic solutions for Oldroyd-B and Phan-Thien/Tanner (PTT) 

fluids with both rounded and sharp corner contraction figures. 

Alves et al. [7] have selected the FVM to calculate creeping 

PTT flow past planar abrupt contractions and make clear that 

Deborah numbers and contraction ratios are dependent on 

flow characteristics. 

There are a number of problems that have been solved by 

FEM. In 2001, Ngamaramvaranggul and Webster [8] have 

applied FEM for Oldroyd-B problem of stick-slip flow and 

they modified the top boundary after die exit by free surface 

method in order to develop this flow to Die-swell flow and 

they found that swelling ratio is varied as a function of 

relaxation time. Consequently, they [9] have simulated a 

problem of pressure-tooling wire-coating flows with Phan-

Thien/Tanner fluid via employment of the same standard of 

FEM and streamline-upwind Petrov/Galerkin (SUPG) to 

stabilized the converge solution. 

Comparing experimental and numerical results for fluid 

flows through solid wall help us to contemplate the speed of 

fluid particles those which are not only stick but also slip on 

solid surface. Hence, a great number of recent scientific 

researchers have documented various methods to estimate slip 

velocity at compact boundary. A numerical study of 

Newtonian and viscoelastic flow on slip effect for free surface 

has been presented by Silliman and Scriven [10]. This result 

got along well with the next experiment of Ramamurthy [11] 

who has focused on surface melt fracture of HDPE and 

LLDPE that is the outcome from slip in die land. Previously, 

both slip cases had been sustained greatly with analysis 

solution of Jiang et al. [12] by setting slip velocity for 

capillary tubes as a function of wall shear stress as well as 

Phan-Thien [13] who demonstrated the same concept of slip 
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velocity and found that slip velocity still be observed while the 

critical shear stress is less than wall shear stress. In 2000, 

Ngamaramvaranggul and Webster [14] have stated various 

slip effect schemes to consider the free surface in tube-tooling 

and pressure-tooling die problems. 

In this research, the slip effect scheme has been determined 

in the problem of 4:1 contraction for Newtonian and Oldroyd-

B fluids under the two-dimensional planar isothermal 

incompressible flow and formed the mathematical model of 

Navier-Stokes equations by means of STGFEM. 

Simultaneously, the velocity gradient recovery and the 

streamline-upwind Petrov/Galerkin techniques have been 

chosen to stabilize the converged solutions. Finally, the 

solutions have been considered no slip case and slip condition 

in an attempt to find the optimal slip coefficient for each fluid 

with sharp corner geometries illustrated. 

II. GOVERNING EQUATIONS 

The conservation of mass and momentum for 

incompressible isothermal viscoelastic flow without gravity is 

maintained in term of Navier-Stokes equations. In this work, 

the dimensionless equations as the derivative model of 

continuity equation (1) and kinematic equation (2). Especially 

for equation motion (2), the particular non-dimensional 

Reynolds number ( )Re  is revealed. For creeping flow, 

0Re = . 

 

0U∇ ⋅ =
�

                        (1) 

ReU ReU U Pt = ∇⋅ − ⋅∇ − ∇
� � � �

T          (2) 

 

where ∇  is the differential operator, U
�

 is velocity vector, 

0

VL
Re

ρ
µ

= , tU
�

 is time derivative of  U
�

, P
�
 is pressure, and 

the extra-stress tensor 22µ= +T Dττττ , ττττ  is the polymeric 

component of the extra-stress tensor, the rate of deformation 

tensor 
( ( ) )T

,
2

U U∇ + ∇
=

� �

D the transpose operator is
 
( )T .  

Here, ρ  is the fluid density, V  is the characteristic velocity, 

L  is the characteristic length in terms of channel width and 

0µ  is the zero-shear viscosity which  0 1 2µ µ µ= +  where 1µ  

is the polymeric viscosity and 2µ  is the solvent viscosity. The 

non-dimensional parameters are /1 0 0.88µ µ = and 

/2 0 0.12µ µ = . 

The non-dimensional constitutive equation of a viscoelastic 

fluid for Oldroyd-B model is 

 

      
( )12

T

tWe We U U Uµ τ  = − + ⋅∇ + ∇ ⋅ − ⋅∇  

� � �

τ τ τ ττ τ τ ττ τ τ ττ τ τ τD      (3) 

 

where We  is the non-dimensional Weissenberg number, 

1

V
We

L
λ= , and  1λ  is the relaxation time. 

For convenience to calculate the shear stress ( )xyτ of 

Oldroyd-B fluid, Johnson and Segalman [15] have applied  

shear stress as a function of shear viscosity ( )η  and  shear rate 

( )γɺ  on the basis of the kinematic theory of macro-molecules.  
 

                     2
2

11 (2 ) ( )
xy

1

a a

η γ
τ η γ

λ γ
= +

+ −

ɺ
ɺ

ɺ

                       (4) 

 

where 1η  and 
2

η  are viscosity coefficients and a  is a scalar 

parameter between (0, 2). 

III. NUMERICAL SCHEME 

The non-linear differential equations (2) and (3) are difficult 

to solve by analysis method so we have utilized numerical 

technique to perform on standard FEM. The convection terms 

of Navier- Stokes equation (2) and the constitutive equation of 

Oldroyd-B model (3) are controlled to calculate by means of 

below scheme STGFEM that is a method to split both the 

equations into half time step. Since the continuous equations 

(2) and (3) are converted to discretization equations and 

formulated to system of linear equation, the approximate 

solution is computed with Jacobi iterative method and 

Cholesky decomposition scheme.  

A. Semi-Implicit Taylor-Galerkin Pressure-Correction 

Finite Element Method 

To solve convection equations conveniently, the perfect 

union of factional time steps and FEM is employed to separate 

non-dimensional (2) and (3) for three stages per time step as 

below classification. This accumulation technique is known as 

semi-implicit Taylor-Galerkin pressure-correction finite 

element method. 

Step 1a: 

  

( ) ( ( ) )1 2
22 2µ+ 

− = ∇⋅ + − ⋅∇ −∇ ∆ 

nn nRe
U U ReU U P

t
D

� � � � �
ττττ

                     

                                      
( )1 2

2
n nµ ++ ∇⋅ −D D               (5)

 
 

( ) ( ( ) )
T1 22 + 

− = ⋅∇ + ∇ ⋅ − ⋅∇ ∆ 

nn nW e
We U U U

t

� � �
τ τ τ τ ττ τ τ τ ττ τ τ τ ττ τ τ τ τ

 

                                    
 

( )12
nµ+ −D ττττ             (6)
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Step 1b:  
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n nnRe
ReU UU U

t
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12
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Step 2:  

 

                       
( ) ( )2 1 2n nP P Re/ t U+ ∗∇ − = ∆ ∇
� � �

               (9) 

 

Step 3:  

 

      

( ) ( )1 12 + ∗ + 
− = − − ∆ 

n n nRe
U U P P

t

� � � �
              (10) 

 

The partial differential equations (5)-(10) are discretised 

with FDM and FEM. The left for time derivative term is used 

the Taylor series and the right for spatial component is adopt 

the weight residual of Galerkin finite element method so the 

equations of stages (1)-(3) are converted to the system of 

linear equations. The geometrical area of flow is generated to 

small triangular element mesh in order to get the precise 

solution before approximate solution is solved with Jacobi 

iterative method for steps 1 and 3, and Cholesky 

decomposition for step 2. 

B. Phan-Thien Slip Rule 

To reduce shear stress at sharp corner point, Phan-Thien 

[13] have presented the slip at solid wall by setting the slip 

velocity as a function of wall shear stress so the result is more 

precisely close to the same problem of experimental outcome. 

The slip velocity will be computed if some values of wall 

shear stress are greater than a constant critical shear value. 

 

              
( ( ))1slip mean critV V exp α= − − τ ττ ττ ττ τ                    (11) 

 

 where slipV  is the slip velocity, meanV  is the mean velocity 

flowrate for no slip case, α  is the constant slip coefficient, ττττ  
is the wall shear stress and critττττ  is the critical shear stress. 

IV. PROBLEM SPECIFICATION 

There is a benchmark of slip and no slip cases in the same 

geometrical domain for 4:1 contraction flows that is normally 

used in industrial processes so the major body is picked in the 

model of sharp corner shape. The geometry of planar 4:1 

contraction especially by focusing on the downstream half 

channel width L at entry and exit sections of 27.5L  and 49L  

respectively is displayed in Fig. 1. 

The upstream inlet length is imposed to Poiseuille flow and 

fluid passes in channel, which is long enough to complete 

developing flow so the downstream exit length is still 

maintaining parabolic flow. At the channel wall, the slip 

condition is applied to obtain intensive outcome close on real 

problem. 

 

( ) 3(16 ) 1282u y y /= − , 0v =           (12)  

 

2τ µ
 
 
 
 

∂
=

∂

2

xx
u

We 1
y

,  0yyτ = , and τ µ ∂
∂

= u
xy 1 y
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Fig. 1 Schematic of 4:1 contraction flow 
 

TABLE I 

MESH CHARACTERISTICS 

Meshes Elements Nodes Degree of Freedom hmin  

mesh1 980 2105 11088 0.025 

mesh2 1140 2427 12779 0.023 

mesh3 2987 6220 32717 0.006 

mesh4 5140 10575 55593 0.004 

 

 

(a) mesh1                                         (b) mesh2 

 

 

(c) Mesh3                                       (d) mesh4 

Fig. 2 Mesh pattern of 4:1 contraction flow 

 

To inspect the severe stress at impact wall, the sharp corner 

contraction mesh1- mesh4 are determined in four delicate 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:8, 2013

1289

 

 

order grids of very coarse, coarse, medium and fine meshes 

which were used by Aboubacar et al. [5] as illustrated in Table 

I and Fig. 2. All meshes are bias and the tiny elements ( minh ) 

are placed next to the singularity. 

V.   RESULTS 

The results of sharp corner meshes are considered and the 

best mesh is chosen to run for final solution in order to reduce 

duplicate outcome. After optimal mesh was taken, it was 

brought to run in both Newtonian and viscoelastic fluids under 

the condition of no slip and slip effect. The slip coefficients 

for each liquid are determined to adjust the flow pattern as 

displayed below. 

A. Newtonian Fluid 

The peak values on bottom downstream wall with no slip of 

normal stress xxτ
 
and yyτ , shear stress xyτ  and shear rate γɺ

 

in Table II grow upon higher sensitivity of grid and we 

observed that the peak of all values can classified in two 

groups of resemblance. The results for mesh1 and mesh2 of 

first group are similar as well as the next group of mesh3 and 

mesh4 but the outcomes of the second group are conspicuous. 
 

TABLE II 
THE PEAK VALUES OF NEWTONIAN FLUID ON BOTTOM DOWNSTREAM WALL 

WITH NO SLIP 

Meshes xxτ  xyτ  yyτ  γɺ  
mesh1 9.046 4.523 0.335 4.832 

mesh2 9.014 4.507 0.330 4.753 

mesh3 12.488 6.244 0.328 6.597 

mesh4 15.998 8.000 0.325 8.660 

 

In order to choose a suitable mesh to get the final solution, 

the dominant mesh will be picked, that is mesh3 or mesh4. For 

this case mesh3 is the best choice to prompt display even if 

mesh4 is fine net structure because the result of mesh3 can be 

run easier and faster to get converged solution than mesh4 

whilst both grids give the little difference so the minor error 

can be negligible. 

 

 

Fig. 3 II  and γɺ  along bottom downstream wall with no slip of 
Newtonian fluid 

 

The similar behavior of second invariant (II)  and shear rate 

( )γɺ  of Newtonian fluid for mesh3 are displayed in Fig. 3. 

Both curves for II  and γɺ  look like a left-skewed distribution 

and the peaks are 10.881 and 6.597 for II  and γɺ , 
respectively. From the previous work, we found that all apexes 

go to singularity in case of high We  and these values are 

remote from physical phenomena so this is the reason to 

reduce the zenith with slip condition as see in Fig. 4. 

For selecting the optimum value of α  and the critical II

(II )crit , we utilized mesh3 to execute the slip effect for 

Newtonian fluid by running α from 0.1 to1 as illustrated in 

Fig. 5. First round of computation to find minimum α of 

fixing II 2.3crit =
 
for α  at 0.3, 0.5, and 1 is noticed that 

oscillations appear distinctly but 0.1α =  is ascertained 

properly the value of lowest peak
 

γɺ . This selection of 

minimum γɺ  is supported by Fig. 5 which presents a 

correlation between γɺ  and α . Second round of calculation to 

find the location of IIcrit  by setting 0.1α =  and altering 

IIcrit  
from 0 to 10 is operated before relation of γɺ  versus 

IIcrit  
shows that the lowest IIcrit  points to 2.3 in Fig. 6. 

 

 

Fig. 4 γɺ  of various α  along bottom downstream wall of Newtonian 

fluid at II 2.3=  
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Fig. 5 The peak of γɺ  versus α on bottom downstream wall of 

Newtonian fluid at II 2.3=  
 

 

Fig. 6 The peak of γɺ versus IIcrit  on bottom down-stream wall of 
Newtonian fluid at 0.1α =  

 

 

(a)  no slip 

 

 

(b) slip at 0.1α = and II 2.3=  

Fig. 7 S line contour of Newtonian fluid 
 

 Fig. 7 manifests streamline (S) line contour for no slip in 

Fig. 7 (a) and slip effect at 0.1α = , II 2.3=  in Fig. 7 (b). 

Graphs of both cases look alike but the vortex at the corner of 

no slip is bigger than that of its counterpart in the slip case. 

B. Viscoelastic Fluid  

For all sharp corner meshes in Table III, the viscoelastic 

fluids are considered for various We . The peak values on 

bottom downstream wall with no slip of normal stress γɺ  grow 

upon high  We  and   we noticed that the peak of γɺ for all 
meshes have increased with the same trend. The results of 

group one for mesh1 and mesh2 are identical as well as group 

two of mesh3 and mesh4 but the consequence of second group 

is prominent. Since the tendency of behavior for all We  has 

the same direction, all sharp meshes are illustrated only 

1We =  for all stresses yy( )xx xy, ,τ τ τ  with the same condition 

in Table IV. Mesh3 is chosen to run for the final solution for 

the same reasons stated earlier. So Figs. 8-12 in this item are 

the results obtained for this mesh. 
 

TABLE III 

THE PEAK VALUES OF γɺ  ON BOTTOM DOWNSTREAM WALL WITH NO SLIP OF 

OLDROYD-B FLUID 

Meshes 0.25 0.5 0.75 1 

mesh1 4.873 5.130 5.323 5.717 

mesh2 4.929 5.061 5.153 5.510 

mesh3 7.534 8.550 8.828 9.204 

mesh4 8.833 9.380 9.504 10.234 
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TABLE IV 

THE PEAK VALUES OF STRESS xxτ , xyτ  AND  yyτ ON THE BOTTOM 

DOWNSTREAM WALL WITH NO SLIP OF OLDROYD-B FLUID AT 1We =  

Meshes xxτ  xyτ  yyτ  

mesh1 21.458 7.236 2.507 

mesh2 22.512 8.047 3.018 

mesh3 36.571 15.496 6.427 

mesh4 37.670 15.068 8.772 

 

To select critical II  from Fig. 8, we have determined the 

optimum α  for 0.25We=  before calculation of high We via 

varying all α values between 0.1 and 1 so II 14=  is set first 

because the shear rate is high enough to switch some stick 

velocities to move freely. For selecting proper α  by 

minimizing shear rate, the same procedure of Newtonian case 

is operated as shown in Fig. 9 so the minimum shear rate is 

7.530 at 0.1α =  that is under the value of no slip condition 

while the other value of α  has gone beyond the value of slip 

case. Other α values are rejected except 0.1α =  since the slip 

velocity reduces shear rate. By adjusting critical II , the range 

of II  is started at 5 to 14 since the off range cannot be 

calculated for 0.1α =  but the range II that is shown in Fig. 10 

and the least value shear rate for II 6=  is 7.175; therefore, the 

suitable coefficient slip is 0.1. 

 

 

Fig. 8 II  on the bottom downstream wall with no slip of Oldroyd-B 
fluid 

 

 

Fig.  9 The peak of γɺ  versus α on bottom downstream wall of 

Oldroyd-B fluid at 0.25We=  
 

TABLE V 

THE LOWEST SHEAR RATE FOR PROPER α AND SUITABLE II OF OLDROYD-B 
FLUID 

We 0 0.25 0.5 0.75 1 

IIcrit  2.3 6 4 3.5 3.3 

γɺ  5.968 7.175 7.554 8.611 8.801 

α  0.1 0.1 0.1 0.1 0.1 

 
TABLE VI 

THE PEAK VALUE OF γɺ  AND xxτ ON THE BOTTOM DOWNSTREAM WALL 

We 
γɺ  xxτ  

No Slip Slip No Slip Slip 

0.25 7.534 7.175 19.943 13.494 

0.5 

0.75 
1 

8.550 

8.828 
9.253 

7.554 

8.611 
8.721 

29.455 

34.042 
36.571 

20.586 

30.975 
34.557 

 

 

Fig.  10 The peak of γɺ  versus IIcrit on bottom downstream wall of 
Oldroyd-B fluid at 0.25We=  

 

Similarly, the lowest shear rates of We = 0.5, 0.75, and 1 for 

fitting critical II are shown in Table V. 
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Epitomizing the highest xxτ  and the maximum shear rate 

values of the optimum slip velocity in Table VI are less than 

the maximum values of no slip condition for a sharp corner 

domain. The maximum value of xxτ  is reduced from 19.943 

to 13.494 and the peak of γɺ  is decreased from 7.534 to 
7.1745 at 0.25We = . Similar to the trend of the slip influence 

for We  at 0.5, 0.75 and 1, the maximum of γɺ  and xxτ
without slip falls below that for the case with slip. Highly 

reducing the stress value is clearly investigated, refer to Table 

VI. 

If we compare the streamline of Fig. 11 (a) for no slip and 

Fig. 11 (b) for slip, the serious vortex is simple notice for no 

slip case so this remark can get along well with Newtonian 

behavior. 

Fig. 12 is the graphs of benchmarks in shear stress xyτ

versus shear rate γɺ of J&S (Johnson-Segalman) theory from 
(4) with two restriction flows under condition of no-slip and 

slip along bottom downstream wall at 0.25We= in Fig. 12 (a) 

and 1We = in Fig. 12 (b). This plot is indicative of the fact that 

the shear stress of both cases agree in trend along the 

resistance but slip limitation is closer to J&S though the value 

of prediction is slightly undershoot. 
 

 

(a)  no slip 

 

 

(b) slip at 0.1α = and II 3.3=  

Fig. 11 S line contour of Oldroyd-B at 1We =  
 

 

(a) 0.25We =  

 

 

(b) 1We =  

Fig. 12 The comparison of xyτ versus γɺ  with J&S on bottom 
downstream wall of Oldroyd-B fluid 

VI. CONCLUSION 

For the outcomes of slip effect in 4:1 contraction problem, 

we found that the optimum slip coefficient for sharp corner 
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meshes of all We  is 0.1  if we adjust the proper critical II . 

The appropriate values of the slip coefficient and the second 

invariant cause the peak of shear rate lower than no-slip case.  

Hence it can be concluded that the slip well reduces the 

stress along the wall. In the same direction, when the small 

We  is input, the less effect is appeared and this is reversed 

with high Weissenberg numbers. 
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