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Abstract—Artificial Neural Network (ANN)s are best suited for
prediction and optimization problems. Trained ANNs have found
wide spread acceptance in several antenna design systems. Four
parameters namely antenna radiation resistance, loss resistance, effi-
ciency, and inductance can be used to design an antenna layout though
there are several other parameters available. An ANN can be trained
to provide the best and worst case precisions of an antenna design
problem defined by these four parameters. This work describes the
use of an ANN to generate the four mentioned parameters for a loop
antenna for the specified frequency range. It also provides insights
to the prediction of best and worst-case design problems observed
in applications and thereby formulate a model for physical layout
design of a loop antenna.

Keywords—MLP, ANN, parameter, prediction, optimization.

I. INTRODUCTION

Artificial Neural Network (ANN)s as non-parametric tools
are used for a host of pattern recognition and related applica-
tions. These can also be used for prediction and optimization
problems. ANNs like the Multi Layer Perceptrons (MLPs)
trained with (Error) Back Propagation (BP) [1] in particular
have found wide spread acceptance in several antenna design
systems. In such cases design parameters have been optimized
to suit the requirements. One notable aspect in these cases has
been the fact that design requirements can be estimated with
controlled precision - a characteristic feature for which ANNs
are widely adopted for such applications [2], [3], [4], [5]. A
loop antenna can be used throughout the HF to VHF band.
Out of several characteristic parameters, four can provide a
sketch of the antenna-behaviour [6], [7]. These four parameters
are antenna radiation resistance, loss resistance, efficiency, and
inductance.
The basic guidelines for the antenna design can be fixed in
many ways. The most practiced method is tedious theoreti-
cal calculations and the other includes software approaches.
Custom built software tools provide ready made solutions.
These have the advantage of offering the readily derivable
solutions considering a host of pre-defined constraints to
match the perceived scenarios. But several limitations exist
in such design tools. One is the inability of these tools to
control precision and provide prediction. They also cannot deal
with unforeseen situations and events controlled by random
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behaviour of transmit- receive conditions of a communication
set-up. The ability of custom designed softwares to provide
ready- made solutions can go haywire if input parameters
suffer fluctuations and deviate from the required values. More-
over the custom made softwares cannot provide optimized
forms of the output. Also, such software solutions cannot be
modified to suit extensive transmit-receive conditions observed
in applications. In situations like imprecise tuning due to
faulty or impure components during reception, a frequency
dependant parameter will deviate from the desired value. This
can lead to design alterations triggered by variations in the
parameters leading to faulty antenna layout.
An ANN offers a solution for such situations. MLPs can
be trained to provide the best and worst case precisions
of an antenna design problem. A properly configured ANN
can acquire knowledge about antenna parameter distributions
applied to it as learning patterns during training and act as
expert system during testing. Such abilities make ANN an
effective design tool with the provision of providing controlled
prediction. Due to their ability to provide controlled prediction,
ANNs can deal with optimization problems- an advantage
which can simplify physical design issues. This work is an
attempt in that direction. Here, a loop antenna designed for
frequency range between 3 to 300 MHz is considered. The
following sections describe the use of an ANN to generate the
four mentioned parameters for a loop antenna for the specified
frequency range. It also provides insights to the prediction of
best and worst-case parameter estimation as inputs to antenna
design problems observed in applications.
The model includes an ANN which is configured to accept
frequency as the input parameter for the mentioned range
and provide the four parameters as the output. Several ANN
configurations are used to ascertain the best set-up for the
testing. The ANNs trained with (Error) Back Propagation
(BP) show different results for different training methods.
Also, the outcome varies depending upon the number of
training sessions and the data used. Mean square error (MSE)
convergence and prediction precision are used to ascertain the
performance of the ANNs during training. The trained ANNs
are used for testing. Data considered includes samples with
variance upto 50%. The results show that the ANNs are robust
enough in prediction of the parameters. Success rates generally
observed are in the 90-95 % range but in certain cases the
results are around the 99 %.
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Fig. 1. Small Circular Loop Antenna

Fig. 2. Large Square Loop Antenna

II. FOUR BASIC PARAMETERS OF A LOOP ANTENNA AND
PROPOSED MODEL

Loop antennas can have various shapes: circular, triangular,
square, elliptical etc. They are widely used in applications
up to the microwave bands. The loop antenna is perfect for
portable instruments which are not too demanding in terms
of range. The main advantage of the loop antenna is its cost-
it can be readily fabricated for less demanding applications.
The loop antenna is a conductor bent into the shape of a
closed curve such as a circle or a square with a gap in
the conductor to form the terminals as shown in Figures 1
and 2. There are two types of loop antennas- electrically
small loop antennas and electrically large loop antennas. If
the total loop circumference is very small as compared to the
wavelength, then the loop antenna is said to be electrically
small. An electrically large loop antenna typically has its
circumference close to a wavelength . Four parameters namely
antenna radiation resistance, loss resistance, efficiency, and
inductance- can be used to obtain a sketch of an antenna-
behaviour. These parameters are essential because these are
directly related to the physical dimension of the antenna and
frequency of application [6], [7]. Radiation resistance of a loop

antenna is defined as the resistance in series with the antenna
that will consume the same amount of power as it actually
radiated. It is the ratio between power radiated by the antenna
and the square of the root mean square value of the maximum
current flowing in the antenna at the best matched condition.
The radiation and loss resistances of an antenna determine
the radiation efficiency. It is the ratio between the radiation
resistances to the total resistance of the loop. Loss resistance
of an antenna depends on several factors. A few of them are
as below:

• Resistance due to dielectric losses,
• Resistance due to dielectric losses,
• Brushing losses,
• Loss by leakage over insulation,
• Resistance due to conductor losses in antenna and earth

and
• Eddy current losses.

The proposed work is related to the formulation of an ANN
based system which predicts the four mention antenna param-
eters such that the system maybe defined as:

Pij = F (fi) (1)

where,

Pj = [P1, P2, P3, P4] (2)

such that P1 is Radiation resistance, P2 is Loss resistance,
P3 is Efficiency and P4 is Inductance and F (.) is a trained
MLP.
These four parameters are directly related to the physical
parameters and frequency of application [6] [7]. The
parameters determine the physical layout of an antenna
design. Their values are governed by the frequency of
application. Hence, frequency of operation becomes an
important factor in the layout design of the antenna. This is
reflected by the equations 3 to 6.

Radiation Resistance of a loop antenna with a being the
loop radius and b being the wire radius is given below:

Rr = 31, 171[
�S
λ2

]
2

(3)

where, S= Loop area =πa2,λ=Wavelength,and loss resistance
is given by,

Rl = (
πa

b
)

√
fμ0

πδ
(4)

where N stand for number of turns. The constant parameters
are. σ = 5.8 × 107 mho/m and μ0 = 4π × 10−7.

The radiation and loss resistance of an antenna determine
the radiation efficiency. It is the ratio between the radiation
resistance to the total resistance of the loop.

eloop =
Rr

Rr +Rl
(5)

where Rr= Radiation resistance and Rl= Loss resistance.
Approximate formula for the reactance is given below.

(XA)loop = 2πfμ0a[ln(
8a
b

) − 2] (6)
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Fig. 3. MLP with one input, one hidden and one output layer

Antenna resistance shows dependence on frequency. This
is due to the reactive nature generated by the components
constituting the antenna.
Let P̂ij be the output of F (.) corresponding to an input vector
fi.

For each fi

P̂ij ← F (fi)

e = Pij-P̂ij

−do
{ training of F (.) with sample of Pij

while e→ 0
}
end

The mathematical consideration of F (.) and its training is
provided below.

A. Design Consideration of MLP

A simple perceptron is a single McCulloch-Pitts neuron
trained by the perceptron algorithm is given as:

Ox = g(([w].[x]) + b) (7)

where [x] is the input vector, [w] is the associated weight
vector, b is a bias value and g(x) is the activation function.
Such a setup,namely the perceptron will be able to classify
only linearly separable data. A MLP, in contrast, consists of
several layers of neurons. The equation for output in a MLP
with one hidden layer is given as:

Ox = βig(([w]i.[x]) + bi) (8)

where βi is the weight value between the ith hidden neuron,
[w] is the vector of weights between the input and the hidden
layer, [x] is the vector of inputs and [b] is the input bias
of the hidden neuron layer. Such a set- up maybe depicted
as in Figure 3. The process of adjusting the weights and
biases of a perceptron or MLP is known as training. The

perceptron algorithm (for training simple perceptrons) consists
of comparing the output of the perceptron with an associated
target value. The most common training algorithm for MLPs
is error back propagation.

B. Application of Error Back Propagation for MLP training

The MLP is trained using (error) Back Propagation (BP)
depending upon which the connecting weights between the
layers are updated. This adaptive updating of the MLP is
continued till the performance goal is met.Training the MLP
is done in two broad passes -one a forward pass and the
other a backward calculation with error determination and
connecting weight updating in between. Batch training method
is adopted as it accelerates the speed of training and the rate
of convergence of the MSE to the desired value.The steps are
as below:

• Initialization: Initialization:Initialize weight matrix W
with random values between [0, 1]. W is a matrix of 1×
100 where 100 frequencies between 3 MHz to 300 MHz
are used.

• Presentation of training samples: Input is pm =
[pm1, pm2.....pmL]. The desired output is dm =
[dm1, dm2......dmL].

– Compute the values of the hidden nodes as:

nethmj =
L∑

i=1

wh
jip

mi + ∅h
j (9)

– Calculate the output from the hidden layer as

oh
mj = fh

j (nethmj) (10)

where f(x)= 1
ex

or f(x)= ex−e−x

ex+e−x

depending upon the choice of the activation function.
– Calculate the values of the output node as:

oo
mk = fo

k (netomj) (11)

• Forward Computation:Compute the errors:

ejn = djn − ojn (12)

Calculate the mean square error(MSE) as:

MSE =

∑M
j=1

∑L
n=1 e

2
jn

2M
(13)

Error terms for the output layer is:

δo
mk = oo

mk(1 − oo
mk)emn (14)

Error terms for the hidden layer:

δh
mk = oh

mk(1 − oh
mk)

∑
j

δo
mjw

o
jk (15)

• Weight Update:
– Between the output and hidden layers

wo
kj(t+ 1) = wo

kj(t) + ηδo
mkomj (16)
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where η is the learning rate(0 < η < 1). For faster
convergence a momentum term(α)maybe added as:

wo
kj(t+1) = wo

kj(t)+ηδ
o
mkomj+α(wo

kj(t+1)−wkj)
(17)

– Between the hidden layer and input layer:

wh
ji(t+ 1) = wh

ji(t) + ηδh
mjpi (18)

A momentum term maybe added as:

wh
ji(t+ 1) = wh

ji(t) + ηδh
mjpi +α(wo

ji(t+ 1)−wji

(19)
One cycle through the complete training set forms
one epoch. The above is repeated till MSE meets
the performance criteria while the number of epochs
elapsed is counted.

The data generated to carry out the training of the ANNs
show variations of the order of 10−3 to 103. This sort of data is
not suitable for training the ANNs as it generates inconsistency
in the learning curve convergence. Hence, each of the data
sets of the four parameters are normalized and applied for
training the ANNs. Though the randomness disappears, minor
oscillations remain and the training continues without much
difficulty. The learning curves show no indication of getting
stuck to some local minima in the error surface. The ANNs
trained using this normalized training set also generates a
similar data set during testing which is de-normalized and
converted back to the required. The ANNs trained with (Error)
Back Propagation (BP) show different results for different
training methods. Also, the outcome varies depending upon the
number of training sessions and the data used. Mean Square
Error (MSE) convergence and prediction precision are used
to ascertain the performance of the ANNs during training.
The training continues till the MSE convergence attains the
desired goal and the accuracy of the ANN reaches the required
precision level. The performance of training of the ANN
also is dependent on the training method used. Hence four
different training methods are used to ascertain the perfor-
mance of the ANN and determine the best configuration. The
four methods used for training are Gradient Descent(GDBP),
Gradient Descent with Momentum BP (GDMBP), Gradient
Descent with Adaptive Learning Rate BP(GDALRBP) and
Gradient Descent with Adaptive Learning Rate and Momen-
tum BP(GDALRMBP).

• Gradient Descent (GDBP)- In this back-propagation
method the training will continue as long as the net-
work has its weight, net input, and transfer functions
generate derivative functions. Back-propagation is used
to calculate derivatives of performance with respect to
the weight and bias variables. Each variable is adjusted
according to gradient descent. The training will be stop if
the maximum number of epochs (repetitions) is reached,
the maximum amount of time has been exceeded, or
performance has been minimized to the goal.

• Gradient Descent with Momentum BP (GDMBP)- In this
method back-propagation is used to calculate derivatives
of performance with respect to the weight and bias

variables. Each variable is adjusted according to gradient
descent with momentum a specific value and it depends
on the previously changed weight or bias passing with
every epochs with a given learning rate.

• Gradient Descent with Adaptive Learning Rate BP
(GDALBP)- The ANN is trained using a learning rate
that changes adaptively to adjust as per the requirements
of the learning.

• Gradient Descent with Momentum and Adaptive Learn-
ing Rate BP (GDMALRBP)- This method is used to
train any network as long as its weight, net input, and
transfer functions have derivative functions. Each variable
is adjusted according to gradient descent with momentum
constant, and also depends upon previously changed
weights. For each epoch, the performance decreases to-
ward the goal, then the learning rate is increased by a
specific factor. If performance increases by more than
the specified factor, the learning rate is adjusted and the
change, which increased the performance, is not made.

The training method GDMALRBP is found experimentally to
be better suited for the present work (Table I). It generates
better precision at least training time. Table I shows some
of the derived results for an electrically small circular loop
antenna for training epochs between 1000 and 7000. All
learning methods are batch learning methods where, weights
are updated only after the entire set of training has been
presented to the network. Thus the weight update is only
performed after every epoch.

TABLE I
PREDICTION PRECISION IN% SHOWN BY AN MLP FOR FOUR DIFFERENT

TRAINING METHODS

Sessions Training methods

GDBP GDMBP GDALBP GDMALRBP
1000 84% 86.6% 88.4% 90.2%
2000 84.5% 87.3% 89.1% 92.5%
3000 85.6% 88.5% 91.3% 93.8%
4000 86.7% 89.9% 92.8% 95.6%
5000 87.8% 91.5% 93.6% 97.1%
6000 89% 92.3% 94.8% 98.1%
7000 90.5% 93.6% 96.1% 99.4%

III. ALGORITHMIC STEPS OF PRESENT WORK

The entire work can be represented by Figure 4 and de-
scribed by the following steps:
Training: The first set of data used for training the MLP
represents the ideal conditions around a loop antenna where
the design parameters follow text-book definitions. The train-
ing phase of the MLP should be robust enough to deal with
the variations of transmit-receive considerations. After the
configuration of the ANN has been set, the subsequent stages
involve the following: .

• Generation of training data- It contains the four param-
eters. The input is a row vector consisting of a set of
frequencies between 3 to 300 MHz. These are used for
training the network.

• Training of the neural networks- Several training methods
of (Error) Back Propagation(BP) are used to ascertain the
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Fig. 4. Layout of the working model

best method. Also, the outcome varies depending upon
the number of training sessions and the data used. The
configuration of the ANNs also is an important criteria
which is described in the following sections.

• Training Criteria- The network with the best MSE con-
vergence and prediction precision is used for testing.

Testing
• Generation of testing data- This step is required for

validation of the training. A range of testing data is
generated. The test set includes data with variance upto
50% .

• Varied Inputs- Different frequency vectors are fed as input
to the selected and trained MLP.

• Result generation- Finally, the network is simulated,
output observed and compared with the ideal parameters
calculated and fed during training to represent ideal
conditions. The ideal conditions act as a performance
reference to the subsequent design considerations. The
ideal conditions assume the specific set of inputs gener-
ating the required sets of output parameters to be used
for design considerations. The results are validated from
the comparison.

The training and testing conditions of the system maybe
summarized by the Table II

IV. DESIGN CONSIDERATION OF THE ANNS

Several configurations of the MLP can be utilize for train-
ing. The ANN configurations used have one input layer, one
hidden layer and one output layer. A single hidden layered
MLP is found to be computationally efficient for the work
as 2-hidden layered or a 3-hidden layered MLPs are found
to be showing no significant performance improvement at the
cost of slowing down training. The choice of the length of the
hidden layers have been fixed by not following any definite
reasoning but by using trial and error method. For this case
several sizes of the hidden layer have been considered. Table

TABLE II
TRAINING AND TESTING CONDITIONS OF ANN

Case ANN trained ANN tested Remark
by data by Data

1 Noise free Noise free Ideal
and mixed conditions

2 Noise mixed, Noise free Practical
variance and mixed condition

10 %
3 Noise mixed, Noise free Practical

variance and mixed condition
30 %

4 Noise mixed, Noise free Worst
variance and mixed case

50 % condition

III shows the performance obtained during training by varying
the size of the hidden layer.

TABLE III
PERFORMANCE VARIATION AFTER 1000 EPOCHS DURING TRAINING OF

AN ANN WITH VARIATION OF SIZE OF THE HIDDEN LAYER

Case Size of hidden MSE Precision
layer (x input layer) Attained attained in %

1 0.75 1.2 x 10−3 87.1
2 1.0 0.56 x 10−3 87.8
3 1.25 0.8 x 10−4 87.1
4 1.5 0.3 x 10−4 90.1
5 1.75 0.6 x 10−4 89.2
6 2 0.7 x 10−4 89.8

The case where the size of the hidden layer taken to be 1.5
times to that of the input layer is found to be computationally
efficient. Its MSE convergence rate and learning ability is
found to be superior to the rest of the cases. Hence, the size of
the hidden layer of the ANNs considered is 1.5 times to that
of the input layer. The size of the input layer depends upon
the length of the input vector and the output layer represents
the number of parameters.
The selection of the activation functions of the input, hid-
den and output layers plays another important part in the
performance of the system. A common practice can be to
use a similar type of activation function in all layers. But
certain combinations and alterations of activation function
types carried out during training provide certain directions
and show a way to attain better performance. Two types of
MLP configurations are considered- the first type constituted
by a set of similar activation functions in all layers of the
ANNs and the other with a varied combination of activation
functions in different layers. Both these two configurations are
trained with GDMALBP as a measure of training performance
standardization.
Table IV shows the results derived. The setup of ANNs
should be modified often during training to ascertain the best
configuration that can be selected to perform the subsequent
tasks which in this case is prediction of the parameters with
controlled precision. The results provided in Table IV show
that the configuration formed by tan-sigmoid functions at the
input and output layers and log-sigmoid at the hidden layer
provides superior MSE convergence taking a time which is
marginally higher (9.2 sec.s) than the log-sigmoid, tan-sigmoid
- log-sigmoid combination (9.1 sec.s) case. Since MSE con-
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vergence is more critical, it is taken to be the decisive factor
and the combination with tansigmoid-logsigmoid-tansigmoid
activation functions is taken for carrying out the entire training
regime. Moreover, an ANN with a faster learning ability is
not always effective as it restricts the capacity to generalize
and provides more memorization. It is undesirable and doesnt
serve the purpose of an appropriately configured predication
mechanism. An ANN with moderate learning rate is superior
as it has better generalization and finer discerning capability
[1].

TABLE IV
EFFECT OF AVERAGE MSE CONVERGENCE AFTER 1000 EPOCHS WITH

ACTIVATION FUNCTION VARIATION AT INPUT,HIDDEN AND OUTPUT LAYER

Case Input layer Hidden layer Output layer MSE×104

1 log-sigmoid log-sigmoid log-sigmoid 13.76095
2 tan-sigmoid tan-sigmoid tan-sigmoid 35.38531
3 tan-sigmoid log-sigmoid tan-sigmoid 70.77062
4 log-sigmoid tan-sigmoid log-sigmoid 104.19008
5 log-sigmoid log-sigmoid tan-sigmoid 145.47294
6 log-sigmoid tan-sigmoid log-sigmoid 196.58505

V. RESULTS AND DISCUSSION

After the training is over the testing of the system is carried
by following the considerations summarized in Table II. The
objective is to extend the conditions so as to cover the max-
imum possible events that occur in practical transmit receive
condition. The unpredictability associated with the transmit-
receive condition is represented the variance incorporated in
the testing data. A similar set of data is generated for validation
of the training before testing. This helps in robust training
of the ANNs which are subsequently used for the parameter
estimation and optimization of the design.
Table VII shows a reduced form of the sets of data used for
training the MLPs. Such sets of data used with MLPs training
provide results as shown in a curtailed form in Table VIII.
The success rate is obvious. The data provided in Table VIII
give a glimpse of the best case result where the conditions are
customized for worst case performance yet the output obtained
are for best case situations. The worst case condition of
training is determined to be the case when the ANN has been
trained with noise-free data and the test input has 50% variance
compared to the input during training. Loop antenna dimension
variation is also considered for ascertaining the performance
of the model. Table V gives the results derived from an ANN
configured to perform under ideal conditions with variations
of loop radius and wire thickness of the antenna.

A similar set of results are also derived for the worst case
condition. Table VI provides the summarized results for a
circular loop antenna tested under worst case condition with
variations of dimension. The results prove the robustness of
the training of the ANN and the configuration adopted. Table
X provide another curtailed set of data representing the worst
case results.

Figure 5 shows the MSE convergence rate for four pa-
rameters generated by an ANN trained upto 7000 sessions.
These convergence curves for the four parameters represent

TABLE V
ANN PERFORMANCE WITH LOOP ANTENNA DIMENSION VARIATION

UNDER IDEAL CONDITIONS

Cases Loop Wire Train- Average Average
radius radius -ing MSE conver- prediction
in cm in cm sessions -gence x 10−4 in (%)

1000 2.8 86.3
1 3.2 2.59 3000 1.3 88.2

5000 0.8 92.3
7000 0.5 96.5
1000 2.6 87.3

2 4.2 3.6 3000 1.2 87.6
5000 0.9 91.3
7000 0.5 95.8
1000 2.2 88.2

3 5.2 4.6 3000 1.4 90.1
5000 0.7 92.7
7000 0.5 96.1

TABLE VI
ANN PERFORMANCE WITH LOOP ANTENNA DIMENSION VARIATION

UNDER WORST CASE VARIATIONS

Cases Loop Wire Train- Average Average
radius radius -ing MSE conver- prediction
in cm in cm sessions -gence x 10−4 in (%)

1000 3.8 83.3
1 3.2 2.59 3000 2.7 86.4

5000 1.9 90.6
7000 1.4 94.2
1000 3.6 82.2

2 4.2 3.6 3000 2.7 86.6
5000 1.9 89.2
7000 1.5 93.7
1000 3.2 84.1

3 5.2 4.6 3000 2.6 86.8
5000 1.7 90.2
7000 1.4 93.6

TABLE VII
A TRUNCATED SET OF DATA USED FOR TRAINING THE ANN

Frequency Radiation Loss Efficiency Inductance
Resistance Resistance

21 Mhz 0.00001 0.02618 0.00030 13.76095
54 Mhz 0.00034 0.04198 0.00800 35.38531
108 Mhz 0.00542 0.05937 0.08362 70.77062
159 Mhz 0.02545 0.07204 0.26107 104.19008
222 Mhz 0.09673 0.08513 0.53191 145.47294
300 Mhz 0.32259 0.09896 0.76525 196.58505

TABLE VIII
A TRUNCATED SET OF DATA GENERATED BY THE TRAINED ANN AFTER

7000 EPOCHS

Frequency Radiation Loss Efficiency Inductance
Resistance Resistance

21 Mhz 0.0001 0.02620 0.00022 13.78159
54 Mhz 0.00040 0.04211 0.00800 35.34924
108 Mhz 0.00550 0.05942 0.08381 70.67166
159 Mhz 0.02542 0.07201 0.26121 104.22445
222 Mhz 0.09676 0.08515 0.53186 145.55374
300 Mhz 0.32242 0.09900 0.76483 196.56200

the learning ability of the ANN applied for optimization of
the antenna design parameters showing controlled precision
of prediction. The results obtained validate the objective of
the work. Table I shows the success rates of the ANN
during training time in generating the precision of prediction
of the design parameter. The precision levels increase with
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TABLE IX
A TRUNCATED SET OF DATA GENERATED BY THE ANN FOR WORST CASE

CONDITION

Frequency Radiation Loss Efficiency Inductance
Resistance Resistance

21 Mhz 0.0276 0.0338 0.0671 21.3318
54 Mhz 0.0093 0.0356 0.0181 55.8067
108 Mhz 0.0291 0.0336 0.2108 39.5141
159 Mhz 0.0447 0.0732 0.1884 81.4311
222 Mhz 0.1777 0.0899 0.5834 135.1655
300 Mhz 0.2587 0.1075 0.6166 172.8901

1000 2000 3000 4000 5000 6000 7000
0

1

2

3

x 10
−4 MSE Vs Epoch

Epoch

M
S

E

Radiation Resistance
Loss Resistance
Efficiency
Inductance

Fig. 5. Convergence of MSE with epochs for the four parameters

number of training session and show a marked dependence
on the type of training method used. This reflects control
or regulation of precision generated in predicting the design
parameters. The results are generated from a sample base
of over 100 frequencies with multiple sets of variations of
loop radius and wire thickness. The set also includes input
variance upto 50%. The above results are carried out for
electrically small and large loop antenna designs and the
performances obtained are comparable. The results show the
strength of the model designed in predicting the parameters
and optimization achieved in tackling variations of transmit-
receive conditions as observed in practical situations. The
results obtained validate the objective of the work.

TABLE X
MSE VS EPOCHS FOR THE FOUR PARAMETERS

Sessions Radiation Loss Efficiency Inductance
Resistance Resistance
×10−5 ×10−5 ×10−5 ×10−5

1000 13.317 38.3 25.24 29.41
2000 8.8 24.11 14.41 19.87
3000 4.68 12.8 10.16 12.18
4000 4.08 8.2 5.96 7.9
5000 2.73 6.11 3.54 7.7
6000 1.67 4.74 3.1 3.94
7000 1.29 3.26 2.27 2.63

The results thus obtained provide useful insights into loop
antenna design. That way the proposed model provides a
means of providing an optimized design format for obtaining
the physical layout of a loop antenna. The parameters predicted
for a given frequency is made available as the best combination

known to the ANN in terms of physical dimensions. The
usefulness of the model for antenna design is thus obvious.

VI. CONCLUSION

The work shows the effectiveness of utilization of an ANN
for parameter estimation of an antenna design. Such estimation
can be the basis of determining the practical requirements
of an antenna design. The present work can be extended
further to fix the physical dimensions of an antenna design as
required by different communication requirements. Moreover,
the controlled nature of prediction precision as generated by
the ANN can be also used for designing electronically alterable
models of antenna suitable for smart designs.
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