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Abstract—Increasing demand on the performance of Subsea 

Production Systems (SPS) suggests a need for more detailed 
investigation of fluid behavior taking place in subsea equipment. 
Complete CFD cool down analyses of subsea equipment are very 
time demanding. The objective of this paper is to investigate a 
Locked CFD approach, which enables significant reduction of the 
computational time and at the same time maintains sufficient 
accuracy during thermal cool down simulations. The result 
comparison of a dead leg simulation using the Full CFD and the three 
LCFD-methods confirms the validity of the locked flow field 
assumption for the selected case. For the tested case the LCFD 
simulation speed up by factor of 200 results in the absolute thermal 
error of 0.5 °C (3% relative error), speed up by factor of 10 keeps the 
LCFD results within 0.1 °C (0.5 % relative error) comparing to the 
Full CFD. 

 
Keywords—CFD, Locked Flow Field, Speed up of CFD 

simulation time, Subsea 

I. INTRODUCTION 
HE cool down performance of Subsea Production Systems 
has been predicted by a thermal finite element analysis 

(FEA) in conjunction with an artificial thermal conductivity 
approach in the recent years. This approach was proven by 
several tests to be conservative for the flowing region and was 
widely accepted by customers during project execution. The 
FEA approach is very time efficient and allows simulating 
cool down of the equipment within hours. 

One limitation to this approach is modeling of cool down in 
regions which are outside the main flow during production, 
where convection effects play an important role – i.e. in dead 
legs, stagnant regions separated by a closed valve and in fluids 
within enclosed cavities (actuators, valve cavities). CFD is a 
more physically sound approach to emulate convective heat 
transfer compared to FEA [1], [2], [3]. Thus, it is expected that 
CFD will yield more correct results compared to FEA, in 
terms of mimicking the actual thermal behavior of a subsea 
component. 

Increasing requirements to the subsea equipment with 
respect to flexibility, monitoring and longer cool down times 
raise the need for more accurate analysis of thermal effects. 
The answer to this need is CFD [4], which allows modeling of 
the convective heat transfer in the fluid domains [5] and thus 
replacing the artificial thermal conductivity approach. 
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Applying CFD allows for designing the subsea equipment 
simulation model at a lower level of conservatism. Correctly 
analyzing the equipment's maximum potential minimizes the 
price of the equipment, which is an important focus both for 
customers and for FMC.  

Complete CFD cool down analyses of subsea equipment is 
very time demanding. Computational time in the order of 200k 
CPU-hours is not uncommon, thus there is a need for 
investigations of measures which may reduce the 
computational cost of CFD-analyses.   

The objective of this paper is to investigate such a CFD 
analysis methodology that will significantly reduce the 
computational time, but will maintain sufficient accuracy 
during thermal cool down simulations. 

The paper contains the definition of the Locked CFD 
approach in Section II, test case description in Section III, the 
overview of the CFD and LCFD results is given in Section IV, 
and the comparison and evaluation of the results is presented 
in Section V. The overall conclusions are stated in Section VI. 

II. CFD METHOD DESCRIPTION 

A. Approach 
The fluid flow pattern in subsea equipment during a cool 

down is induced by buoyancy. The intensity of the convective 
heat transfer and the subsequent fluid motion is thus given by 
temperature difference within the fluid domain, typically 
between the wall temperatures at a cold and a warm spot. 
Since the cool down of subsea equipment is a relatively slow 
process there is no need to update the flow field as frequently 
as the full CFD solver requires (typically every second) – i.e. 
the flow field can be locked for the most of the cool down 
simulation.  
 

TABLE I 
TERMINOLOGY OVERVIEW 

Term Description 

Locked CFD 
(LCFD) 

CFD simulation assuming constant (locked) velocity 
field throughout the entire simulation or its part. 

Full CFD The flow field velocities as well as the heat equations are 
solved for each time step of the CFD simulation. 

Locked Flow 
Field CFD (LFF 
CFD) 

Only the heat equations are solved for each time step of 
the CFD simulation (flow field is assumed to be 
constant). 

 
This assumption speeds up the cool down simulation 

remarkably. While the fluid velocity is locked, only the heat 
transfer equation (both within fluids and solids) is solved, 
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Fig. 8 Beginning of cool down (t = 0 s) – temperature in dead leg and 

valve 

B. Full CFD Cool Down Simulation 
All production fluid residuals (RMS) have been kept 

between 1E-04 and 1E-03 and imbalances within 1% during 
the entire cool down simulation. The total length of the 
simulation was set to 54 000 s (15 hours). 

The adaptive time step option, based on mean Courant 
number equal to 20, was used to determine the time step 
during the transient part of the simulation. The approximate 
length of the time step during the transient simulation varied 
from 0.6 s to 1.5 s. 

The temperature distribution in the production fluid domain 
and valve in the dead leg are shown in Fig. 22b and Fig. 23b. 
The temperatures monitored during cool down simulation are 
displayed on Fig. 9 for the selected locations (see Fig. 6).  

 

 
Fig. 9 Temperatures during full CFD cool down simulation 

C. Locked CFD Cool Down Simulation 
All the simulations are initialized with the transient 

simulation of the initial state. The overview of the LCFD 
simulation is given in the following table: 

The graphs in Fig. 10 - Fig. 13 display temperatures in 
selected locations during the cool down LCFD simulations 
(see Fig. 6). The temperature distribution in the production 
fluid domain and valve in the dead leg is shown in Fig. 22a 
and Fig. 23 (a). 

 

 
Fig. 10 Temperatures during fully LCFD cool down simulation 

 

 
Fig. 11 Temperatures during Initialized LCFD cool down simulation 

– 270 s full CFD 

 

 
Fig. 12 Temperatures during Initialized LCFD cool down simulation 

– 7 200 s full CFD 
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Fig. 13 Temperatures during Sequential LCFD cool down simulation 

V. COMPARISON 
The temperatures resulting from the locked CFD (TLCFD) are 

compared to the full CFD (Tfull_CFD) temperature results by 
absolute error δT:  

 
ሻ൯ݐ൫ܶሺߜ ൌ  ௙ܶ௨௟௟஼ி஽ሺݐሻ െ  ௅ܶ஼ி஽ሺݐሻ (1) 

 
The absolute error does not capture the relativity of the 

temperature error towards the decreasing temperature 
potential. Thus the absolute error naturally minimizes towards 
the end of the cool down. 

A relative error, κ [%], based on ambient temperature 
Tambient is therefore introduced and is used to evaluate the 
match between the temperatures resulting from FEA 
approximations (TFEA) and CFD simulation (TCFD).  

 

κ൫ ௅ܶ஼ி஽ሺݐሻ൯ ൌ  ௙ܶ௨௟௟஼ி஽ሺݐሻ െ ௅ܶ஼ி஽ሺݐሻ
௅ܶ஼ி஽ሺݐሻ െ ௔ܶ௠௕௜௘௡௧

· 100% (2) 

 
The relative error can be interpreted as a measure of 

modeling inaccuracy with respect to the actual temperature 
potential (the actual temperature minus ambient temperature). 

A. Fully LCFD 
Absolute and relative error between fully locked CFD and 

full CFD during the cool down simulation for the selected 
temperatures is displayed on Fig. 14 and Fig. 15. Observations 
based on these plots are summarized in Table III. 

 
Fig. 14 Absolute error fully LCFD 

 

 
Fig. 15 Relative error fully LCFD 

B. Initialized LCFD 
Absolute/relative error between Initialized LCFDs and full 

CFD during CD simulation for selected temperatures are 
shown on Fig. 16 - Fig. 19. The observations from these four 
graphs are summarized in Table IV. 

 

 
 Fig. 16 Absolute error Initialized LCFD – full CFD 270 s
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Fig. 17 Absolute error Initialized LCFD – full CFD 7200 s 

 

  

Fig. 18 Relative error Initialized LCFD – full CFD 270 s 
 

 
 

Fig. 19 Relative error Initialized LCFD – full CFD 7 200 s 

C. Sequential LCFD 
The last method tested is the Sequential LCFD. Fig. 20 and 

Fig. 21 show the absolute and relative error between 
Sequential LCFD and full CFD during CD simulation for 
selected temperatures. The observations from the two graphs 
are summarized in Table V.  

Temperature distribution in the production fluid domain, 
valve in the dead leg is shown in Fig. 22 and Fig. 23. 

Fig. 20 Absolute error Sequential LCFD 
 

 

Fig. 21 Relative error Sequential LCFD 
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TABLE III 

FULLY LCFD – RESULT OVERVIEW 

Error 
Trend Magnitude 

Reference 
during CD end of CD during CD  end of CD 

Absolute  Constant Varying ± 0.5 °C + 0.5 °C  Fig. 

Relative Constant Varying ± 2 % (1 - 3) % 
 

Fig. 

 
TABLE IV 

INITIALIZED LCFD – RESULT OVERVIEW 

LCFD Error 
Trend Magnitude 

Reference 
during CD end of CD during CD  end of CD 

Full CFD 270 s 
Absolute Constant Increase ± 0.4 °C ~ 0.25 °C Fig. 16 

Relative Constant Varying (-1; +2) % (1 - 2) % Fig. 18 

Full CFD 7 200 s 
Absolute Constant Constant (- 0.25; +0.4) °C + 0.2 °C Fig. 17 

Relative Constant Varying (-1; +2) % ~ 1 % Fig. 19 

 

TABLE V 
SEQUENTIAL LCFD – RESULT OVERVIEW 

Error 
Trend Magnitude 

Reference 
during CD end of CD during CD  end of CD 

Absolute Decrease Constant ± 0.6 °C ~ 0.1 °C Fig. 20 

Relative Decrease Constant ± 2 % ~ 0.5 % Fig. 21 

 
 

D. Comparison for LCDF Simulations 
The comparison between the absolute and relative LCFD 

errors (Table VI and Table VII) leads to the following 
observations: 
- The error during the CD simulation is similar for all 

LCFDs, 
- The sequential method displays the smallest error at the 

end of cool down simulation, 
- The sequential method shows higher accuracy towards 

the end of cool down simulation comparing to the other 
tested LCFD methods. 

Several observations have been made based on the 
simulation time comparison (Table VIII): 

- The total length of the full CFD positively affects the 
agreement between full CFD and LCFD, when looking at 
the fully locked CFD and Initialized LCFD, 

- The fully locked approach can provide results as quickly 
as an FEA model: it is 200 times faster comparing to full 
CFD, 

- As stated above, extension of the initialized period of the 
CFD contributes to the agreement between full CFD and 
LCFD, but the simulation time grows rapidly. Thus 
regarding the precision and solution time it is more 
efficient to use short full CFD sequences distributed 
along the cool down simulation (Sequential LCFD), 

- The sequential approach reduced the full CFD solution by 
a factor of 10 (current setup). 
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Fig. 22 End of cool down (t = 54 663 s) – PF temperature (a) 
Sequential LCFD (b) full CFD 

 

 

Fig. 23 End of cool down (t = 54 663 s) – temperature field in header 
and dead leg (a) Sequential LCFD (b) full CFD 

 

 
TABLE VI 

ABSOLUTE ERROR – LCFD OVERVIEW 

LCFD 
Trend Magnitude 

during CD end of CD during CD  end of CD 

Fully locked Constant Varying ± 0.5 °C + 0.5 °C 

Initialized - Full CFD 270 s Constant Increase ± 0.4 °C ~ 0.25 °C 

Initialized - Full CFD 7 200 s Constant Constant (- 0.25; +0.4) °C + 0.2 °C 

Sequential Decrease Constant ± 0.6 °C ~ 0.1 °C 
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TABLE VII 
RELATIVE ERROR – LCFD OVERVIEW 

LCFD 
Trend Magnitude 

during CD end of CD during CD  end of CD 

Fully locked Constant Varying ± 2 % (1 - 3) % 

Initialized - Full CFD 270 s Constant Varying (-1; +2) % (1 - 2) % 

Initialized - Full CFD 7 200 s Constant Varying (-1; +2) % ~ 1 % 

Sequential Decrease Constant ± 2 % ~ 0.5 % 

 

TABLE VIII 
SIMULATION TIME COMPARISON  

CFD 
Solution time [h] ** 

Speedup factor (Full CFD/LCFD) 
LCFD run full CFD Total 

Full CFD - 300 300 1x 

Fully locked 1.5 - 1.5 200 x 

Initialized - full CFD 270 s 1.5 1.5 3 100 x 

Initialized - full CFD 7 200 s 1.3 40 41.3 7.3 x 

Sequential 14* 16 30 10 x 

* time step 10 s (other methods - 100 s) 

** distributed solution on 16 cores 

VI. CONCLUSIONS AND RECOMMENDATIONS 
Three LCFD methods (Fully locked CFD, Initialized LCFD 

and Sequential LCFD) have been compared to a full CFD 
simulation on a model of a header dead leg. Agreement 
between three local temperatures (header temperature, upper 
bend and end of dead leg minimum temperatures) during cool 
down was evaluated to validate the LCFD approach.  

The LCFD approach can approximate full CFD simulation 
with relative error around 2 % during the cool down 
simulation. In the case of Sequential LCFD the relative error 
towards the end of cool down simulation is around 0.5 % 
(absolute error 0.1 °C).  

The LCFD simulation significantly speeds up the full CFD 
simulation: 
- 200 times in case of Fully locked CFD, 
- 10 times in case of Sequential LCFD.  

The shortening of the simulation time in combination with 
small relative error comparing to the standard CFD approach, 
makes the LCFD a preferred approach to subsea cool down 
simulations. 
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