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Abstract—Tool wear and surface roughness prediction plays a 

significant role in machining industry for proper planning and control 
of machining parameters and optimization of cutting conditions. This 
paper deals with developing an artificial neural network (ANN) 
model as a function of cutting parameters in turning steel under 
minimum quantity lubrication (MQL). A feed-forward 
backpropagation network with twenty five hidden neurons has been 
selected as the optimum network. The co-efficient of determination 
(R2) between model predictions and experimental values are 0.9915, 
0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra 
respectively. The results imply that the model can be used easily to 
forecast tool wear and surface roughness in response to cutting 
parameters.  
 

Keywords—ANN, MQL, Surface Roughness, Tool Wear.  

I. INTRODUCTION 
HE quality of machined components is evaluated in 
respect of how closely they adhere to set product 

specifications for length, width, diameter, surface finish, and 
reflective properties. Dimensional accuracy, tool wear and 
quality of surface finish are three factors that manufacturers 
must be able to control at the machining operations to ensure 
better performance and service life of engineering component.   
In the leading edge of manufacturing, manufacturers are 
facing the challenges of higher productivity, quality and 
overall economy in the field of manufacturing by machining. 
To meet the above challenges in a global environment, there is 
an increasing demand for high material removal rate (MRR) 
and also longer life and stability of the cutting tool But high 
production machining with high cutting speed, feed and depth 
of cut generates large amount of heat and temperature at the 
chip-tool interface which ultimately reduces dimensional 
accuracy, tool life and surface integrity of the machined 
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component. This temperature needs to be controlled at an 
optimum level to achieve better surface finish and ensure 
overall machining economy.  

The conventional types and methods of application of 
cutting fluid have been found to become less effective with 
the increase in cutting velocity and feed when the cutting fluid 
cannot properly enter into the chip-tool interface to cool and 
lubricate the interface due to bulk plastic contact of the chip 
with the tool rake surface. The more serious concern by the 
use of cutting fluid, particularly oil-based type is the pollution 
of the working environment, water pollution, soil 
contamination and possible damage of the machine tool slide 
ways by corrosion [1].  

The modern industries are therefore looking for possible 
means of dry (near dry), clean, neat and pollution free 
machining and grinding. Minimum Quantity Lubrication 
(MQL) refers to the use of cutting fluids of only a minute 
amount-typically of a flow rate of 50-500 ml/hour-which is 
about three to four orders of magnitude lower than the amount 
commonly used in flood cooling, where for example, up to 10 
liters of fluid can be dispensed per minute. The concept of 
minimum quantity lubrication (MQL), sometimes referred to 
as ‘near dry lubrication’ [2] or ‘micro lubrication’ [3]. 
Machining under minimum quantity lubrication (MQL) 
condition is perceived to yield favorable machining 
performance over dry or flood cooling condition.  

Tool wear and surface roughness prediction plays an 
important role in machining industry for gaining higher 
productivity, product quality, manufacturing process planning 
and also in computer aided process planning. Average 
principal flank wear (VB) of cutting tools is often selected as 
the tool life criterion as it determines the diametric accuracy of 
machining, its stability and reliability. The productivity of a 
machining system and machining cost, as well as quality, the 
integrity of the machined surface and profit strongly depend 
on tool wear and tool life. Sudden failure of cutting tools leads 
to loss of productivity, rejection of parts and consequential 
economic losses. Flank wear occurs on the relief face of the 
tool and is mainly attributed to the rubbing action of the tool 
on the machined surface during turning operation During 
turning operation the average principal flank wear (VB) 
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predominantly occurs in cutting tool, so the life of a particular 
tool used in the machining process depends upon the amount 
of average principal flank wear. The maximum principal flank 
wear (VM) and average auxiliary flank wear (VS) also take 
place during turning and can’t be neglected due to their 
significant impact on surface integrity and dimensional 
inaccuracy of machined component. The surface finish of the 
machined component primarily depends upon the amount of 
average principal flank wear (VB). An increase in the amount 
of average principal flank wear (VB) leads to reduction in 
nose radius of the cutting insert which in turn reduces the 
surface quality along the job axis. The maximum utilization of 
cutting tool is one of the ways for an industry to reduce its 
manufacturing cost. Hence tool wear has to be controlled and 
should be kept within the desired limits for any marching 
process. Tool wear mainly depends upon the machining 
parameters for turning a particular work piece material. In 
order to maximize productivity and overall economy from a 
manufacturing process, an accurate process model must be 
constructed for turning operation in a MQL environment.  

This paper aims to develop an artificial neural network 
(ANN) model for the analysis and prediction of the 
relationship between cutting and process parameters during 
turning of medium carbon steel by uncoated SNMG insert. 
The input parameters of the Artificial Neural Networks 
(ANN) model are the machining parameters: speed, feed, 
depth of cut and cutting time. The output parameters of the 
model are four process parameters measured during the 
machining trials, namely principal flank wear (VB), maximum 
principal flank wear (VM), auxiliary flank wear (VS) and 
surface roughness (Ra). Experimental studies have been 
conducted to establish and validate the proposed model. 

Artificial Neural Networks (ANNs) have been widely used 
for modeling complex manufacturing process due to their 
learning and generalization capabilities, accommodation of 
non-linear variables, adaptivity to changing environments and 
resistance to missing data. ANNs have been widely applied in 
modeling many metal cutting operations, such as turning, 
milling and drilling [4]. There is an extensive research interest 
in the application of ANNs in modeling and monitoring of 
machining operations [5, 6]. Applications of neural networks 
in computer-integrated production are adaptive control of 
cutting process, prediction of surface roughness, cutting 
forces, vibrations, prediction of tool wear and tool failure, 
solving of optimization problems [7-9]. Elanayar and Shin 
[10] proposed a model, which approximates flank and crater 
wear propagation and their effects on cutting force by using 
radial basis function neural networks. Ghasempoor et al. [11] 
proposed a tool wear classification and continuous monitoring 
neural network system for turning by employing recurrent 
neural network. Liu and Altintas [12] derived an expression to 
calculate flank wear in terms of cutting force ratio and other 
machining parameters. The calculated flank wear, force ratio, 
feed rate and cutting speed are used as an input to a neural 
network to predict the flank wear. . Sick [5] demonstrated a 
new hybrid technique, which combines a physical model 

describing the influence of cutting conditions on measured 
force signals with neural model describing the relationship 
between normalized force signals and the wear of the tool. 
Time-delay neural networks were used in his studies. Azouzi 
and Guillot [13] examined the feasibility of neural network 
based sensor fusion technique to estimate the surface 
roughness and dimensional deviations during machining. This 
study concludes that depth of cut, feed rate, radial and z-axis 
cutting forces are the required information that should be fed 
into neural network models to predict the surface roughness 
successfully. In addition to those parameters, Risbood et al. 
[14] added the radial vibrations of the tool holder as additional 
parameter to predict the surface roughness. Bisht et al. [15] 
developed a back propagation neural network model for the 
prediction of flank wear in turning operations. Process 
parametric conditions including cutting speed, feed-rate, depth 
of cut, and the measured parameters such as cutting force, 
chip thickness and vibration signals are used as inputs to the 
neural network model. Jang et al. [16] applied ANN in surface 
roughness study and correlate surface roughness with cutting 
vibrations. Grzesik [17] used the minimum un-deformed chip 
thickness to predict surface roughness in turning. Polynomial 
networks were considered in the work of Lee et al [18] to 
construct the relationships between the cutting parameters 
(cutting speed, feed rate, depth of cut) and cutting 
performance (tool life, surface roughness and cutting force). 
Li et al. [19] developed a hybrid machining model that 
integrated analytical models and neural network models for 
predicting all of the machining characteristic factors. 
Matsumura et al [20] adopted an approach that could evaluate 
the influence of machine tool characteristics on cutting 
processes using adaptive prediction was presented. The 
network for predicting surface roughness had as inputs the 
cutting speed, the affinity between cutting tool and workpiece, 
the chip discontinuity (evaluated by the chip strain), the built-
up-edge formation (evaluated by average temperature around 
the cutting edge), the width of flank wear and the theoretical 
roughness considering tool wear. An adaptive neuro-fuzzy 
inference system (ANFIS) and computer vision were used to 
predict surface roughness by Ho et al. [21] in turning. The 
computer vision system, comprising a digital camera 
connected to a PC and the appropriate light sources, provided 
surface images that were analyzed to calculate the arithmetic 
average of gray levels (number of shades of gray). This 
information as well as the cutting parameters was given, for a 
total of four inputs, to the ANFIS and the roughness value 
could then be obtained. 

A review of the literature on prediction of tool wear and 
surface roughness reveals that no ANN model has been still 
developed to predict tool wear and surface roughness while 
machining medium carbon steel under minimum quantity 
lubrication (MQL) Condition with uncoated carbide insert 
designated as SNMG 120408 and Considering the four cutting 
parameters -cutting speed, feed rate, depth of cut and 
marching time as input to neural network. No ANN model is 
still found which determines the surface roughness and three 
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process parameters (VB, VM, VS) related to tool wear and 
tool life friendly. This paper deals with developing an ANN 
model that can be used to predict tool wear and surface 
roughness and for optimization of machining parameters while 
performing turning operations under minimum quantity 
lubrication (MQL) environment.   

II. EXPERIMENTAL PROCEDURE AND CONDITIONS  
The concept of minimum quantity lubrication (MQL) may 

be considered as a rigorous solution in achieving reduced tool 
wear and improved surface finish while maintaining cutting 
forces or power at reasonable levels, if the MQL system can 
be properly designed. MQL technique not only provides 
reduction in tool wear or increase in tool life and improvement 
in surface roughness but also reduces the consumption of 
cutting fluid. The machining tests have been carried out by 
straight turning of medium carbon steel on a lathe (7.5 kW) by 
a standard uncoated carbide insert with ISO designation-
SNMG 120408 at different speed-feed combinations. MQL 
machining has been considered to be an effective semidry 
application because MQL offers positive part on environment 
friendliness as well as techno-economical benefit.  

The conditions under which the machining tests have been 
carried out are briefly given in Table I. All these parameters 
have been selected as per tool manufacturer’s recommendation as 
well as industrial practices for machining medium carbon steel 
with uncoated carbide insert. Effectiveness of cooling and the 
related benefits entirely depends on how closely the MQL jet 
can reach the chip-tool and the work-tool interfaces where, 
apart from the primary shear zone, heat is generated. The tool 
geometry is reasonably expected to play significant role on 
such cooling effectiveness. Keeping this view tool 
configuration namely SNMG-120408 has been undertaken for 
this work. The insert was clamped in a PSBNR-2525 M12 
type tool holder.   

TABLE I 
EXPERIMENTAL CONDITIONS 

Machine tool : Lathe Machine(China), 7.5 kW 
Work materials : Medium Carbon Steel 
Cutting tool : Uncoated Carbide, (p-30 grade),  Sandvik 
 Geometry  : -6°,-6°,6°,15°,75°,0.8 mm 
Tool holder : PSBNR 2525 M12 (ISO specification),  Widia 
Cutting parameters   
 Cutting velocity, V : 66 and 258 m/min 
 Feed rate, f : 0.10 and 0.20 mm/rev 
 Depth of cut, d : 1.0 and 1.5 mm 
MQL supply : Flow Rate 150 ml/hr, Air Pressure 23 bar, Oil

Pressure 25 bar 
Environment : MQL (VG-68 Cutting oil) 

The photographic view of the experimental set-up is shown 
in Fig. 1. A cylindrical bar of medium carbon steel of 167 mm 
diameter was selected for straight turning. During machining, 
the cutting insert was withdrawn at regular intervals and then 
VB, VM, VS were measured under metallurgical microscope 
(Carl Zesis, 351396, Germany) fitted with micrometer of least 
count 1μm. Surface roughness was measured respectively by a 
Talysurf (Surtronic 3+ Roughness checker, Taylor Hobson, 

UK) using a sampling length of 4.00 mm. The photographic 
view of the surface roughness measuring technique is shown 
in Fig. 2.  

 
Fig.1 Photographic view of experimental set-up 

 
An MQL system using cutting fluid and compressed air 

essentially consists of a compressor for delivering and 
compressing and delivering compressed air at desired 
pressure, mixing chamber for mixing cutting fluid and 
compressed air, suitable nozzle to impinge MQL to the cutting 
zone, pressure and flow control valves for effective 
economical use of cutting fluid.  

 

 
Fig.2 Photographic view of surface roughness measuring technique 

  

III. ANN MODEL FORMULATION 
Before developing an ANN model to predict tool wear and 

surface roughness, it is very much important to identify the 
input and output parameters of the network. The forecasting 
capability or interpolation capability of an artificial neural 
network (ANN) model strongly depends on the appropriate 
selection of input-output parameters. In our proposed model, 
the input parameters that have been considered are machining 
variables and machining time. The machining variables or set 
up variables, which include cutting speed (V), feed rate (f) 
and depth of cut (d). These parameters can be set up in 
advance. It means that these parameters are controllable and 
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can be selected prior to perform machining operation. 
Machining time (tc) influences the process performance to a 
great extent. As machining time increases, tool wear also 
increases and so significantly influence the surface quality. 
Considering this, machining time has also been considered as 
one of input parameters of the model. The optimization of 
machining process can be achieved by proper selection of 
these parameters.   

Productivity and economy of manufacturing by machining 
are significantly affected by life of the cutting tools. The need 
for accurate assessment of tool wear has increased 
considerably in order to produce the required end products so 
that a new tool may be introduced at the instant at which the 
existing tool has worn out, thus preventing any hazards 
occurring to the machine or deterioration of the product 
surface finish. The importance of maximizing a tool’s working 
time and doing the utmost is to keep tools from breaking is 
directly related with cutting-process optimization.  Tool wear 
sensing has been one of the primary objectives in order to 
produce the products with desired surface finish and accuracy 
in an automated industry so that a new tool may be introduced 
at the instant at which the existing tool has worn out. 

With the progress of machining, the cutting tools attain 
crater wear at the rake surface and flank wear at the clearance 
surfaces due to continuous interaction and rubbing with the 
chips and the work surfaces respectively. The principal flank 
wear is the most important because it raises the cutting forces 
and related problems. Again the life of the tools, which 
ultimately fail by the systematic gradual wear, is generally 
assessed by the average value of the principal flank wear 
(VB), which aggravates cutting forces and temperature and 
may induce vibration with progress of machining. Wear may 
grow at a relatively faster rate at certain locations within the 
zones of flank wear apart from notching.  

 

 
Fig. 3 Schematic view of general pattern of wear 

Schematic view of general pattern of wear is shown in Fig. 
3. The width of such excessive wear are expressed by VM 
(maximum flank wear), VS (average auxiliary flank wear) and 
VSM (maximum auxiliary flank wear). The pattern and extent 
of the auxiliary flank wear (VS) affects surface finish and 
dimensional deviation of the machined parts. In this ANN 
mode, three important tool wear indices namely VB, VM and 
VS and one universally applied surface roughness index 
namely, average surface roughness, Ra have been considered 

as output parameters of the network. The average roughness is 
the area between the roughness profile and its center line, or 
the integral of the absolute value of the roughness profile 
height over the evaluation length. Therefore, Ra is specified by 
the following equation: 
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When Ra is evaluated from digital data, the integral is 
normally approximated by a trapezoidal rule: 
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Where, Ra is the arithmetic average deviation from the 
mean line (μm), L is the sampling length, and Y is the ordinate 
of the profile curve. Graphically, the average roughness is the 
area (Fig. 4) between the roughness profile and its center line 
divided by the evaluation length. 

 
Fig. 4 Arithmetic Average value of roughness (Ra) [22] 

 
The input parameters of the neural network are the cutting 

conditions, namely cutting speed (V), feed rate (f), depth of 
cut (d) and cutting time (tc). The output parameters of the 
model are four process parameters measured during the 
machining trials, namely principal flank wear (VB), maximum 
principal flank wear (VM), auxiliary flank wear (VS) and 
surface roughness (Ra). The input/output dataset of the ANN 
model that we are to going to be formulated to predict tool 
wear and surface roughness in a MQL environment is 
illustrated schematically in Fig.5. Experimental studies have 
been conducted under MQL environment to establish and 
validate the proposed ANN model. 

 In this work, four basic steps have been adopted in the 
development of the model: collection of input-output dataset; 
pre-processing of the input-output dataset; designing and 
training of the neural network and finally performance 
evaluation of the designed neural network. The optimal 
network architecture was determined after several simulation 
trials by MATLAB 7.1 software.  

Fig. 5 Schematic diagram of ANN for tool wear and surface roughness 
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A. Collection of Input-Output Dataset 
The machining tests have been carried out by straight 

turning of medium carbon steel on a lathe by a standard 
uncoated carbide insert with ISO designation-SNMG 120408 
at different cutting speeds (V), feed rates (f), depth of cuts (d) 
and machining time (tc) under MQL (VG-68 cutting oil) 
condition. During machining trials, the cutting insert was 
withdrawn at regular intervals to examine the pattern and 
extent of wear under a metallurgical microscope. After each 
trial, the average surface roughness value was also measured 
by a Talysurf. Thus several pairs of output variables in 
response to the different combinations of machining/input 
parameters have been obtained.   

B. Pre-processing of Input-Output Dataset 
The capability of the artificial neural network (ANN) model 

to generalize regarding unseen data dependents on several 
factors such as appropriate selection of input-output 
parameters of the system, the distribution of the input-output 
dataset, the format of the presentation of the input-output 
dataset to the neural network. For our ANN model, the input 
parameters used are the four main machining parameters 
(cutting speed, feed rate, depth of cut, marching time), while 
the output dataset are the four process parameters (average 
principal flank wear, maximum principal flank wear, average 
auxiliary flank wear, average surface roughness).   
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In this study, several machining tests were carried out and 

thus 38 pairs of input-output dataset were obtained during the 
machining trials. Before training the ANN by feeding the 
dataset to the network and the input-output mapping, one 
significant task is to process the experimental data into 
patterns. Training and testing pattern vectors are formed 
before input-output dataset are fed to network. Each pattern is 
formed with an input condition vector (Pi) and the 
corresponding target vector (Ti), which is shown in the matrix. 
Before training the network, the input-output dataset were 
normalized within the range of -1 to +1 using the Matlab 
command ‘premnmx’.  

C. Neural Network Design and Training 
The network architecture/ topology or features such as 

number of neurons and layers are very important factors that 
determine the functionality and generalization capability of 
the network [23]. The selection of the activation function and 
training algorithm also play a significant role to obtain better 
forecast of response variable. In this work, standard multilayer 
feed-forward back-propagation hierarchical neural network 
has been considered for the prediction of tool wear and 
surface roughness in turning medium carbon steel in MQL 
environment. The neural network has been deigned with 
MATLAB 7.1 software. The back propagation algorithm is a 

gradient decent error-correcting algorithm which updates the 
weights in such a way that network output error is minimized 
[24]. The feed forward backpropagation network usually 
consists of an input layer (where the inputs of the problems 
are received, the inputs are the activity of collecting data from 
the relevant sources. These data are fed to the neural network), 
one hidden layer (where the relationship between the inputs 
and outputs are established represented by synaptic weights) 
and an output layer which emits the outputs of the network. 
The number of hidden layer may vary depending on the 
nature, complexity and non-linearity of the data at hand, but 
single hidden layer is sufficient to deal with most of the 
practical case.   

In this work, the input layer has four neurons corresponding 
to each of the four cutting parameters and four neurons in the 
output layer corresponding to each of the four response 
parameter (Fig. 5). In order to find out the best network 
architecture, different networks with different number of 
hidden layers and neurons in the hidden layer were designed 
and verified; different training algorithm were used; transfer 
function in the hidden layer and output layer were changed 
and observed the generalization capability of the different 
networks and finally the optimal network was selected to 
predict tool wear and surface roughness. The issue of 
determining the optimum number of hidden nodes is a crucial 
and complicated one in neuronal model. In general, network 
with smaller number of hidden neurons are preferable as they 
usually have better generalizations ability and less over fitting 
problems. But network with too few hidden neurons may not 
have enough power to model, store and learn the data. The 
most common approach in determining the number of hidden 
neurons (nodes) is via trial and error. Several rule of thumbs 
have also been proposed, such as, the number of hidden nodes 
depends on the number of input patterns and each weight 
should have at least ten input patterns (sample size). In the 
case of one hidden layer network, several practical guidelines 
exist. These include 2n+1, 2n, n\2 where n is the number of 
input nodes. Lawrence and Fredrick [25] suggested that the 
number of hidden neuron = (n1+n2), where n1 and n2 are the 
number of input and output nodes respectively. 

For the optimal network architecture, tangent of sigmoid 
(sigmoid function is of the form f(x) = (1/1+e-x)) transfer 
function ‘tansig’ has been used in the hidden layer and linear 
(linear function is of the form f(x) = x)) transfer function 
‘purelin’ has been used in the output layer.  The ANN 
configuration is represented as 4-25-4 that is input layer 
consists of four input neurons; the hidden layer consists of 
twenty five neurons and the output layer consisting of four 
output neurons. The number of neurons in the hidden layer is 
determined by trial and error method after designing and 
investigating many networks which vary in their structure, 
transfer function, training algorithm etc. As mentioned above, 
there is no fixed rule for determining the number of neurons in 
the hidden layer. The number of neurons in this layer must be 
large enough to provide non-linear evaluation space in the 
network. 
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Training of an ANN plays a significant role in designing 
the direct ANN-based prediction. The accuracy of the 
prediction depends on how well it has been trained. The 
training of the neural network using a feed-forward back 
propagation algorithm has been carried out in the work. The 
network performs two phases of data flow. First the input 
information is propagated from the input layer to the output 
layer and, as a result it produces an output. Then the error 
signals resulting from the difference between the networks 
predicted values and the actual values are back propagated 
from the output layer to the previous layers for them to update 
their weights accordingly. The update of weights continues 
until the network error goal is reached.  

The number of neurons in the hidden layer is intentionally 
chosen to start with five neuron and hidden neurons are added 
to the hidden layer incrementally. The addition of hidden 
neurons continues until there is no significant progress in 
network performance. The performance of the network was 
evaluated by mean squared error (MSE) between the 
experimental and the predicted values for every output nodes 
in respect of training the network. The feedback from that 
processing is called the “average error” or “performance”. 
Once the average error is below the required goal or reaches 
the required goal, the neural network stops training and is, 
therefore, ready to be verified. 

MATLAB 7.1 has been used for training the network 
architecture which has been developed for prediction of tool 
wear and surface roughness in MQL environment. The 
training performance of the optimal network (consisting of 
twenty five hidden neurons) architecture is shown in Fig. 7.  

A computer program was performed under this MATLAB 
version. The input-output dataset consisting of 38 patterns was 
divided randomly into two categories: training dataset consist 
of 75% of the data and test dataset which consist 25% the 
data. There are 28 training patterns considered for ANN 
modeling of tool wear and surface roughness. After the 
training, the weights are frozen and the model is tested for 
validation. In this work, the network is validated in terms of 
agreement with experimental results. 
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Fig. 6 ANN training  performance 

Fig. 7 Proposed ANN architecture 
 
For this purpose, the input parameters to the network are 

sets of values (in this case 10 pairs of dataset which have been 
shown in Table II) that have not been used for training the 
network (raw untrained data) but are in the same range as 
those used for training. This enables to test the network with 
regard to its capability for interpolation regarding unseen data. 

When a feed-forward network is developed under 
MATLAB, it generates initial weight and bias values for a 
layer with the help of Nguyen-Widrow algorithm. This 
reduces training time by setting the initial weights in such a 
way that the active region of the layers neuron will be 
distributed approximately evenly over the input space. The 
advantage of this over completely random initialization is that 
once the training starts the weights movements are smaller and 
settle quickly, since the majority of weight movements were 
eliminated by the method of initialization [26]. 

Each neuron in the network acts as a processing element 
which performs a weighed sum of all input variables that are 
fed to it. Depending on the value of weighted sum of the 
variables, the neuron gives a signal to the neurons in the 
adjacent layer through a non-linear transfer function (sigmoid 
function in this case). The tool wear and surface roughness 
values of training samples are treated as the desired and target 
output. The algorithm used for the neural network learning is 
‘the backward propagation algorithm’ with Levenberg-
Marquardt (LM) version. This training algorithm offers higher 
accuracy in function approximation. It also facilitates faster 
training. The neural network learning is adaptive in nature that 
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means vector pairs from the training model are mapped 
respectively to reinforce the weights until deviation between 
the training output and the desired output of each training 
vector sample converges to a negligible error of 0.0001 in this 
application.  

The optimum ANN architecture is shown in Fig. 7. For 
clarity, not all of the connections between input-hidden 
neurons and hidden-output neurons are shown in Fig. 7. The 
momentum constant and learning rate used in this model is 0.5 
and 0.1 respectively. The maximum number of training 
epochs that was set is 10,000 and the training error goal was 
0.0001.  After the training is completed, the actual weight 
values are stored in a separate file. The value of R2 and MAPE 
values between the network predictions and the experimental 
values using training and test dataset for different network 
architecture have been shown in Table III. The summary of 
the proposed model (Fig. 7) is given in Table IV.  

D. Performance Evaluation of the Designed Network 
Training and testing performance of the optimum network 

architecture can be evaluated by the following measures: 
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where, 

t : Target value 
O : Output value 
RMSE : Root mean squared error 
MEP : Mean error percentage 
APE  : Absolute percentage of error 
R2 : Coefficient of determination/ absolute fraction of 

variance 
P : Number of patterns 
j : Processing elements 
 
After post processing the network predicted values by using 

the MATLAB command ‘postmnmx’, regression analysis was 
adopted to find the coefficient of determination value (R2) for 
both training and testing phases to judge performance of each 
network. Another index termed as mean absolute percentage 
of error (MAPE) is also used in this analysis to judge the 
training and testing performance. The coefficient of 
determination (R2) and mean absolute percentage of error 
(MAPE) values for different network architecture have been 
presented in Table III. For clarity not all of the hidden neurons 
that were considered during designing and developing the 
ANNs model are shown in Table III.  

 It is shown from the Table II that network with 1 hidden 
layer and 25 neurons in the hidden layer with ‘tansigmoid’ 
and ‘purelin’ transfer function in the hidden and output layer 

respectively and trained with Levenberg-Marquardt algorithm 
provides the best result. It can also been seen from Table II 
that increasing the number of neurons from 25 to 30 has no 
significant improvement on the performance of the network.   
So, 4-25-4 network architecture was selected as the optimum 
ANN model. 

Fig. 8 shows the ANN prediction values and observed 
values for four response variables namely average principal 
flank wear (VB), maximum principal flank wear (VM), 
average auxiliary flank wear (VS), and average surface 
roughness (Ra) respectively for different test cutting 
conditions. The test cutting conditions have been shown in 
Table III. From the graphs, it is clear that the proposed model 
can predict values which are nearly very close to experimental 
observations for each of the output parameters. The results 
show that the ANN model can be used easily for prediction of 
tool wear and surface roughness and hence help in optimum 
selection of cutting parameters (V, f, d, tc) for the purpose of 
manufacturing process planning and optimization of 
machining parameters in turning medium carbon steel by 
uncoated SNMG insert.  

TABLE II 
TEST CUTTING CONDITIONS 

Test cutting conditions [V (m/min), f (mm/rev), d (mm), tc (min) ] 
1 [66, 0.10, 1.5, 0.5] 
2 [66, 0.10, 1.00, 1.0] 
3 [66, 0.10, 1.50, 5] 
4 [258, 0.20, 1.00, 2.0] 
5 [258, 0.20, 1.50, 1.50] 
6 [66, 0.10, 1.00, 8.0] 
7 [66, 0.10, 1.00, 22] 
8 [66, 0.10, 1.50, 24] 
9 [258, 0.20, 1.00, 11] 

10 [258, 0.20, 1.50, 10,] 
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Fig. 8 Experimental vs. ANN prediction (a) average principal flank 
wear, (b) maximum principal flank wear, (c) average auxiliary flank 

wear and (d) surface roughness for 10 testing cases 
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TABLE III 
R2 AND MAPE VALUES BETWEEN THE NETWORK PREDICTIONS AND THE 

EXPERIMENTAL VALUES  
 Training  performance Testing performance 

Hidden 
layer 

1 1 1 1 1 1 

Hidden 
neurons 20 25 30 20 25 30 

VB ( Average principal flank wear) 
R2 0.9998 0.9998 0.9998 0.9643 0.9915 0.9907 
MAPE 0.0029 0.0061 0.0138 2.4635 0.3633 4.7226 
VM (Maximum principal flank wear) 
R2 0.9999 0.9999 0.9999 0.9815 0.9906 0.9855 
MAPE 0.0044 0.0051 0.0036 0.0348 0.3812 3.5843 

VVS (Average auxiliary flank wear) 
R2 0.9994 0.9995 0.9994 0.9528 0.9761 0.9745 
MAPE 0.0118 0.0096 0.0087 2.5265 1.6331 1.9135 

RRa ( Average surface roughness) 
R2  0.9996 0.9996 0.9996 0.8901 0.9627 0.8691 
MAPE 0.0044 0.0037 0.0082 4.3964 4.8069 3.6261 

 
TABLE IV 

SUMMARY OF ANN MODEL 
Object model : Tool wear and surface roughness 
Input neuron : V, f, d, tc 
Output neuron : VB, VM, VS, Ra 
Network structure 
Network type : Feed-forward backpropagation 
Transfer function  : Tansig/ Purelin 
Training function  : Trainlm 
Learning function  : Learngdm                                                     
Learning conditions 
Learning scheme : Supervised learning 
Learning rule : Gradient descent rule 
Input neuron : Four 
Output neuron : Four 
Sample pattern vector : 28 (for training), 10 (for testing)  
Number of hidden layer : 1 (one) 
Neurons in hidden layer : 25 
Learning rate, α  : 0.1 
Momentum constant, β  : 0.5 
Performance goal/Error goal : 0.0001 
Maximum epochs (cycles) set : 10,000 
MSE at the end of training : 9.99642E-05 

 

IV. RESULTS AND DISCUSSIONS 
Artificial neural networks are one of the most widely used 

computer modeling techniques to develop robust approach for 
prediction of tool wear and surface roughness in  machining 
steel for different combinations of material properties, cutting 
tool geometries and cutting conditions. The schematic 
diagram of artificial neural network for the prediction of tool 
wear and surface roughness is shown in Fig. 5. The figure 
reflects the input and output of the network that has been 
developed. The selection of the neuron number, hidden layers, 
activation function and training algorithm play much 
significant roles in obtaining the best result.  In this study, an 
artificial neural network (ANN) with feed-forward back-
propagation algorithm was trained and the training epoch 

(cycles) set for each network is 10,000.  The purpose of the 
training is to minimize the mean squared error (MSE). The 
training performance of the proposed ANN architecture has 
been shown in Fig.6. From Fig.6 it is seen that the network 
error goal is met at 119 epochs. The proposed ANN model is 
shown in Fig. 7. It consists of 25 hidden neurons. The 
performance of the ANN model has been highlighted in Fig. 8 
for four response variables namely average principal flank 
wear (VB), maximum principal flank wear (VM), average 
auxiliary flank wear (VS), and average surface roughness (Ra) 
respectively. As shown in the figures, it is clear that the values 
predicted by ANN are very close to experimental values.   

To find the best network, different training algorithms were 
tested. Transfer functions in the hidden and output layer and 
weight and bias learning function have also been changed and 
tested during design phase of the network. Finally, tangent of 
sigmoid function (‘tansigmoid’) and purely linear function 
(‘purelin’) were used as the transfer function in the hidden and 
output layer respectively. Training of the network was 
performed using Levenberg-Marquardt (LM) feed forward 
back propagation algorithm. The weight or bias learning 
algorithm used here is ‘learngdm’ that is gradient decent with 
momentum. The numbers of neurons in the hidden layer were 
found by trial and error method and finally 25 hidden neurons 
were chosen for the suggested network. The proposed 
network can be represented as 4-25-4. To find the optimal 
network architecture, coefficient of determination (R2) and 
mean absolute percentage of error (MAPE) between the 
network prediction and experimental values were calculated 
for every network for both training and testing phases. The 
coefficient of determination (R2) represents the percent of data 
that is closest to the line of best fit. The value of R2 varies 
between 0 to 1. If correlation coefficient, R=0.922 then 
R2=0.850, which means that 85% of the total variation in 
network prediction can be explained by the linear relationship 
between experimental values and network predicted values. 
The other 15% of the total variation in network prediction 
remains unexplained. The coefficient of determination (R2) 
and mean absolute percentage of error (MAPE) for different 
network topography have been shown in Table III. From 
Table III, it is shown that the value of R2 increases up to 
hidden neuron 25. Then it starts to decrease mainly in terms of 
testing cases. The network architecture consisting of 1 hidden 
layer and 25 hidden neurons shows best values of R2 for both 
training and testing stages of the network. So, the network 
consisting of 25 hidden neurons was selected as the optimum 
one in this research work. The summary of the proposed 
network architecture has been presented in Table IV.   As, the 
input and output vectors were supplied to the network, it was 
a supervised learning scheme. The back-propagation learning 
algorithm with LM versions was used at the training stage of 
the network. Gradient decent learning rule is used in this 
study. The learning rate and momentum constant used here are 
0.1 and 0.5 respectively. The co-efficient of determination 
(R2) obtained corresponding to VB, VM, VS and Ra is 0.9915, 
0.9906, 0.9761 and 0.9627 respectively for testing. Regarding 
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training, these values become 0.9998, 0.9999, 0.9995 and 
0.9996. The MAPEs between the experimental and the 
predicted values are 0.3633% for VB, 0.3812% for VM, 
1.6331% for VS and 4.8069% for Ra. The result shows that, 
the model can be successfully used to forecast tool wear and 
surface roughness in response to the cutting parameters for 
which the model has been constructed.   

V. CONCLUSION 
One of the primary objectives in machining operation is to 

produce product with low cost and high quality. In order to 
achieve such an objective, machining economics can be a 
significant consideration. Machining economics involves the 
optimum selection of machining parameters, e.g. cutting 
speed, feed rate, depth of cut and machining time.  The 
machining parameters directly affect the cost, productivity and 
quality of products. A better predictive model can help as to 
choose the optimum machining parameters before performing 
machining operations. The objective of this work was to 
develop an ANN model to predict tool wear and surface 
roughness while turning medium carbon steel under MQL 
environment.  

An ANN model has been developed for prediction of tool 
wear and surface roughness as a function of cutting 
parameters. The model has been proved to be successful in 
terms of agreement with experimental results. The proposed 
model can be used in optimization of cutting process for 
efficient and economic production by forecasting the tool 
wear and surface roughness in turning operations. 

The multilayer feed forward network consisting of four 
inputs, 25 hidden neurons (tangent sigmoid neurons) and four 
outputs (network architecture represented as 4-25-4) was 
found to be the optimum network for the model developed in 
this study. The back propagation learning algorithm has been 
used in the developed feed forward single hidden layer 
network. A good performance of the neural network has been 
achieved with coefficient of determination (R2) between the 
model prediction and experimental values are 0.9915, 0.9906, 
0.9761, and 0.9627 in terms of VB, VM, VS and Ra 

respectively The MAPE values for those variables are 0.3633, 
0.3812, 1.6331 and 4.8069 respectively. These results show 
that the ANN model can be used easily for prediction of tool 
wear and surface roughness in turning medium carbon steel by 
SNMG insert under minimum quantity lubrication 
environment. After adopting the Artificial Neural Network 
(ANN) model, the MQL system can enable significant 
improvement in productivity, product quality and overall 
machining economy even after covering the additional cost of 
designing and implementing MQL system.  

ANN models have emerged as a new promising method for 
estimating tool wear and surface roughness in an intelligent 
manufacturing system (IMS). These techniques can easily 
capture the complex relationship between various process 
parameters and can be easily integrated into an existing 
manufacturing environment. These techniques has opened up 

new avenues for parameter estimation, optimization and on-
line control of manufacturing system and can assist a lot in 
computer aided process planning (CAPP). 

In this work, input parameters that have been considered to 
develop the ANN model are cutting speed, feed rate, depth of 
cut and machining time. The work can be further extended 
considering more input parameters such as tool-chip interface 
temperature, machine vibration, cutting tool geometry, 
workpiece composition, workpiece hardness etc. Then the 
ANN model to predict tool wear and surface roughness will be 
more robust and universally applicable.  
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