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Abstract—In this paper, a neural network tuned fuzzy controller 
is proposed for controlling Multi-Input Multi-Output (MIMO) 
systems. For the convenience of analysis, the structure of MIMO 
fuzzy controller is divided into single input single-output (SISO) 
controllers for controlling each degree of freedom. Secondly, 
according to the characteristics of the system’s dynamics coupling, an 
appropriate coupling fuzzy controller is incorporated to improve the 
performance. The simulation analysis on a two-level mass–spring 
MIMO vibration system is carried out and results show the 
effectiveness of the proposed fuzzy controller. The performance 
though improved, the computational time and memory used is 
comparatively higher, because it has four fuzzy reasoning blocks and 
number may increase in case of other MIMO system. Then a fuzzy 
neural network is designed from a set of input-output training data to 
reduce the computing burden during implementation. This control 
strategy can not only simplify the implementation problem of fuzzy 
control, but also reduce computational time and consume less 
memory.  

 
Keywords—Fuzzy Control, Neural Network, MIMO System, 

Optimization of Membership functions. 

I.  INTRODUCTION 
HE majority of process industries are nonlinear, Multi-
Input Multi-Output (MIMO) systems. The control of these 

systems is met with a number of difficulties due to process 
interactions, dead time and process nonlinearities. The 
difference between MIMO systems control and single-input 
single-output (SISO) systems control is based on an estimation 
and compensation of the process interaction among each 
degree of freedom. It is obvious that the difficulty of MIMO 
systems control is how to overcome the coupling effects 
among each degree of freedom. To obtain good performance, 
coupling effect cannot be neglected. Hence SISO system 
control scheme is not easy to implement on complicated 
MIMO systems. In addition, the control rules and controller 
computation will grow exponentially with respect to a number 
of considered variables. Therefore, intelligent control strategy 
is gradually drawing attention.  

Fuzzy systems and neural networks-based control 
methodologies have emerged in recent years as a promising 
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way to approach nonlinear control problems [1], [2], [4], [6]. 

Fuzzy and neural control, in particular, has had an impact in 
the control community because of their simplicity and 
feasibility to use heuristic control knowledge for control 
problems.  The integration of fuzzy logic with neural network 
techniques has resulted in what is commonly referred to as 
neuro-fuzzy systems. These systems use fuzzy rules as the 
underlying structure and then apply neural techniques to learn 
the rule parameters, e.g., the input region covered by each rule 
and the output value of each rule. 

Recently, many analysis results and design methodologies 
of fuzzy system and neural network have been reported. Most 
of the reported research however only focused on SISO 
systems [11], [13], [17], [21]-[26]. The MIMO systems 
usually possess characteristics of nonlinear dynamics coupling 
[1]-[6]. Therefore, the difficulty of MIMO systems control is 
how to overcome the coupling effects among each degree of 
freedom [4]. The structure of the MIMO controller can be 
divided into multi-input single output (MISO) and SISO 
controllers. Each MIMO controller then consists of many 
fuzzy logic controllers (FLC). It is clear that the control 
structure of the fuzzy control system is very complicated when 
the input variable is multi-degree and the output variable is 
one degree, or more than one degree. These parameters of a 
fuzzy control system are not easily decided because the fuzzy 
control rules will be grow as a geometric series, and much 
computing time will be required. To minimize the amount of 
memory used and computational time, we can put constraints 
on the type of fuzzy controller (e.g., membership functions) or 
limit the rules. But it will affect the performance of the 
system; hence we need the solution which exhibits good 
performance with smallest possible rule base. In our previous 
research [14], [16], [29]-[32] for the reduction of rules for 
fuzzy controllers we used Fuzzy curve, Fuzzy subtracting 
clustering (FSC), neural networks and neurofuzzy techniques. 
Neurofuzzy learning [30] is one of the fast and effective 
method to generate the suitable initial membership functions 
and shortest rule base from input/output data. Due to the above 
problems, we are motivated to design an effective neural 
network based tuned fuzzy controller for MIMO systems, 
which provides acceptable solution. 

There are two challenging design issues to be addressed in 
designing fuzzy system, viz., structural and parameter 
identification. The structure identification amounts to 
determine the proper number of rules needed i.e. finding how 
many rules are necessary and sufficient to properly model the 
available data and the number of membership functions for 
input and output variables. Parameter learning phase is used to 
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tune the coefficients of each rule, like the shape and positions 
of membership functions. Fast computation speed is attained 
by requiring much less tunable parameters. There is a need for 
effective methods for tuning the membership functions so as 
to minimize the output error measure or maximize 
performance index. For structure identification, different 
researchers [8]-[11], [24]-[26], [28] use different methods to 
extract initial fuzzy rules from given input-output data. 
Clustering techniques [8]-[11], [25], [28] have been 
recognized as a powerful alternative approach to develop 
fuzzy systems. Clustering of numerical data forms the basis of 
many classification and system-modeling algorithms. The 
purpose of clustering is to identify natural grouping of data 
from a large data set to produce a concise representation of a 
system’s behavior. Clustering algorithms typically require the 
user to prespecify the number of cluster centers and their 
initial locations. The preceding discussion shows that different 
researchers have used different clustering algorithms to decide 
the number of rules. A clustering method called subtractive 
clustering forms the basis of the present work. For parameter 
identification, a network is trained by hybrid learning 
algorithm that is the mixture of a back propagation and least 
mean square algorithm. This algorithm iteratively learns the 
parameter of the premise membership functions via back 
propagation and optimizes the parameters of the consequent 
equations via linear least-squares estimation. The authors 
chose hybrid approach because it is much faster and more 
accurate than gradient decent as established in ANFIS by Jang 
in 1993 [17].  

In this paper, a neural network tuned fuzzy controller is 
designed for MIMO systems from the given set of input-
output data. An appropriate coupling tuned fuzzy controller is 
incorporated to control the MIMO systems to compensate for 
the dynamics coupling among each degree of freedom. A 
tuned fuzzy controller is obtained from data set in two steps. 
First, the data set is partitioned into a set of clusters based on 
the similarity of data. Then using subtractive clustering 
algorithm a fuzzy if-then rule is extracted from each cluster to 
form a fuzzy rule base. Secondly, a fuzzy neural network is 
designed accordingly to optimize the parameters of the fuzzy 
system. After simulation of a two-level mass–spring MIMO 
system and comparison of results, it can be seen that the 
computational time and memory is reduced substantially in 
case of tuned fuzzy controller and the performance is also 
identical.   

II.  CONTROLLER STRUCTURE FOR MIMO SYSTEM 
Fuzzy set theory and neural network has been successfully 

applied in a number of control applications [12]-[19], [21], 
[24], [27], [28] based on the SISO system point of view 
without system model consideration. In this paper, the fuzzy 
control strategy is used to control MIMO systems. The block 
diagram of the MIMO fuzzy control scheme is shown in Fig. 
1. The design procedure of the fuzzy control strategy is used 
to control each degree of freedom of this MIMO system 
individually. Then, an appropriate coupling fuzzy controller is 
designed to compensate for the coupling effects of system 

dynamics among each degree of freedom.  
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Fig. 1 Block Diagram of the MIMO fuzzy control scheme 
 

An ordinary fuzzy controller that usually operates with 
system output error and error change was chosen as the main 
controller to control each degree of freedom of the MIMO 
systems. Here, the input variables of the conventional fuzzy 
controller for among each degree of freedom of a MIMO 
system were defined individually as 

)()()( kYkRke iii −=                (1) 

)1()()( −−=Δ kekeke iii                 (2) 

 
where ei(k) is the position error of the ith degree, Δei(k) is 

used for change in error of the ith degree, Ri(k) is the reference 
input of the ith degree and Yi(k) represents the ith position 
output of each degree of freedom of this MIMO system at the 
kth sample. 

The relationship between the scaling factors (SFs) (Ge, GΔe, 
Gu) are the input and output variables of the FLC is  

 

iNuiieiNieiN uGueGeeGe Δ×=ΔΔ×=Δ×= ΔΔ ,,
               (3) 
 

Selection of suitable values for Ge, GΔe and Gu are made 
based on the knowledge about the process to be controlled and 
sometimes through trial and error to achieve the best possible 
control performance. This is so because, unlike conventional 
nonfuzzy controllers to date, there is no well-defined method 
for good setting of SF’s for FLC’s. The SFs are the significant 
parameters of FLC because changing the SFs changes the 
normalized universe of discourse, the domains, and the 
membership functions of input/output variables of FLC.   

All membership functions (MFs) for controller inputs (i.e., 
ei and Δei) and incremental change in controller output (i.e., 
Δui) are defined on the common normalized domain [-1,1]. 
We use symmetric triangles (except the two MFs at the 
extreme ends) with equal base and 50% overlap with 
neighboring MFs as shown in Fig. 2. This is the most natural 
and unbiased choice for MFs. 

By way of the above design process, the actual control input 
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voltage for the main fuzzy controller can be written as 
 

 )()1()( kukuku iii Δ+−=       (4) 

 
In (4), k is the sampling instant and Δui(k) is the 

incremental change in controller output, which is determined 
by the rules of the form If ei is Ei and Δei is ΔEi, then Δui is 
ΔUi. The rule base for computing is a standard one [27] as 
shown in Table I. 
 

NB         NM NS ZE      PS    PM PB1

-1              -0.5                0                0.5              1  
Fig. 2 MFs for ei, Δei and Δui 

 
NB-Negative Big, NM-Negative Medium, NS-Negative Small, ZE-Zero 

Error, PS-Positive Small, PM-Positive Medium, PB-Positive Big 

 
TABLE I 

RULE BASE  
 

The fuzzy control rules of the coupling fuzzy controller are 
similar to the main fuzzy controller. The output of the 
coupling fuzzy controller is chosen directly as the coupling 
control input voltage. The main reason is that there is a 
different coupling effect for each sampling interval and it does 
not have an accumulating feature. The coupling effect is 
incorporated into the main fuzzy controller for each step to 
improve system performance and robustness. 
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Fig. 3 Structure of the MIMO Fuzzy Control Scheme 
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Therefore, the total control input voltage of the MIMO 
fuzzy controller is represented as 

 
likUkukU liii ≠+= → ,)()()(        (5) 

 
where ui(k) expresses the system control input voltage of 

the ith degree of a main fuzzy controller. U(k)l→i represents the 
coupling effect control of the lth degree relative to the ith 

degree of the coupling fuzzy controller. 
 
 

Since the additional coupling fuzzy controller is introduced 
to compensate the unknown coupling effects of MIMO 
systems, the control strategy presented here should be 
employed to control any complicated MIMO systems. 
Therefore, the application of this control strategy is not 
constrained to a specific MIMO control system. In order to 
evaluate the control performance of a fuzzy controller for 
MIMO control systems, a two-level mass–spring MIMO 
system is considered [5]. The vibration system is reproduced 
as 
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where x1 and x3 are the displacements of the main and 

secondary masses M1 and M2, respectively, x2 and x4 are the 
velocities of the mass M1 and M2, respectively, and B1 and B2 
are the damping coefficients of the main system and the 
secondary system, respectively, u1 and u2 are the inputs, Ω is a 

constant, and d1 and d2 are the disturbance forces applied to 
the main and the secondary systems, respectively.  

The state space of the discrete time system form can be 
described as 
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where Y1(k) and Y2(k) are the displacement of the first mass 
and second mass, respectively . The system parameters of state 

space model are listed in Table II. 

 
TABLE II 

PARAMETER VALUES OF THE STATE-SPACE MODEL 

 
1,11a  2,11a  1,12a  2,12a  1,22a  2,22a  1,21a  2,21a  21b  42b  

-1.9665 0.9681 0.0009 -0.0002 -1.9442 0.9453 0.0061 -0.0052 0.0076 0.0051 
 

The structure of the fuzzy control scheme to control this 
MIMO active vibration system is shown in Fig. 3. The input 
variables of the fuzzy controller are defined same as in (4) and 
(5) when indices i=1; 2 represent the main mass and second 
mass, respectively. 

)()1()(
),()1()(

222

111
kukuku

kukuku
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Δ+−=

       (8) 

and the total control input voltage of this plant is represented 
as 
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where u1(k) and u2(k) indicate the voltage increment of the 
first mass and the second mass on the k step sampling interval, 
respectively; u1(k) and u1(k−1) express the system control 
input of the first mass on the k step and k−1 step sampling 
intervals, respectively. Similarly, u2(k) and u2(k−1) are used 
for expressing the system control input of the second mass on 
the k step and k−1 step sampling intervals, respectively. 
U(k)1→2 and U(k)2→1 represent the coupling effect control of 
the first mass relative to the second mass and the second mass 
relative to the first mass of the coupling fuzzy controller, 
respectively. 

III.  DESIGN OF A FUZZY NEURAL NETWORK 
 The neurofuzzy learning scheme is mainly composed of 

two steps. In the first step, the number of rules nodes (hence 
the structure of the network) and initial rule parameters 
(weights) are determined using structure identification; in the 
latter all parameters are adjusted using parameter 
identification as shown in Fig 4. 

Parameter
Identification

Structure
Identification

 Initial

Training Data

Final fuzzy
 Controller

Fuzzy
Controller

Coarse

structure

 
Fig. 4 Steps for Neurofuzzy Learning 
 

To initiate the structure tuning, a training set composed of 
input-output data which contains n inputs and one output must 
be provided. Without loss of generality, we assume that the 
data points have been normalized in each dimension so that 
they are bounded by a unit hypercube. We consider each data 
point as a possible cluster center and define a measure of the 
potential of data point as discussed in [9], [10]. To extract the 
set of initial fuzzy rules, firstly data is separated into groups 
according to their respective classes. Subtractive clustering is 
then applied to the input space of each group of data 
individually for identifying each class of data. Each cluster 
center may be translated into a fuzzy rule for identifying the 
class.  

One can also write this rule in the more familiar form: 
Rule i: If X1 is Ai1 & X2 is Ai2 &... then class is c1. 
where Xj is the j’th input feature and Aij is the membership 

function (Gaussian type) in the i'th rule associated with the j'th 
input feature. 

The membership function Aij is given by 
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where mij is mean and σij is deviation. 

In parameter identification, the neural network techniques 
are used to refine the parameters of the initial fuzzy rules.  A 
neural network with three layers is designed based on the 
fuzzy rules obtained in first phase. To realize the described 
fuzzy inference mechanism, the operation of a neural network 
is shown in Fig 5 and described below: 
 

Layer 1: Units in this layer receives the input value (X1, 
X2,….., Xn) and acts as the fuzzy sets representing the 
corresponding input variable. Nodes in this layer are arranged 
into j groups; each group representing the IF-part of a fuzzy 
rule. Node (i, j) of this layer produces its output )1(

ijO , by 

computing the corresponding Gaussian membership function: 

)()1(
jijij XAO =   (11) 

Layer 2: The number of nodes in this layer is equal to the 
number of fuzzy rules. A node in this layer represents a fuzzy 
rule; for each node, there are n fixed links from the input term 
nodes representing the IF-part of the fuzzy rule. Node )2(

jO  of 

this performs the AND operation by product of all its inputs 
from layer 1. For instance, 

∏=
=

n

i
ijj OO

1

12   (12) 

 
Layer 3: This layer contains only one node whose 

output )3(O  represents the result of centroid defuzzification, 
i.e., 
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Here cj is the class of data as discussed above and it is also 

called the fuzzy singletons defined on output variables. 
Apparently, mij, σij and cj are the parameters that can be tuned 
to improve the performance of the system. After that a hybrid 
learning algorithm which combines gradient descent and least 
square estimator method is used to refine these parameters. 
Each epoch of the hybrid learning procedure is composed of a 
forward pass and backward pass. In the forward pass, input 
data is supplied and functional signals go forward to calculate 
each node output. The consequent parameters are identified by 
least square estimator method. After identifying the 
parameters, the functional signals keep going forward till the 
error measure is calculated. In the backward pass, the error 
rates (derivative of the error measure w.r.t. each node output) 
propagate from the output end towards the input and the 
premise parameters are updated by gradient method. The 
details of Hybrid learning algorithm is given by Jang in [17] 
and we are using the same procedure.   
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Fig. 5 Architecture of Fuzzy neural network 

IV.  SIMULATION RESULTS 
Each fuzzy controller (main and coupling) in Fig.3 uses 49 

rules and 7 membership functions to compute output. Hence, 
the design procedure of this main fuzzy controller and 
coupling fuzzy controller should be simplified to reduce the 
computing burden during implementation using tuned fuzzy 
controller. Next, we investigate the following – Given some 
data describing the output (Δui) as a function of Inputs (i.e., ei 
and Δei), now main aim is to extract a smaller set of rules 
using neurofuzzy learning to do the same. Then, the 
performance of the simple controller (identified system) 
compare with the original one. Now the following steps are 
followed: 

A.  Data Generation  
       To identify the Fuzzy controller, some data is needed, 

i.e., a set of two-dimensional input vectors X={X1, X2,….. Xn} 
and the associated set of one-dimensional output vectors as 
Y={Y1,……. Yn} where X={e1 and Δe1} and Y={u1} is 
required. Here, the training data has been generated from first 
fuzzy controller (with 49 rules) by sampling input variables e1 
and Δe1 uniformly at the step size of 0.1 and computing the 
value of {u1} for each sampled point using Matlab 
programming and fuzzy toolbox of Matlab. The number of 
data points generated is 441.  

B. Rule Extraction and Membership Functions 
        After generating the data, the next step is to estimate 

the initial rules. Then after applying Subtractive Clustering 
algorithm, four clusters (rules) are extracted. The unit step 
response using these four rules is not so close to the identified 
system [14,16]. Hence, there is a need of optimization of these 
rules. Parameter optimization is used for tuning of 
membership functions to minimize the output error measure or 
maximize performance index using neural networks. Hybrid 
learning algorithm is used for training to modify the above 
parameters after obtaining the Fuzzy inference system from 

subtracting clustering. This algorithm iteratively learns the 
parameter of the premise membership functions via back 
propagation and optimizes the parameters of the consequent 
equations via linear least-squares estimation. The training is 
continued until the error measure becomes constant. As the 
value of these parameters change, the Gaussian membership 
function varies accordingly. The membership functions after 
optimization for e are mf1, mf2, mf3 and mf4, and for Δe are 
m1, m2, m3 and m4 shown in Fig 6. Finally the rules are 
written in the form of: Rule i: If e is mfi & Δe is mi then class 
is ci when indices i=1 to 4. The same set of rule base and 
membership functions is used for each fuzzy controller in Fig. 
3. 

 

 

 

Fig. 6 MFs for ei, Δei after optimization 

C.   Results     
         The neurofuzzy learning has been tested on a variety 

of linear and nonlinear processes in case of SISO systems 
[30]. The objective here is to investigate whether the tuned 
fuzzy controller for MIMO system with less number of rules 
and membership functions can provide the same level of 
performance as that of the system with ordinary fuzzy 
controller. To demonstrate the effectiveness of the proposed 
combination, the results are reported for system with 
optimized rule base (system with 4 rules for each controller) 
and ordinary fuzzy controller (system with 49 rules for each 
controller). After reducing the rules the computation become 
fast and it also consumes less memory. The memory is 
calculated using Windows Task Manager and the 
computational time is calculated using the Process Explorer–
Sysinternals software [33]. The result has been shown in Table 
III. 
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TABLE III 
VALUES FOR COMPUTATIONAL TIME AND MEMORY 

 With 4 rules for 
each FLC 

With 49 rules for each 
FLC 

Computational Time 2 sec 97 ms 6 sec 78 ms 
Memory 320 K 1068 K 

 
In case of MIMO controller, the system with 49 rules for 

each controller (196 rules) is denoted by Ordinary FLC and 
system with 4 optimized rules (total 16 rules) is denoted by 
Tuned FLC. Here it is emphasize that tuned MIMO is called 
satisfactory only with respect to its closeness to the ordinary 
MIMO. The level of closeness measured here is on the bases 
of ISE (Integral Square Error) and closeness of response 
characteristics as shown in Fig 7 and 8. The value of ISE 
measured up to 100 sec is 3.7 in case of Ordinary FLC and 3.8 
in case of tuned FLC. 

Response characteristics in both cases (Tuned FLC and 
Ordinary FLC) are very close. Even the values of ISE in both 
cases are also very close.  

 
Fig. 7 Unit Step Response of output 1 (main mass) of MIMO System 

 
The overall performance of the MIMO Fuzzy Controllers 

with 4 rules for each fuzzy controller (total 16 rules) is 
compared with those of 49 rules for each fuzzy controller (196 
rules). 

V.  CONCLUSION 
This paper has described a neural network based tuned 

fuzzy controller for controlling the each degree of freedom of 
MIMO systems. The coupling effect is added into the main 
fuzzy controller for each step to improve system performance. 
A data set generated is partitioned into a set of clusters based 
on subtractive clustering method. A fuzzy IF-then rule is then 
extracted from each cluster to form a fuzzy rule base from 
which a fuzzy neural network is designed. The neural network 
designed in this paper is very simple and contains only three 
layers. A hybrid learning algorithm is used to refine the 
parameters of fuzzy rule base. The advantages of the discussed 
tuned fuzzy controller are that it improves performance, 

decreases complexity, reduces computational time and 
consumes less memory.  Furthermore, the proposed method is 
used to simulate the two-level mass–spring damper and is able 
to reduce 196 rules to 16 rules maintaining almost the same 
level of performance. 

 
Fig. 8 Unit Step Response of output 2 (Secondary mass) of MIMO 

System 
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