
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2962

Abstract—Scheduling algorithms are used in operating systems

to optimize the usage of processors. One of the most efficient
algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ)
algorithm which uses several queues with different quanta. The most
important weakness of this method is the inability to define the
optimized the number of the queues and quantum of each queue. This
weakness has been improved in IMLFQ scheduling algorithm.
Number of the queues and quantum of each queue affect the response
time directly. In this paper, we review the IMLFQ algorithm for
solving these problems and minimizing the response time. In this
algorithm Recurrent Neural Network has been utilized to find both
the number of queues and the optimized quantum of each queue.
Also in order to prevent any probable faults in processes' response
time computation, a new fault tolerant approach has been presented.
In this approach we use combinational software redundancy to
prevent the any probable faults. The experimental results show that
using the IMLFQ algorithm results in better response time in
comparison with other scheduling algorithms also by using fault
tolerant mechanism we improve IMLFQ performance.

Keywords—IMLFQ, Fault Tolerant, Scheduling, Queue,
Recurrent Neural Network.

I. INTRODUCTION
N a multi-task system, several processes are kept in the
main memory and processor is kept active to run a process

while the others are waiting. The key to Multi-Programming is
scheduling. In the MLFQ scheduling, the processes can be
dynamically moved in different queues. So processes that
need a large amount of CPU time are sent to the low priority
queues and process requiring I/O bound or related to
interactive process are sent to high priority queues. The
MLFQ scheduling organizes the queues to minimize the
queuing delay and optimize the queuing environment
efficiency.

In this paper, the combinational fault tolerant scheduling is
presented, which analyzes the existing processes at the main
memory to be executed by the CPU, and performs the time
allocation in such a way that some systematic behavior is
optimized. Here, the scheduler uses the previous behaviors of
processes for suitable prediction of priorities to overcome the
prediction problem of SJF. The scheduler evaluates the

This work was supported in part by the Hashtroud Islamic Azad
University.

MohammadReza EffatParvar is with the Young Researchers Club. Qazvin
Islamic Azad University, Qazvin, Iran (e-mail: m_r_e_p@yahoo.com).

Akbar Bemana is with the Hashtroud Islamic Azad University, Hashtroud,
Azarbayejan Sharghi, Iran (e-mail: a_bemana@iust.ac.ir).

Mehdi EffatParvar is with the Ardebil Islamic Azad University, Ardebil,
Iran (e-mail: mehdi_effatparvar@yahoo.com).

forthcoming IO activity of the processes based on the previous
IO activity, so a change in process behavior results in a
change of forthcoming decisions. The main contribution of
this paper is to optimize the response time of the IMLFQ
scheduling method by using fault tolerant mechanism, and
also it tolerates the probable faults due to the consideration of
the processes with the various servicing time.
 The rest of the paper is organized as follows. In Section 2, a
survey on scheduling methods is presented. In sections 3
IMLFQ scheduling algorithm is described respectively.
Section 4 describes the combinational fault tolerant design.
Section 5 gives some experimental results. Finally Section 6
concludes this work.

II. SURVEY ON SCHEDULING METHODS
There are several scheduling algorithms which assigns

processor to execute processors. There is no scheduling
algorithm that works perfectly in all cases, so for a specific
application we should consider several parameters such as
waiting time, total response time and utilization, in algorithm
selection. For example non-preemptive algorithms like FCFS
and SJF are suitable when a high throughput system is needed
as in batch-processing systems, and preemptive scheduling
like MLFQ and Round Robin (RR) are used to provide
response time and fair dispatching of CPU time as in
interactive systems. The simplest scheduling algorithm that is
used in most of operating systems is FCFS, which is non-
preemptive minimum overhead algorithm. On the other hand,
response time is not favored and no emphasis is put on
throughput, damaging short and IO processes. The main
advantage of this method is that no process starved. This
algorithm is used in several operating systems because of its
simple implementation and low overhead. FCFS is an unfair
algorithm and results in weak average waiting time, while
SRT and HRRN provide good response time and high
overhead. RR is a fair algorithm with weak average waiting
time. Moreover, SJF is an unfair algorithm with the minimum
average waiting time and needs prediction. The SRT
algorithm damages long processes and is liable to starvation,
but because of its prediction, it has better response time in
comparison with other algorithms. It is not always possible to
predict the execution time of processes and there is a
possibility of failure in prediction, so SRT is used
theoretically.

In RR the overhead is low and there is no starvation, and
this leads to a proper the response time. In this algorithm, the
time slice should be selected carefully in such a way that

MohammadReza EffatParvar, Akbar Bemana, and Mehdi EffatParvar

IMLFQ Scheduling Algorithm with
Combinational Fault Tolerant Method

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2963

algorithm presents an objective behavior to have suitable
overhead. Feedback scheduling algorithm works better than
feedback queues in decision making and preemption in a time
period schedules the processes, and consequently MLFQ is an
approximation of SJF. This algorithm makes the I/O bound
processes better without emphasizing on throughput, response
time and possibility of starvation. In this approach, the
number of queues and the time quantum are chosen by default
value. MLFQ is used in interactive and I/O bound systems, the
time slice between the queues is generally %80 for foreground
and %20 for background. The general scheduler in Unix-
based systems is based on MLFQ and some modern operating
systems use MLFQ as well [9]. By taking a small quantum for
layers, the response time of interactive processes is optimized;
on the other hand by taking a larger quantum the throughput
of the system is increased.

Generally in MLFQ scheduling different queues with
different priority are used. Each queue has its own scheduling
algorithm. All processes are selected from the high priority
queues to execute. This method may cause starvation, and
generally the low priority queues should have a higher
quantum. Because of using queues, this algorithm can be
easily implemented to perform the operating systems
scheduling. Since this algorithm is used in many cases, its
response time should be optimized in comparison with other
algorithms.

Some of the problems with MLFQ are the number of
priority levels of queues, finding a suitable scheduling
algorithm for each queue, finding a suitable scheduling
mechanism for each queue, assigning time quantum for each
queue, assigning initial static priorities, adjusting dynamic
priorities, favoring I/O bound processes, differentiating
foreground processes and background processes, and
considering client against server environment [9]. The MLFQ
approach is used in IMLFQ scheduling system in such a way
that the response time is decreased and the functionality of the
system is improved. The optimum number of queue and the
quantum for each queue are found using a fault tolerant
mechanism to achieve these goals. As the proposed
mechanism considers these objectives simultaneously, they do
not have any negative impacts on each others. In IMLFQ
scheduling, the operating system can modify the number of
queues and the quantum of each queue according to the
existing processes.

III. IMLFQ SCHEDULING ALGORITHM
As it was mentioned before, in MLFQ the operating system

builds several separate queues and specifies the quantum for
each queue. Generally in this method, all processes end in the
mentioned queue and move out of system. In these methods,
the number of queue and the quantum size are specified while
the process is running, so the operating system has no role in
controlling the number of queues and amount of each layer’s
quantum.

In IMLFQ, we start with indefinite numbers of queues

initially. An initial value of quantum is used for each queue.
When a queue is being analyzed, its quantum value is defined
by I*q, where q is the initial value of quantum and I is the
number of queues being considered [1]. For defining the
numbers of layer and quantum of each layer is described in
[1]. When the number of required queues and the average
response time are specified based on the initial quantum of
each layer, the quantum of queues should be modified in such
way that the average response time of the processes are
minimized [7].

According to the changes in the quantum of each queue, the
movement of the processes to the lower queues is changed. So
the processing time of the processes in lower layers is changed
and as a result the quantum of lower layers affects the average
response time. The optimized quantum has not been defined
for lower queues and the average response time is related to
the functionality of the whole system. Consequently the
relation of the average response time and the quantum of a
specified queue are not easily formulated.

To find the effect of the quantum changes, a queue should
be selected and its quantum has been changed in such a way
that the minimum number of processes has been moved to the
lower queues [1].

Now, suppose that we have n queues in the default mode.
We begin to change the quantum of layer n, since when the
last queue is selected and its quantum is increased, there is no
other queue to be eliminated. If the quantum of this queue is
reduced a queue will be added. In this case we repeat this
procedure for the newly added layer. After updating the
quantum of the last queue, we continue with the previous
queue, i.e. n-1, and change the quantum of it. The optimized
average response time is specified by changing the queue n-1.

In this step, since there is a queue that is lower than the
queue is being studied, and due to the changes made on the
processes of the last queue after updating n-1, the optimized
quantum of the last queue should be redefine. Generally, when
the optimized quantum of each layer is found, the quantum of
lower levels should be updated. Finally, the best average
response time can be calculated using the optimized quantum
of each layer.

In this step a queue is selected and its quantum is changed
using RNN in a way that reserves the optimization. RNN
gives the most probable model to recognize the trend
information of time series data [2]. The network produces a
trace of its behavior and keeps a memory of its previous states
[5]. The inputs of the RNN are the quantum of queues and the
average response time. Average response time, is fed to the
neural network as an input, so the network finds the relation
of the change of a quantum of a specified queue with the
average response time and the quantum of other queues [6].

A change in the quantum of a specified queue is assumed,
and tries to optimize the average response time. The neural
network can find the quantum of a specified queue using the
optimized quantum of lower queues. So that network finds
both the quantum of the queues and the relation of increase or
decrease of quantum of a queue with average response time

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2964

and tries to reduce the average response time. Network
updates the weights and then changes the quantum of input of
queues and specifies a new quantum for queues. To find the
effects of this change on average response time, the new
amounts of quantum should be given to the IMLFQ function
[4]. The pre-assumed processes are fed to this function and the
average response time is found. Since in the previous stages,
the optimized quantum for lower queues is found, it is
possible that they can not be optimized any more. This
situation can be prevented, when we want to replace the
previous quantum with the new one, we replace the new
amount of the specified queue with the former amounts. After
replacing the new quantum of a specified queue in IMLFQ
function, using pre-assumed default processes used to obtain
the primary response time, the new average response time
caused by this change is found. In this stage, when a change is
applied in the quantum of a specified queue, the number of
queues can be changed. Since it is possible that reducing the
quantum caused more processes are moved to the lower
queues or a new queue is added to the number of required
queues. On the other hand increasing the quantum of a queue
may cause no process is moved to the lower queues and as a
result the lower queues are eliminated. The effect of the
elimination and addition of a queue should be considered in
the network and the new quantum for a specified queue is
recognized. The MLFQ outputs are used to calculate the
average response time. To equalize the entrance arrival time
of these inputs with entrance time of average response time a
delay function is used.

Fig. 1 shows a schematic view of the function to find the
optimized quantum of the queue I, and the way in which the
quantum is fed in RNN and also how to limit the number of
queues. When the new average response time is found, it is
compared with the former one. If it is less than the previous
one, the new value is selected as the input of next stage of the
network to optimize the average response time. If the new
value of the average response time is grated than the previous
one, it means that the optimized average response time has
been found.

It should be guaranteed that the learning phase is finished,
and the calculated quantum is selected as the quantum of the
specified queue. If the quantum of the other queues is
changed, we should find their optimized quantum again. The
pseudo code of the algorithm has been shown below.

IMLFQ algorithm:

1- Produce arrival time and service time for n process

randomly using distribution function.

2- Get average response time, waiting time and maximum

required layer in first stage and set the power quantum for
each layer.

3- For each layer (i=n down to 1) update the value of queue

quantum according to the maximum number of layers and
average response time.

 3.1- Find the optimum value of queue using
 RNN according to other queue quantum
 and the average response time that is found
 in the previous stages.

 3.2- For each layer (j=i+1 to n) repeat the
 step 3.2, consider the changes in other queue
 and update the quantum.

IV. COMBINATIONAL FAULT TOLERANT METHOD
In typical applications that use operating system, fault

detection and fault tolerant techniques can be implemented in
software. There is a substantial redundancy in software part
whereas the hardware redundancy is minimal. Due to the
critical nature of the tasks in a hard real-time system, it is
essential that every admitted task should be completed even in
the presence of faults [9]. Therefore, fault-tolerance is an
important issue in real-time systems. After designing IMLFQ
algorithm we want to create a mechanism to improve this

Fig. 1 Defining optimized quantum for the queue by IMLFQ function

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2965

method during the execution. We’ve found that such
information can help developers to quickly narrow down the
causes of failure [8].

In this system, we mean faults a bad response time in
comparison with the other scheduling algorithm. When there
is an unpredicted process in the system, a fault may appear. So
we designed a fault tolerant mechanism to improve the
processes response time. In almost fault tolerant mechanisms,
the redundancy is needed. Since scheduling techniques are
usually implemented in software, so to provide fault tolerance
we should use software redundancy mechanism [10].

We used software replication method to ease IMLFQ
training, to decrease the overhead and to increase the
performance. Here we can not use software fault term clearly,
because when a fault occurs in the IMLFQ the response time
will be increased and the algorithm will be continued. In this
case to stop the propagation of the faults to other processes,
the neural network should be trained using suitable data. The
simulation results show that when there are various processes'
types with various service times, IMLFQ may not have
suitable response time compared with the other scheduling
algorithm. So a mechanism is needed for fault detection and
the network learning.

Suppose that IMLFQ is used as the task scheduling
algorithm of an operating system. If the scheduled processes
which are scheduled by the system are similar to the ones that
IMLFQ has been learned by, the response time of IMLFQ is
better than other scheduling algorithm. But in practice,
because of wide range in type of processes, IMLFQ doses not
necessarily have better response time. So IMLFQ should be
trained using new type of processes. This method may act like
FCFS or RR methods by adjusting the parameters which
change the number of queues and the quantum of them. When
the fault tolerant mechanism is employed and the first training
phase is completed, the network for the other new comer
processes works better.

The process service time log files are stored in the system
and can be used to compare the average response time.
Response time computation using FCFS and RR method
shows a run time overhead. If the average response time of
FCFS and RR methods, for more than a pre specified percent
of instances, is less than the IMLFQ response time; it means
that the IMLFQ network needs to be trained using new
processes. So we will set the IMLFQ parameters by injection
of stored log files. Now IMLFQ will schedule using the new
quantum and the new number of queues. This fault tolerant
mechanism has minimum software redundancy while the
amount of faults in comparing with FCFS and RR scheduling
algorithms is considerably reduced. By comparison between
IMLFQ and RR we reduce the overhead; it may possible that
response time of FCFS is lower than IMLFQ so we check the
response time with RR and if the IMLFQ response time is
bigger than the FCFS and RR network will be update.

In combinational function we can use any logical function
like AND, OR and etc. Also we can change percentage of
FCFS and RR to compare with IMLFQ. Combinational

function is kind of filter that it cause reduces the noise in
average response time computing, and by do this extra
IMLFQ network update will not be occur.

 Comparison function compares the IMLFQ average
response time with the output of combinational function, that
it is combinational average response time.

The fault tolerant architecture is shown in Fig. 2. The
pseudo code of fault tolerant mechanism is shown below.

Combinational fault tolerant:

1. Find the average response time of new processes entered in
the system using IMLFQ method.

2. Store the log file of processes which processed by IMLFQ
method.

3. Compute the average response time for processes that we
stored their logs in the system, using FCFS and RR
scheduling algorithms.

IMLFQ Average
response time

Log File

Update
Function

C
O
M
P
A
R
E

FCFS Average
response time

Input

RR Average
response time

Combinational
Function

IMLFQ Average
response time

Log File

Update
Function

C
O
M
P
A
R
E

FCFS Average
response timeFCFS Average
response time

Input

RR Average
response timeRR Average
response time

Combinational
Function

Fig. 2 Fault tolerant architecture for IMFLQ algorithm

4. Compute the combinational average response time by FCFS

and RR.

5. Compare the average response time of IMLFQ with
combinational function.

6. If the number of repetition is lower than the pre-defined
value, go to step 1, else go to step 7.

7. If the numbers of detected faults are more than the pre-
specified threshold, update the IMLFQ’s parameters.

V. SIMULATION AND EXPERIMENTAL RESULTS
Since the process arrival time is randomly distributed, we

used discrete event technique simulation. So the system state
has been changed when an event occurred during the
simulation time. At first, we sort the processes by their arrival
time and then find the first process to handle and provide its
service. The process arrival time has a Poisson distribution
with an arrival rate of λ=0.8 and service time has an
Exponential distribution with mean of μ=0.1. The parameters
used in here are the same as those used in Unix-based

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2966

operating systems. The simulation consists of 20000 processes
with an arrival rate of λ=0.8. When the type of the processes is
similar to processes used for IMLFQ training, the IMLFQ
average response time is better than the other scheduling
algorithms [1].

If the processes service time has a wide range, it affects the
network training phase and IMLFQ response time may be
more than the other scheduling algorithms. Simulation
performed on 20000 processes and the average response time
has been calculated for 50 processes at each time. Injected
fault are grouped into 10 groups of 50 faults. Obviously the
IMLFQ performance has a reduction in compare with
combinational function output because of the presence of the
faults.

In this paper we consider 30% as the threshold, which
means that if combinational function output in 30% of
instances is lower than average response time of the IMLFQ,
the network will be started to train again. The experimental
results are shown in Figs. 3 and 4.

VI. CONCLUSION AND FUTURE WORKS
The IMLFQ is aimed to present an intelligent algorithm to

optimize both the average response time and the waiting time.
To do so, the MLFQ has been optimized using RNN and
response time has been optimized by learning the neural
network. When the response and waiting time optimization is
aimed, the IMLFQ shows a good performance, but the
learning time of the network is directly related to the amounts
of input data, so it is possible to encounter an addition of
initial some overflow on the system at the beginning. The
combinational fault tolerance method which we presented in
this paper leads to the IMLFQ improvement in the average
response time. IMLFQ has fault tolerance mechanism so it can
detect a fault and improve the average response time
simultaneously. IMLFQ can be adopted with any scheduling
algorithm using adjustment of its parameters. IMLFQ
algorithm with fault tolerant mechanism can be used in real-
time system; also this approach is a good scheduling algorithm
for interactive systems. We tried to decrease the overhead of
the system, however we have a little overhead to be calculated

0

2

4

6

8

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Number of run

N
um

be
r

of
 fa

ul
t

Befor_Update After_Update Threshold

Fig. 3 Comparing between IMLFQ & combinational function before
and after the parameters update, that each run include 500 processes

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

Number of run

T
ra

in

Update

Fig. 4 RNN training after fault detection, that each run include 500

processes

for interactive systems. We tried to decrease the overhead of
the system, however we have a little overhead to be calculated
and compared with the response time. With more researches it
can avoid starvation in IMLFQ. This algorithm can also be
used on distributed system, in an effective way that the
research in this field is still being continued.

REFERENCES
[1] M. R. EffatParvar, M. EffatParvar, A. T. Haghoghat, R. Mahini, and

M. Zarei, “An Intelligent MLFQ Scheduling Algorithm (IMLFQ),”
Real-Time Computing Systems & Applications (RTCOMP), Jun 2006.

[2] K. U. Herath, and Sh. Hashimoto, “Automated trend diagnosis using
neural networks,” 0-7803-6583- IEEE, 1186-1191, 2000.

[3] C. Molter, U. Salihoglu, and H. Bersini, “Introduction of an hebbian
unsupervised learning algorithm to boost the encoding capacity of
Hopfield networks,” Proceedings of the IJCNN, 2005.

[4] Ma. Sheng, and Ji. Chuanyi, “Fast Training of Recurrent Networks
Based on the EM Algorithm. Transactions on Neural Networks,” IEEE,
Vol. 9, No.1, Jan 1998.

[5] N. K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and
Knowledge Engineering, A Bradford Book The MIT Press Cambridge,
Massachusetts London, England, 1996, Massachusetts Institute of
Technology, 1998.

[6] F. A. Gers, and J. Schmidhuber, “LSTM recurrent networks learn
simple context free and context sensitive languages,” Transactions on
Neural Networks, IEEE, 12(6):1333-1340, 2001.

[7] J. Guynes, “Impact of System Response Time on Stat Anxiety,”
Communications of the ACM, 1988.

[8] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C. Schmidt, and B.
Natarajan, “Skoll: Distributed Continuous Quality Assurance,” Proc,
Int’l Conf, Software Eng, (ICSE), pp. 459- 468, 2004.

[9] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerance through
scheduling of aperiodic tasks in hard real-time mul-tiprocessor
systems,” IEEE Trans, Parallel and Distributed Systems, vol.8, no.3,
pp.272-183, Mar 1997.

[10] G. Manimaran, and C. Siva Ram Murthy, “A fault-tolerant dynamic
scheduling algorithm for multiprocessor real-time systems and its
analysis,” IEEE Trans, Parallel and Distributed Systems, vol.9, no.11,
Nov 1998.

MohammadReza EffatParvar is a student in
department of Electrical, computer and IT engineering
at Qazvin Islamic Azad University, Qazvin, Iran. He is
a member of Young Researchers Club of Islamic Azad
University. He gained the second place in Robocup
2005 world cup in Coach Simulation competition. His
research interests include NP-Complete algorithms,
Data Mining and Artificial Intelligent.

