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On Detour Spectra of Some Graphs
S.K.Ayyaswamy and S.Balachandran

Abstract—The Detour matrix (DD) of a graph has for its ( i , j)
entry the length of the longest path between vertices i and j. The
DD-eigenvalues of a connected graph G are the eigenvalues for its
detour matrix, and they form the DD-spectrum of G. The DD-energy
EDD of the graph G is the sum of the absolute values of its DD-
eigenvalues. Two connected graphs are said to be DD- equienergetic
if they have equal DD-energies. In this paper, the DD- spectra of a
variety of graphs and their DD-energies are calculated.

Keywords—Detour eigenvalue (of a graph), detour spectrum(of a
graph), detour energy(of a graph), detour - equienergetic graphs.

I. INTRODUCTION

Let G be a connected graph with vertex set V (G) =
{v1, v2, ..., vn}. The ordinary graph spectrum is formed by
the eigenvalues of the adjacency matrix[4]. In what follows
we denote the ordinary eigenvalues of the graph G by λi, i
= 1,2, . . . ,n and the respective spectrum by spec(G). The
detour matrix DD = DD(G) of G is defined so that its (i,j) -
entry is equal to the length of longest path between vertices i
and j. The eigenvalues of the DD(G) are said to be the DD-
eigenvalues of G and form the DD-spectrum of G, denoted
by specDD(G). Since the detour matrix is symmetric, all its
eigenvalues μi, i = 1,2, . . . ,n are real and can be labeled
so that μ1 ≥ μ2 ≥ ... ≥ μn. If μi1 ≥ μi2 ≥ ... ≥ μig are
the distinct DD- eigenvalues, then the DD- spectrum can be
written as

specDD(G) =

[
μi1 μi2 . . . μig

m1 m2 . . . mg

]
where mj

indicates the algebraic multiplicity of the eigenvalue μij .
Of course, m1 + m2 + ... + mg = n. Two graphs G and
H for which specDD(G) = specDD(H) are said to be
DD- cospectral. Otherwise, they are non-DD-cospectral. The
DD-energy,EDD, of G is defined as EDD =

∑n
i=1 |μi|.

Two graphs with equal DD-energy are said to be DD-
equienergetic. DD- cospectral graphs are evidently DD-
equienergetic. Therefore, in what follows we focus our
attention on DD- equienergetic non-DD-cospectral graphs.
The concept of detour matrix was introduced in graph
theory by F. Harary[6] for describing the connectivity in
directed graphs. The detour matrix was then extensively
studied in[8,9,10]. In the subsequent section we derive a
Hoffman-type relation for the detour matrices of complete
graphs, complete bipartite graphs and cycles. By means of
it, the detour spectra of some graphs and their energies are
obtained. The following results are used in the subsequent
sections:
Result 1[4]. Let G be a graph with adjacency matrix A
and spec(G) = {λ1, λ2, ..., λn}. Then detA =

∏n
i=1 λi . In

S.K.Ayyaswamy is with Department of Mathematics,Sastra University,
Thanjavur, INDIA. e-mail:sjcayya@yahoo.co.in

S.Balachandran is with Department of Mathematics,Sastra University,
Thanjavur, INDIA. e-mail:bala−maths@rediffmail.com

addition ,for any polynomial P (x), P (λ) is an eigenvalue of
P (x) and hence detP (A) =

∏n
i=1 P (λi).

Result 2[5]. Let A =

[
A0 A1

A1 A0

]
be a 2 × 2 block

symmetric matrix. Then the eigenvalue of A are those of
A0 +A1 together with those of A0 −A1.
Result 3 [4]. Let M, N, P and Q be matrices, and

let M be invertible. Let S =

[
M N
P Q

]
. Then

detS = detMdet(Q − PM−1N). Besides, if M and P
commute, then detS = det(MQ− PN) .

Result 4 ([4])spec(Kn,n) =.

[
n 0 −n
1 2n− 2 1

]
Result 5 ([7]) Let M be a real symmetric irreducible square
matrix of order n in which each row sum is equal to a
constant k. Then there exists a polynomial Q(x) such that
Q(M) = J,where J is the all one square matrix whose order
as that of M.
Result 6 ([7]). Let D be the distance matrix of a connected
distance regular graph G. Then D is irreducible and there
exists a polynomial P(x) such that P(D) = J. In this case
P (x) = p× (x−λ2)(x−λ2)...(x−λg)

(k−λ2)(k−λ3)...(k−λg) where k is the unique sum
of each row which is also the greatest simple eigenvalue of
D, whereas λ2, λ3, ..., λg are the other distinct eigenvalues of
D. In [7], it is shown that the distance spectrum of double
graph of any simple graph,Cartesian product of distance
regular graph G with K2 and lexicographic product of any
simple graph G with K2 depends on the distance spectrum
of G. However for detour spectrum this varies from graphs to
graphs.
Definition 1[7]. Let G be a graph with vertex
setV (G) = {v1, v2, ..., vn}. Take another copy of G with the
vertices labeled by {u1, u2, ..., un} where ui corresponds to
vi for each i. Make ui adjacent to all the vertices in N(vi) in
G, for each i. The resulting graph, denoted by D2G,is called
the double graph of G.
Definition 2[4].Let G be a graph. Attach a pendant vertex to
each vertex of G. The resulting graph, denoted by G ◦ K1 ,
is called the corona of G with K1.
In this paper we first derive a detour matrices of complete
graphs and complete bipartite graphs. By means of it the
detour spectra of complete graph and complete bipartite are
obtained. The largest eigenvalue of cycle of length n is also
obtained. All graphs considered in this paper are simple and
we follow[2,4] for other graph theoretic terminologies.

II. DETOUR SPECTRUM OF SOME GRAPHS

Theorem 2.1. If G is the complete graph of order n, then
the detour energy of G is EDD(G) = 2(n− 1)2.
Proof. As the detour distance between any two disjoint ver-
tices is n − 1,it follows that DD(G)=(n-1)(J-I), where J is
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the all one square matrix whose order is same as that of
the detour matrix of G. Hence the DD- spectrum of G is[

(n− 1)2 −(n− 1)
1 n− 1

]
and consequently EDD(G) = 2(n− 1)2.

Theorem 2.2.

SpecDD(Kn,n) =
[

4n2 − 5n+ 2 −(2n− 1) C
1 2n− 2 1

]
where

C = −(3n− 2)
Proof. The Theorem follows from the fact that DD(Kn,n) =
(2n - 2) (J -I) +A, where A is the adjacency matrix of Kn,n

and from Result 4.
Corollary 2.3.EDD(Kn,n) = 8n2 − 10n+ 4.
Theorem 2.4. If G is a cycle of length n, then the largest
eigenvalue of detour matrix of Cn is 3n2−4n+1

4 if n is odd and
3n2−4n

4 if n is even.
Proof. Let n be odd, the entries in the first row are 0, (n−

1), (n − 2), ..., n+1
2 , n+1

2 , n+1
2 + 1, ..., (n − 2), (n − 1)whose

sum is 2
(

n+1
2 + n+1

2 + 1 + ...+ (n− 2) + (n− 1)
)

which is
equal to 3n2−4n+1

4 . Let n be even, The entries in the first row
are 0, (n − 1), (n − 2), ..., n

2 + 1, n
2 ,

n
2 + 1, ..., (n − 2), (n −

1) whose sum is 3n2−4n
4 . All other entries of other rows are

formed cyclically, and hence the result.

III. THE DETOUR SPECTRUM OF DOUBLE GRAPH OF SOME

GRAPHS

Theorem 3.1. If G is the complete graph of order n with
detour spectrum specDD(G) = {μ1 = k, μ2, ..., μn}then
specDD(DD2(G)) =[

4n2 − 4n+ 1 −(2n− 1) −(2n− 1)
1 n− 1 n

]

Proof. The detour matrix DD2(G) of is of the form[
DD + n(J − I) DD + nJ + (n− 1)I

DD + nJ + (n− 1)I DD + n(J − I)

]

Using Result 2,we get specDD(DD2(G)) =[
2(k + n2) − 1 2μi − 1 −(2n− 1)

1 1 n

]
, i = 2, ..., n

and the theorem follows from Theorem 2.1.
Corollary 3.2. EDD(D2(Kn)) = 2(4n2 − 4n+ 1).
Theorem 3.3. If G is Kn,n with detour spec-
trum specDD(G) = {μ1 = k, μ2, ..., μ2n},then
specDD(DD2(G)) =[

2(8n2 − 5n+ 1) −2(3n− 1) −(2n− 1)
1 1 4n− 2

]

Proof. The detour matrix of DD2(G) is of the form[
DD + 2n(J − I) DD + 2nJ + (2n− 2)I

DD + 2nJ + (2n− 2)I DD + 2n(J − I)

]

Using Result 2,
we get specDD(DD2(G)) =[

2(k + 4n2 − 1) 2(μi − 1) −2(2n− 1)
1 1 2n

]
, i = 2, ..., 2n

The theorem now follows from Theorem 2.2.

Corollary 3.4. EDD(D2(Kn,n)) = 8n2 − 10n+ 4.
Theorem 3.5. If G is a cycle of length n with detour
spectrum specDD(G) = {μ1 = k, μ2, ..., μn},then
specDD(DD2(G)) =[

2(k + n2 − 1) 2μi − 2 −2(n− 1)
1 1 n

]
, i = 2, ..., n.

Proof.The Theorem follows from the fact that
the detour matrix of DD2(G) has of the form[

DD + n(J − I) DD + nJ + (n− 2)I
DD + nJ + (n− 2)I DD + n(J − I)

]
and from Result 2.

IV. THE DETOUR SPECTRUM OF THE CORONA OF G AND

K1

Theorem 4.1. Let G be a connected detour regu-
lar graph with detour regularity k. If specDD(G) =
{μ1 = k, μ2, ..., μn},then specDD(G ◦ K1) consists of num-
bers n + k − 1 +

√
(n+ k)2 + (n− 1)2,n + k − 1 −√

(n+ k)2 + (n− 1)2, μi − 1+
√
μ2

i + 1,μi − 1−√
μ2

i + 1,
i = 2,3,...,n .
Proof. In the corona G ◦ K1, we observe that new pendent
vertices do not contribute any additional length in finding
either the shortest path (or) the longest path of any two vertices
G◦K1. Hence the detour matrix of the corona G◦K1is same
as its distance matrix. Hence we get the required result from
[7].

V. THE DETOUR SPECTRUM OF CARTESIAN PRODUCT OF

SOME GRAPHS WITH K2

Theorem 5.1. If G is the complete graph of order n with
detour spectrum specDD(G) = {μ1 = k, μ2, ..., μn},then
specDD(G×K2) =[

4n2 − 4n+ 1 −(2n− 1) −(2n− 1)
1 n− 1 n

]

Proof.The detour matrix of G × K2 is of the

form

[
DD + n(J − I) DD + nJ + (n− 1)I

DD + nJ + (n− 1)I DD + n(J − I)

]
Applying Result 2, we get specDD(G × K2) =[

2(k + n2) − 1 2μi − 1 −(2n− 1)
1 1 n

]
, i = 2, ..., n

and applying Theorem 2.1, we get the result.
Corollary 5.2. EDD(G×K2) = (8n2 − 8n+ 2).
Theorem 5.3. If G is Kn,n with detour spec-
trum specDD(G) = {μ1 = k, μ2, ..., μ2n}, then
specDD(G×K2) =[

2(8n2 − 5n+ 1) −2(3n− 1) −2(2n− 1)
1 1 4n− 2

]

Proof. The detour matrix of G × K2 is of the

form

[
DD + 2n(J − I) DD + 2nJ + (2n− 2)I

DD + 2nJ + (2n− 2)I DD + 2n(J − I)

]
and

by Result 2, specDD(G×K2) =[
2(k + 4n2 − 1) 2(μi − 1) −2(n− 1)

1 1 2n

]
, i = 2, ..., 2n.

The theorem is then immediate from Theorem 2.2.
Corollary 5.4. EDD(G × K2) = 8n2 − 10n + 4).
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Theorem 5.5. If G is the cycle of length n with
detour spectrum {μ1 = r1, μ2, ..., μn} and ordinary
spectrum

{
λ1 = r11, λ2, ..., λn

}
,then specDD(Cn × K2) =[

2r1 + (2n+ 1)n− 2 − 2r11 2μi − 2 − 2λi A B
1 1 1 1

]
where A = 2 − 3n + 2r11 and B = 2(1 − n) + 2λi,
i = 2, 3, ..., n.
Proof.The Theorem follows from the fact that the
detour matrix of DD(Cn × K2) has of the form[

DD + n(J − I) DD + (n− 1)J + nI + 2A
DD + (n− 1)J + nI + 2A DD + n(J − I)

]
where A = J − I −A and from Result 2.

VI. THE DETOUR SPECTRUM OF LEXICOGRAPHIC

PRODUCT OF SOME GRAPHS WITH K2

Theorem 6.1. If G is the complete graph of order n with
detour spectrum specDD(G) = {μ1 = k, μ2, ..., μn} then
specDD(G[K2]) =[

4n2 − 4n+ 1 −(2n− 1) −(2n− 1)
1 n− 1 n

]

Proof.The detour matrix of G[K2] is of the

form

[
DD + n(J − I) DD + nJ + (n− 1)I

DD + nJ + (n− 1)I DD + n(J − I)

]
Using Result 2, we get specDD(G[K2]) =[

2(k + n2) − 1 2μi − 1 −(2n− 1)
1 1 n

]
, i = 2, ..., n

The theorem follows from Theorem 2.1.
Corollary 6.2.EDD(G[K2]) = (8n2 − 8n+ 2).
Theorem 6.3. If G is Kn,n with detour spectrum
specDD(G) = {μ1 = k, μ2, ..., μ2n}, then specDD(G[K2]) =[

16n2 − 8n+ 1 −(4n− 1)
1 4n− 1

]
Proof. Since the detour matrix of G[K2] is same as the detour
matrix of K4n, the spectrum of G[K2] is same as spectrum
of K4n. Now the theorem follows from Theorem 2.1.
Corollary 6.4. EDD(G[K2]) = 32n2 − 16n+ 2.
Theorem 6.5. If G is a cycle of length n with detour spectrum
specDD(G) = {μ1 = k, μ2, ..., μn} then specDD(G[K2]) =[

4n2 − 4n+ 1 −(2n− 1)
1 4n− 1

]
Proof. Since the detour matrix of G[K2]is same as the detour
matrix of K2n, the spectrum of G[K2]is same as spectrum of
K2n. Now the theorem follows from Theorem 2.1.
Corollary 6.6. EDD(G[K2]) = 8n2 − 8n+ 2.

VII. THE EXTENDED DOUBLE COVER OF REGULAR

GRAPHS

In [1], N. Alon introduced the concept of extended double
cover graph of a graph as follows: Let G be a graph on the
vertex set{v1, v2, ..., vn}. Define a bipartite graph H with
V (H) = {v1, v2, ..., vn, u1, u2, ..., un}in which viis adjacent
to ui for each i = 1, 2, ..., n and vi is adjacent to vj in G.
The graph H is known as the extended double cover graph
(EDC - graph) of G. The ordinary spectrum of H has been

determined in [3] and the distance spectrum of EDC of a
regular graph of diameter 2 has been determined in [7]. In
this section we obtain the detour spectrum of the EDC -
graph of a r- regular graph on n vertices.
Theorem 7.1. Let G be a r- regular graph on n vertices.
Then the DD- spectrum of the EDC- graph of G is given by[

4n2 − 5n+ 2 2 − 3n 2 − 2n
1 1 2n− 2

]

Proof. For any regular graph G with vertices {v1, v2, ..., vn}
and {u1, u2, ..., un} the new vertices to form the extended
double cover H, the detour path from vi to uj is
2n − 1 and the detour path from vi to vj or ui to uj

is 2n − 2 for all i and j. This shows that DD(H) =[
(2n− 2)(J − I) (2n− 1)J

(2n− 1)J (2n− 2)(J − I)

]
. Using Result 2 we

get the required result.
Remark 1. In their paper [7], Indulal et al have shown
that the D- spectrum of the EDC- graph of any r - regular
graph G of diameter 2 depends on r and the spectrum of
G. However, this is not the case for detour spectrum of
such graphs. Surprisingly the detour spectrum of EDC-
graphs of any r- regular graph are free of r and the DD-
spectrum of the original graph. For example, the detour
spectrum of EDC- graphs of Cn , Kn and circulant graphs

are

[
4n2 − 5n+ 2 2 − 3n 2 − 2n

1 1 2n− 2

]
,whereas for detour

spectrum of EDC(Cn∇Cn)is DD(EDC(Cn∇Cn)) =[
8n2 − 2n 0 2(4n2 − 5n+ 1) −(8n− 2)

1 2n− 1 1 2n− 1

]
,

since DD(EDC(Cn∇Cn)) =[
(4n− 1)(J − I) (4n− 1)J

(4n− 1)J (4n− 1)(J − I)

]
Corollary 7.2. EDD(EDC(Cn∇Cn)) = 24n2 − 14n + 2, in
particular, EDD(EDC(C3∇C3)) = 176.
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