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Abstract—A new distance-adjusted approach is proposed in 

which static square contours are defined around an estimated 

symbol in a QAM constellation, which create regions that 

correspond to fixed step sizes and weighting factors. As a 

result, the equalizer tap adjustment consists of a linearly 

weighted sum of adaptation criteria that is scaled by a variable 

step size. This approach is the basis of two new algorithms: the 

Variable step size Square Contour Algorithm (VSCA) and the 

Variable step size Square Contour Decision-Directed 

Algorithm (VSDA). The proposed schemes are compared with 

existing blind equalization algorithms in the SCA family in 

terms of convergence speed, constellation eye opening and 

residual ISI suppression. Simulation results for 64-QAM 

signaling over empirically derived microwave radio channels 

confirm the efficacy of the proposed algorithms. An RTL 

implementation of the blind adaptive equalizer based on the 

proposed schemes is presented and the system is configured to 

operate in VSCA error signal mode, for square QAM signals 

up to 64-QAM.  

 

Keywords—Adaptive filtering, Blind Equalization, Square 

Contour Algorithm.  

I. INTRODUCTION 

odern communication systems employ Bandwidth 

efficient techniques such as Quadrature Amplitude 

Modulation (QAM), in which both phase and amplitude of the 

sinusoidal signal are varied to transmit digital information. 

Since the signals are prone to distortion attributed to inter- 

symbol interference (ISI) caused by multipath within time-

dispersive channels. In order to mitigate the effects of ISI, 

adaptive equalization is one of the most widely used methods. 

Adaptive equalization can be implemented in several modes. If 

the methods applied to achieve channel equalization do not 

include transmission of training sequence, it is referred to as 

blind equalization. Many excellent tutorials exist on the 

subject of both trained [3, 4] and blind equalization [5, 6]. 
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The most early and widely used algorithm was the constant 

modulus algorithm (CMA), proposed independently by 

Goddard [1] and Treichler et al. [2]. The success of CMA was 

mainly due to its simple implementation structure, like the 

least mean square (LMS). But, the CMA is only amplitude 

dependent and lacks the phase information in cost function 

thus we need to incorporate a separate phase tracking loop at 

the output of the equalizer to recover and correct phase offset. 

Major modification to CMA was the multimodulus algorithm 

[7, 8] proposed by Yang et al., achieving lower steady-state 

mean-squared error (MSE) and eliminating the need for 

separate phase tracking loop. The square contour algorithm 

(SCA) combined the benefits of Reduced Constellation 

Algorithm (RCA) [9] and CMA, proposed by Thaiupathump 

and Kassam [10]. This algorithm has a phase tracking loop 

embedded in its cost function and it achieves lower steady-

state MSE as compared to its parent algorithms. Hybrid Blind 

Equalization Algorithms is another class of algorithms which 

augments the existing cost functions to enhance performance. 

Modification to SCA called the modified SCA (MSCA) was 

proposed in [11]. It augments the SCA and constellation 

matched error (CME) in its cost function. The MSCA achieved 

faster convergence rate and lower steady-state MSE as 

compared to SCA.  

 

Motivated by the radius-adjusted approach [12] by Kevin 

Banovic, two new algorithms: the Variable step size Square 

Contour Algorithm (VSCA) and the Variable step size Square 

Contour Decision-Directed Algorithm (VSDA) are proposed. 

The proposed blind equalization algorithms achieve faster 

convergence rate and lower steady-state MSE when compared 

with existing SCA and MSCA. The rest of the paper is 

organized as follows; Section 2 discusses the generalized 

equalizer model, the square contour algorithm and the 

modified square contour algorithm. In section 3 proposed 

blind equalization algorithms are discussed. Selection of 

region parameters which correspond to varying step-sizes is 

discussed in section 4. Simulation results are given in section 

5. Section 6 delineates the fixed-point and RTL simulation 

results. Finally, conclusions are made in section 7. 

II. EQUALIZER MODEL 

Consider the baseband representation for digital data 

transmission in Fig (1), where ( )s n are the independently 

identically distributed (i.i.d.) transmitted symbols, ( )v n is the 

additive white Gaussian noise (AWGN), ( )x n are the 
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equalizer inputs and ( )a n are the estimated outputs of the 

decision device. The equalizer’s �-tap weight vector and input  

vector are defined as 
0 1 1

( ) [ ( ), ( ),...., ( )]T

�W n w n w n w n−= and 

( ) [ ( ), ( 1),...., ( 1)]X n x n x n x n �= − − + , respectively. Whereas 

( ) ( ) ( )
T

y n W n X n=  is the equalizer output, ( )h n is the impulse  

 

Fig. 1. Simplified baseband communication system 

 

response of channel. The objective is to achieve an estimate 

of ( )s n using ( )y n without using a training sequence.  

 

A. Square Contour Algorithm (SCA) 

The SCA proposed by Thaiupathump and Kassam [10] 

minimizes the dispersion of the equalizer output around a 

square. By using a square zero-error contour, this algorithm 

combines the reliable convergence benefits of Constant 

Modulus Algorithm (CMA) [2] and the phase recovery feature 

of the Reduced Constellation Algorithm (RCA) [9]. The cost 

function of the square contour algorithm is given as 

2
, , , ,{((| | | |) ) }p p

SCA R n I n R n I n scaJ E y y y y R= + + − −             (1) 

For the case , the cost function then becomes 

2
, , , ,{(| | | | ) }SCA R n I n R n I n scaJ E y y y y R= + + − −                   (2) 

Where scaR is a real dispersion constant and is calculated 

assuming the perfect equalization i.e. ( ) ( )y n s n=  and by 

setting the gradient w SCAJ∇ to zero [10]: 

, , , ,[(| | | |). ']

[ ']

R n I n R n I n
SCA

E s s s s R
R

E R

+ + −
=                            (3) 

Where 

' {sgn[ ( ) ( )] sgn[ ( ) ( )]

(sgn[ ( ) ( )] sgn[ ( ) ( )])}. *( )

R I R I

R I R I

R s n s n s n s n

j s n s n s n s n s n

= + + −

− + − −
  

 

The tap update equation is obtained by differentiating the cost 

function in (2) with respect to the tap weights  and 

approximating the expectation with the instantaneous value 

yields 

( 1) ( ) . *( )SCAw n w n e x nµ+ = −                                           (4) 

 

where SCAe is the SCA error term defined as [11]: 

 

    

(| ( ) ( ) | | ( ) ( ) | ).

{sgn[ ( ) ( )] | sgn[ ( ) ( )]

(sgn[ ( ) ( )] sgn[ ( ) ( )])}

SCA R I R I SCA

R I R I

R I R I

e y n y n y n y n R

y n y n y n y n

j y n y n y n y n

= + + − −

+ + −

+ + − −          (5) 

The simulation results in [10] shows that the performance of 

SCA is better than its parent algorithms i.e. RCA and CMA for 

16-QAM signal constellation. Moreover, like RCA and MMA, 

SCA is capable of recovering and correcting the phase offset 

due to square modulus, but the performance of MMA is 

superior to SCA in terms of convergence speed and 

constellation eye-opening. In order increase the convergence 

speed and other performance criterions, particularly the ISI 

suppression and constellation eye-opening, Thaiupathump et 

al. [11] proposed a modified version of SCA called Modified 

SCA (MSCA).  

 

B. Modified Square Contour Algorithm (MSCA) 

The modification to SCA called the Modified SCA 

(MSCA) was proposed by Thaiupathump et al. [11]. MSCA 

augments the SCA error function and Constellation Matched 

Error (CME) term. The CME term is designed to become zero 

at each constellation point, hence providing MSCA with an 

additional knowledge of constellation points allowing for 

greater reduction of MSE and convergence time. The MSCA 

cost function is defined as [11]: 

  

( )( )2{ | ( ) ( ) | | ( ) ( ) |

{ ( ( ))}}

MSCA R I R I scaJ E y n y n y n y n R

g y nβ

= + + − −

+
      (6) 

 

where β � is the CME weighting factor and ( ( ))g y n is the 

sinusoidal CME term defined as [11]: 

 

2 2( ) ( )
( ( )) 1 sin 1 sin

2 2

n nR Iy n y n
g y n

d d
π π

       
= − + −               

�(7) 

 

Here 2d is the minimum distance between QAM symbols. The 

MSCA error function is then given as [11]: 

 

                 
( ) ( ) ( )MSCA SCAe n e n nβη= +

            
                     (8) 

 

where (n)η is defined as [11]: 

 

( ) ( )( ) ( ) | ( ) |
R I

R I

x y n x y n

d d
n g x j g x

dx dx
η η

η = == +
1442443 1442443

                          (9) 

 

At the onset of equalization the convergence of MSCA is 

controlled by SCA error term, as                                                                      

CME doesn’t provide the correct error information initially 

[11]. The β factor plays an important role in increasing or 

decreasing the convergence time of MSCA. It can be 

approximated using the bounds [11]: 
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( )2 2
max| ( ) | max 4 | | 4 | |R R sca

a alphabet
n s s Rβ η

∈
< −                      (10) 

 

III. DISTANCE ADJUSTED APPROACH 

Motivated by the radius adjusted approach [12], this 

section presents two new hybrid blind equalization algorithms 

based on a new variable step-size distance-adjusted approach. 

Static square contours are define around an estimated symbol 

point in QAM constellation, in this way regions are created 

that can be mapped to variable adaptation phases. A region 

corresponds to a fixed step-size ( )nµ , and weighting factor 

( )nλ , that can be used to create a time-varying equalizer tap 

update base on the equalizer output distance, ( )d n , which is 

defined as 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

2

( ) ( ) ( ) ( )

2

R R I I

R R I I

s n y n s n y n
d n

s n y n s n y n

− + −
=

− − −
+

                        (11) 

where ( )d n is the maximum distance between the equalizer 

output, ( )y n , and its corresponding  symbol estimate, 

( ) ( )R Is n js n+ .  The equalizer tap update consists of a linearly 

weighted sum of adaptation criteria that is scaled by a variable 

step size. The above equation can simply be written as: 

 

( ) max[| ( ) ( ) |,| ( ) ( ) |]R R R Id n s n y n s n y n= − −
          

       (12) 
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The general concept behind distance-adjusted approach is 

illustrated for 16-QAM in Fig 2. The equalizer output of fig 

2(a) corresponds to ( )d n of fig 2(b), where sample square 

decision regions are superimposed over the original square 

decision region. Here, the outer regions of fig 2(b) correspond 

to adaptation phases with high MSE, while the inner regions 

correspond adaptation phases with low MSE. To improve the 

accuracy of the equalizer tap adjustment, regions are grouped 

into adaptation phases and then parameters ( )nµ and ( )nλ are 
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           (b) 

Fig. 2.  (a) Decision regions for symbol estimates in 16-QAM 

and (b) square decision regions centered on symbol estimate. 

 

adjusted based on the characteristics of that phase. The 

convergence time can be reduced by applying large ( )nµ in the 

outer region, thereby speeding up the initial convergence, 

while residual errors can be reduced by applying small ( )nµ in 

the inner regions. Smooth transition between the error 

functions in hybrid approach is made by selecting a suitable 

value of ( )nλ , where [ ]( ) 0,1nλ ∈ .  

IV. VARIABLE STEP-SIZE SQUARE CONTOUR ALGORITHM 

(VSCA) 

The distance-adjusted variable step-size square contour 

algorithm (VSCA) augments the SCA cost function in (2) with 

a CME term and linearly weighs the respective terms based on 

the distance-adjusted approach. The sole objective is to 

decrease the convergence time, while obtaining low steady-

state MSE and residual errors. The cost function that is 

minimized by VSCA is defined as 

 

( )( ) { }

2( ) {((| ( ) ( ) | | ( ) ( ) |) ) }

1 ( ( )) (13)

p p
VSCA R I R I scaJ n E y n y n y n y n R

n E g y n

λ

λ β

= + + − −

+ −

  

where p is a positive integer, β is a weighting factor that 

trades off between the amplitude and constellation matched 

errors and ( ( ))g y n is the CME function, defined previously in 

(7). A stochastic gradient-descent algorithm that minimizes the 

VSCAJ is defined as,  

( )( 1) ( ) w VSCAw n w n Jµ+ = + −∇    

1

( ) ( ){ ( ){((| ( ) ( ) | | ( ) ( ) |) )

.(| ( ) ( ) | | ( ) ( ) |) {sgn[ ( ) ( )]

| sgn[ ( ) ( )] (sgn[ ( ) ( )] sgn[ ( ) ( )])}}

{(1 ( )) ( ( ))}}. *( )

( ) ( ) (

pp
R I R I SCA

p
R I R I R I

R I R I R I

w n n n y n y n y n y n R

y n y n y n y n y n y n

y n y n j y n y n y n y n

n n x n

w n n n

µ λ

λ β η

µ λ

−

= − + + − −

+ + − × +

+ − + + − −

+ −

= − { }) (1 ( )) ( ) . *( ) (14)

VSCA

SCA

e

e n n x nλ βη+ −
1444442444443
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Where ( ) ( ) ( )R In n nη η η= + is CME error signal and vscae is 

VSCA error signal, which is reduced to SCA error signal when 

( ) 1nλ = and to the CME error when ( ) 0nλ = . The CME 

function is obtained by taking the negative gradient of the 

CME function with respect to the equalizer tap coefficients 

and is given as in (9) and β is calculated using (10). During 

the initial stages of equalization, SCA algorithm with a large 

step-size is applied, thereby quickly decreasing the MSE. This 

allows the CME term to be included at an earlier stage blended 

with SCA error. The CME error is able to rapidly decrease the 

convergence time and MSE since it contains the knowledge 

about constellation points. Once the MSE has been reduced to 

the lower levels, CME updates with a small step-size are 

applied to the equalizer most of the time, thereby reducing the 

steady-state MSE and misadjustment. The use of fixed 

decision regions in VSCA serves a similar purpose as the 

weighting factor in MSCA. This would suggest that the 

distance-adjusted approach could replace the weighting factor 

in MSCA to achieve similar results with less complexity.  

 

V. VARIABLE STEP-SIZE SQUARE CONTOUR DD ALGORITHM 

(VSDA) 

 The distance-adjusted variable step-size square contour 

decision-directed (VSDA) combines the SCA and DD cost 

functions respectively, and linearly weighs the respective terms 

based on the distance-adjusted approach. Again, the objective 

is to obtain reliable and automatic transfer to the DD mode, 

while decreasing the convergence time and obtaining low 

steady-state MSE and misadjustment. The cost function that is 

minimized by VSDA is defined as  

( )( )

2

2

( ) {((| ( ) ( ) | | ( ) ( ) |) ) }

1
1 { ( ) ( ( )) } (15)

2

p p
VSDA R I R I scan E y n y n y n y n R

n E s n y n

J λ

λ

= + + − −

+ − −$

 

where p is a positive constant chosen to be ‘2’, since it 

provides best compromise between performance and 

implementation complexity and ( ) ( ) ( )R Is n s n js n= +$  denote 

the real and imaginary component of an estimated 

constellation point output from the slicer. A gradient-descent 

equalizer update algorithm that minimizes VSDAJ is defined as 

( )( 1) ( ) w VSDAw n w n Jµ+ = + −∇                                                                                                  

1

( ) ( ){ ( ){((| ( ) ( ) | | ( ) ( ) |) )

.(| ( ) ( ) | | ( ) ( ) |) {sgn[ ( ) ( )]

| sgn[ ( ) ( )] (sgn[ ( ) ( )] sgn[ ( ) ( )])}}

{(1 ( )) ( ( ) ( ))}}. *( )

pp
R I R I SCA

p
R I R I R I

R I R I R I

w n n n y n y n y n y n R

y n y n y n y n y n y n

y n y n j y n y n y n y n

n s n y n x n

µ λ

λ β

−

= − + + − −

+ + − × + +

− + + − −

+ − −$

 

Similar to the VSCA, the equalizer taps of VSDA will initially 

be updated using a large step size most of the time, quickly 

reducing the MSE. Now, this allows the DD error to be 

included at an earlier stage combined with SCA error. Once 

the MSE has been reduced to the desired low levels, DD 

updates the tap weights afterwards. 

VI. SELECTION OF REGION PARAMETERS 

A simulation study was performed to relate the distance to 

different MSE intervals. This was accomplished to justify the 

mapping of adaptation regions to the square regions around an 

estimated symbol point. The SCA will small step size was 

applied to SPIB microwave channels # 1, 2, 5, 6, 9, 10, 12 and 

13 [located at http://spib.rice.edu], and the mean and standard 

deviation for ( )d n was calculated for 50 realizations each of 

16-QAM and 64-QAM per channel respectively. The results, 

which have been averaged over all channels and normalized 

with respect to / 2d are listed in table 1. 

 

 16-QAM 64-QAM 

MSE Range 

(dB) 

Mean S.D. Mean S.D. 

(-5, -7.5) 

(-7.5,-10) 

(-10,-12.5) 

(-12.5,-15) 

(-15,-17.5) 

(-17.5,-20) 

(-20,-22.5) 

(-22.5,-25) 

1.5290 

1.2383 

0.7919 

0.6259 

0.5175 

0.3804 

0.2484   

0.1728 

1.0369 

0.7982 

0.3779 

0.2559 

0.2222 

0.1818 

0.1258   

0.0897 

2.7464   

2.1576   

1.6824   

1.3355   

0.7969   

0.6446   

0.5283   

0.3692 

2.4453    

2.0270    

1.5420    

1.1481    

0.4914    

0.2701    

0.2401    

0.1924 

Table 1: Statistical properties of ( )d n as a function of MSE 

Range 

 

It can be seen that the outer regions of fig 2(b) can be mapped 

to adaptation phases with high MSE, while inner regions can 

be mapped to adaptation phases with low MSE. At high values 

of MSE these statistics vary from channel to channel. 

However, simulation studies have shown that as the MSE 

approaches the minimum required to transfer to the DD 

algorithm, denoted by DDξ , the statistics are independent of 

channel, SNR and algorithm. When the MSE is above DDξ , 

( )y n is inaccurate and therefore ( )s n$ is unreliable, which leads 

to high mean and standard deviation of ( )d n . However, when 

the MSE is below DDξ , the accuracy of ( )y n  is improved and 

the reliability of ( )s n$ is within that required for the 

convergence of DD algorithm. In this mode of operation 

( )d n approximates the MSE, which is equivalent to the 

expected value of maximum distance from symbol point across 

the slicer. This essentially makes ( )d n a function of MSE, 

which is dependent upon the constellation.  

The mean and standard deviation of ( )d n are plotted in 

figure 3 for 16-QAM and 64-QAM respectively using the 

statistics given in table 1. These figures can be used to obtain 

relative performance measures by extracting data from several 

intersecting lines. The maximum, minimum and mean values 

of ( )d n are denoted by max| ( ) |d n , min| ( ) |d n and | ( ) |aved n , 

where min max| ( ) | ( ) | ( ) |d n d n d n≤ ≤ is the standard range. The 

horizontal line 1 2A A represents DDξ , which is approximately -

11.19dB and -17.40dB for 16-QAM and 64-QAM respectively 

[13]. The vertical line 1 2B B is formed by the intersection of 
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line 1 2A A with min| ( ) |d n , while 1 2C C is formed by the 

intersection of line 1 2A A with max| ( ) |d n . 

Guidelines for parameter selection are given in table 2 which 

consist of five regions in order to allow greater flexibility and 

smoother transitions between errors and step sizes. 

Experimental results have shown that defining three to five 

regions is sufficient and the performance enhancement of 

anything above five regions is marginal. Regions 1-2 represent 

adaptation phases above DDξ , while regions 3-5 represent 

phases that are at or below DDξ . Similarly, ( )nλ is fixed 

intermediate value in the range 0 ( ) 1nλ≤ ≤ in region 3, whose 

limits correspond to  in figure 4. This has been done to make 

sure the smooth transition between the error terms with in the 

respective error signals. ( )nλ can be quantized such that 

{ }( ) 0,1nλ ∈ to produce more efficient implementation. 

Simulation results have shown that ( )nµ in region 1-2 control 

the initial rate of convergence, while ( )nµ  in regions 4-5 

controls the misadjustment and convergence 

 

Regions Limits ( )nµ  ( )nλ  

1 ( ) 1d n ≥  MAXµ  1 

2 1 ( ) 0.7d n> ≥  / 2MAXµ  1 

3 0.7 ( ) 0.4d n> ≥  SCAµ  0 ( ) 1nλ≤ ≤  

4 0.4 ( ) 0.2d n> ≥  SCAµ  0 

5 0.2 ( )d n>  MI�µ  0 

Table 2: Parameter Selection Guideline for VSCA and 

VSDA 

 

time. The upper limit MAXµ  is derived empirically; it is based 

on the highest step-size value for which SCA algorithm 

performs well. While, the lower limit MI�µ  is also derived 

through extensive simulations, it is based on the smallest step-

size value for which MSCA algorithm performs well. The 

above propositions are made on the fact that, initially, we want 

high convergence rate and since SCA error term will be 

updating the tap weights, step-size parameter will be kept high. 

When initial convergence is achieved the small step-size 

parameter is applied to the MSCA to further reduce the MSE 

and residual errors. 

 

VII. SIMULATION RESULTS 

Simulations were performed for 16-QAM and 64-QAM for 

SCA, MSCA, VSCA and VSDA respectively with SNR of 

35dB. The channels impulse responses are / 2T -spaced 

microwave channels taken from SPIB, here T  is the symbol 

period. The equalizers are chosen to be 16-tap / 2T -spaced 

finite impulse response (FIR) with center tap initialized to 1. 

Simulation parameters are given in table 3 for SCA, MSCA 

and in table 4 for VSCA and VSDA. Here β is calculated 

using (10) for VSCA. Two parameter values in second column 

of table 4 correspond to each of 16-QAM and 64-QAM, while 

in third column two sets correspond to SPIB channel # 2 and 

13 and in each set; parameters correspond to 16-QAM and 64- 

QAM. The values of ( )nλ are given for third region only, for 

other regions it is kept to be either 1 or 0. Simulation results 

are illustrated for SPIB microwave channel # 2 and 13. The 

MSE curves for these channels are illustrated in figure 4 for 

channel # 2 and in figure 5 for channel 13. The MSE curves 

for 16-QAM in channel 2 shows that the transient and steady-  

 

0 0.2 0.4 0.6 0.8 1 1.2
-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

Distance(d/2)

M
S

E
 (

d
B

)

  x

B C

|d(n)|
ave

|d(n)|
min

|d(n)|
max

ξξξξDD=-11.19dB

B
2

C
1

C
2

A
2

A
1

B
1

 

0 0.2 0.4 0.6 0.8 1 1.2
-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

Distance(d/2)

M
S

E
 (

d
B

)

x

B
C

|d(n)|
min

|d(n)|
ave

|d(n)|
max

A
1

ξξξξDD=-17.40dB

C
1B

1

B
2

C
2

A
2

 

 

Figure 3: Statistical properties of ( )d n plotted as function 

of MSE range for (a) 16-QAM (b) 64-QAM 

 

 
SCAµ  MSCAµ  

Channel 16-

QAM 

64-QAM 16-QAM 64-QAM 

2 3e-4 1.5e-4 3e-4 1.5e-4 

13 3e-4 1.5e-4 3e-4 1.5e-4 

    Table 3: Step size parameters selected for SCA and MSCA 

 

(a) 

(b) 
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state performance of both VSCA and VSDA are similar. Both 

algorithms are able to achieve fast convergence time low 

steady-state MSE. The performance of VSDA is degenerated 

for channel 13 as clear from the MSE curves in figure 4. For 

64-QAM the rate of convergence for VSDA drops off as the 

DD error term becomes the primary error signal. The steady-

state behavior is same for both algorithms for channel 2; 

however, VSCA shows superior performance in terms of lower 

MSE for channel 13. 

 
Method β  

MAXµ  3λ  

VSCA 
max0.9 | |β  3 4{1.5 10 ,3 10 }− −× ×

 

{0.1,0.2} ,

{0.1,0.1}  

VSDA 
max0.9 | |β  3 4{1.5 10 ,3 10 }− −× ×

 

{0.1,0.4} ,

{0.6,0.4}  

Table 4: Simulation parameters for VSCA and VSDA for 

SPIB channel # 2 and 13 
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Figure 4:  Simulation results for 16-QAM and 64-QAM using 

SPIB microwave channel # 2 

 

VIII. DESIGN OF A COMPLEX BLIND EQUALIZER FOR QAM 

SIGNALS 

This section discusses the design of a 16-Tap T/2-spaced 

blind equalizer for QAM signals. This section begins with the 

discussion of fixed-point simulations for VSCA. The 

architecture followed for implementation is the same as given 

in [14]. The equalizer is implemented for VSCA only. It can 

be extended for other VSDA easily. 

A. Fixed-point Analysis 

The word-length and fractional word-length (FWL) for the 

fixed-point models of VSCA and VSDA were determined by 

fixed-point simulations that were completed using the fixed 

point toolbox of Matlab. The number system chosen for  
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Figure 5:  Simulation results for 16-QAM and 64-QAM using 

SPIB microwave channel # 13 

 

implementation is the two’s complement number system, 

which has a numeric range of ( )1 12 , 2 2IWL IWL FWL− − −− −  and a 

resolution of 2 FWL− , where the integer word-length is IWL = 

WL − FWL. Saturation is applied to handle overflow 

conditions, while truncation is applied instead of rounding.  

The input and output WL and FWL of the Blind equalizer are 

set to 16-bit and 12-bit, respectively, since 16-bit is a standard 

WL size. The error signal WL and FWL is held constant 

during fixed-point simulations at 16-bit and 12-bit, 

respectively. Fixed-point simulations are conducted with two 

different sets of WLs and FWLs for the tap coefficients, which 

are (20, 16)-bit and (22, 16)-bit. The performance gain 

between WLs of 20-bit and 22-bit tap coefficient is marginal. 

Therefore, the tap coefficient WL and FWL for this 

implementation are set to be 20-bit and 16-bit, respectively.  

For VSCA error signal, the CME component is implemented 

using a LUT. The size of this LUT is determined by the 

precision of the input, which is set to a WL and FWL of 10-bit 

and 8-bit respectively. This results in a precision of 
82 0.004− ≈ which is sufficient for CME signal. 
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Fixed-point simulations for VSCA and VSDA are illustrated 

in figure 6 and 7, respectively.  The fixed-point simulations 

were conducted SPIB microwave channel # 13. In all 

simulations, the results of the fixed-point algorithm are 

compared to their floating point counterparts. For 16-QAM the 

performance of fixed-point algorithms is almost identical to 

that of floating point. For 64-QAM VSCA shows increase in 

convergence time which is about 700 T/2 samples and 600 T/2 

samples for VSDA. It should be kept in mind that as we 

increase the integer word length (IWL) of the coefficients the 

transient behavior of fixed-point algorithm becomes closer to 

the floating-point counterpart. 
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Figure 6: Fixed-point simulations of VSCA for (a) 16-QAM 

(b) 64-QAM using SPIB channel # 13 

 

A. Blind Equalizer Implementation 

The Blind equalizer is s complex 16-tap / 2T -spaced blind 

adaptive equalizer for QAM signals. The equalizer is 

implemented following the architecture discussed in [14] 

except for the error function block which here in our case 

incorporated SCA error function. The input, output and tap 

weights WL’s are set as discussed in 6.1.  The RTL 

implementation was done for VSCA only, but it can be 

extended easily for VSDA.  

B. RTL Simulation Results 

The functionality of the Blind equalizer at RTL level was 

verified using ModelSim 6.1f. The verification of each module 

was performed by creating a set of fixed-point inputs and 

expected outputs using fixed-point toolbox in Matlab. 

Exhaustive testing was performed in this way, thereby making 

sure that all the modules in the hierarchy were working 

correctly. The test vectors were saved to a stimulus file with a 

“.dat” extension and stimulus vectors were applied by the 
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Figure 7: Fixed-point simulations of VSDA for (a) 16-QAM 

(b) 64-QAM using SPIB channel # 13 

VHDL testbench using the IEEE std_logic_textio and STD 

textio libraries for text I/O. The stimulus data consisted of 

thousands of data vectors randomly generated using the 

Matlab fixed-point algorithms. The output of the RTL 

simulation was then written to a file in a Matlab format in 

order to produce graphical output. The final RTL results of 

Blind equalizer are shown in figure 8, for VSCA.  These 

results are for a single realization and illustrate the 

instantaneous squared error across the slicer and the output 

signal constellation after convergence. The step-size 

parameter µ in error function block was chosen in the 

format 2e x− , thereby making multiplication only a shifting 

operation. For VSCA the values of µ are given in table 5. 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:3, 2009

464

 

 

Method 
QAM

 µ  

 

VSCA 

16-QAM
 {2 8, 2 9, 2 10,2 10,2 11}e e e e e− − − − −

 

64-QAM
 {2 9,2 10, 2 11,2 11,2 12}e e e e e− − − − −

 

Table 5: Step size parameters selected for VSCA 
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Fig. 8: RTL simulation results for VSCA (a) constellation eye-

opening for 16-QAM (b) MSE plot for 16-QAM (c) 

constellation eye-opening for 64-QAM (d) MSE plot for 64-

QAM using SPIB microwave channel # 13 performed in  

ModelSim 6.1f 

 

IX. CONCLUSION 

In this paper, a new distance-adjusted approach for blind 

equalization of QAM signals is introduced. Using this 

technique, two new algorithms are proposed, namely, VSCA   

and VSDA. A method to tune these algorithms has been 

developed based on the statistics of the distance. The proposed 

algorithms clearly outperform the SCA and MSCA in terms of  

convergence speed and MSE. Fixed point simulations 

demonstrate performance comparison between floating and 20-

bit VSCA and VSDA. RTL implementation of 16-tap T/2 

spaced equalizer carried out for 20-bit architecture using 

VSCA can achieve equalization up to 64-QAM.   
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