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Abstract—The free and forced in-plane vibrations of axially 

moving plates are investigated in this work. The plate possesses an 

internal damping of which the constitutive relation obeys the 

Kelvin-Voigt model, and the excitations are arbitrarily distributed on 

two opposite edges. First, the equations of motion and the boundary 

conditions of the axially moving plate are derived. Then, the extended 

Ritz method is used to obtain discretized system equations. Finally, 

numerical results for the natural frequencies and the mode shapes of 

the in-plane vibration and the in-plane response of the moving plate 

subjected to arbitrary edge excitations are presented. It is observed that 

the symmetry class of the mode shapes of the in-plane vibration 

disperses gradually as the moving speed gets higher, and the u- and 

v-components of the mode shapes belong to different symmetry class.  

In addition, large response amplitudes having shapes similar to the 

mode shapes of the plate can be excited by the edge excitations at the 

resonant frequencies and with the same symmetry class of distribution 

as the u-components. 

 

Keywords—Arbitrary edge excitations, axially moving plates, 

in-plane vibration, extended Ritz method.  

I. INTRODUCTION 

XIALLY moving webs are frequently encountered 

applications in industries, such as magnetic tapes, driving 

belts, paper sheets, and plastic webs, etc. In order to raise 

production efficiency, the moving speed of the web gets faster 

and faster, which worsens the vibration problem of the web. 

Therefore, a vast number of researches concerning the dynamic 

behaviors of moving webs can be found in the literature [1]-[6]. 

Because the lowest natural frequency and critical speed of the 

out-of-plane vibration of the moving web are lower than those 

of the in-plane vibration, most of the references in literature deal 

with the out-of-plane vibration of the moving webs.  

In literature, the references concerning the in-plane vibration 

of rectangular plates are much lesser than those pertaining to the 

out-of-plane vibration of rectangular plates. Hyde et al. [7] 

studied the free in-plane vibration of rectangular plates 

undergoing plane stress deformation through the Ritz 

discretization. The natural frequencies and mode shapes of 

rectangular plates with three different kinds of boundary 

conditions were presented in this work. The free in-plane 

vibrations of a rectangular plate under combined static 

pressure/tension edge loads were investigated by Wauer [8]. In 

this paper, the in-plane deformation due to static edge loads is 

 
T. H. Young and Y. S. Ciou are with National Taiwan University of Science 

and Technology, Taipei 106, Taiwan (phone: 886-2-27376444; fax: 

886-2-2737 6460; (e-mail: thyoung@mail.ntust.edu.tw, M10003122@ 

mail.ntust.edu. tw). 

determined first by solving the plane stress problem, and the 

free in-pane vibration is analyzed by the Rayleigh-Ritz method.  

A mathematical model was developed by Farag and Pan [9] for 

the prediction of the forced response of rectangular plates with 

all edges clamped to in-plane point force excitations. All the 

above three references dealt with the in-plane vibration of a 

stationary rectangular plate, and the references dealing with the 

in-plane vibration of axially moving rectangular plates are even 

less. Shin et al. [10] studied the free in-plane vibration of an 

axially moving plate by the Galerkin method. The elastic plate is 

subjected to a constant tension along two mass-transport 

boundaries, and two sets of boundary conditions, which are free 

and fixed constraints in the lateral direction at two 

mass-transport boundaries are discussed in this study. 

To authors’ knowledge, no research work on the in-plane 

response of axially moving plates subjected to arbitrary edge 

excitations can be found in the literature. Therefore, this work 

investigates the free and forced in-plane vibrations of axially 

moving plates. The plate possesses an internal damping of 

which the constitutive relation obeys the Kelvin-Voigt model, 

and the excitations are arbitrarily distributed on two opposite 

edges. First, the equations of motion and the boundary 

conditions of the axially moving plate are derived. Then, the 

extended Ritz method is used to obtain discretized system 

equations. Finally, numerical results for the natural frequencies 

and the mode shapes of the in-plane vibration and the in-plane 

response of the moving plate subjected to arbitrary edge 

excitations are presented. 

II. EQUATIONS OF MOTION 

Consider a rectangular plate of dimension ba×  moving in 

the x-direction with a constant speed V.  The plate is simply 

supported on two opposite edges 0=x  and a, and is free on the 

other two edges 0=y  and b. The plate is subjected to an 

excitation ),( tyf arbitrarily distributed on two simply 

supported edges, as shown in Fig. 1. The plate possesses an 

internal damping of which the constitutive relation obeys the 

Kelvin-Voigt model, i.e., 
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where σ  and ε  are the stress and strain of the plate, 

respectively, and t is a temporal variable. E  and c  are 

Young’s modulus and internal damping coefficient of the plate, 
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respectively. Therefore, the stress-strain relations for the plane 

stress state are given by 
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where ν  is Poisson’s ratio of the plate. In terms of the in-plane 

displacement components, the strain energy of the plate can be 

expressed as 
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where h  is the thickness of the plate, and u and v are the 

in-plane displacement components of the plate in the x- and 

y-directions, respectively. The kinetic energy of the axially 

moving plate is given by 
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where ρ is the mass density of the plate. The virtual work done 

by the edge excitation is written as 
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The virtual work done by the internal damping force is given 

by 
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The virtual work done by the momentum of the plate moving 

across the boundaries is found to be 
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The extended Hamilton principle for non-conservative 

systems requires 
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where 1t  and 2t  are two time instants at which the virtual 

displacements uδ  and vδ  vanish. Substituting (3) – (7) into (8) 

and going through variational calculus manipulations yield the 

equations of motion and boundary conditions for the axially 

moving plate, 
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at 0=x and a, 0=xN and 0=v              (10a) 

at 0=y and b, 0=yN  and 0=xyN            (10b) 

 

where xN , yN , and xyN  are the in-plane stress resultants of 

the plate. Equations (10a) and (10b) can be reduced to those 

obtained by Shin et al. [10] if the internal damping force terms 

are deleted. 

Equations (10a) and (10b) constitute a system of the second 

order partial differential equations in terms of the displacement 

components u and v. Since the exact solution of them is not 

feasible, to obtain approximate solutions in the finite 

dimensional space, discretization of the system equations is 

carried out. Due to the boundary conditions of the problem, it is 

very difficult to find the comparison functions, the ones that 

satisfy both the geometric and natural boundary conditions, as 

the trial functions. Therefore, the extended Ritz method, which 

admits the admissible functions satisfying the geometric 

boundary conditions only as the trial functions, is adopted in 

conjunction with the extended Hamilton principle. Assume the 

displacement components u and v to be of the forms, 
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where )(tAmn  and )(tBmn  are undetermined functions. 

Substituting (11a) and (11b) into (8) and non- dimensionalizing 

all parameters and variables yield the following equation,   
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a differentiation with respect to τ . The mass matrix ][M , the 

moving-speed dependent matrix ][G , the elastic stiffness 

matrix ][ eK , and the geometric stiffness matrix ][ gK  have the 

following forms, 
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in which the block matrices [ ]uM  , [ ]vM  , [ ]uuK  , and [ ]vvK  

are symmetric, and [ ] [ ]vu
T

uv KK = .  Therefore, the mass 

matrix ][M  and the elastic stiffness matrix ][ eK are 

symmetric, the moving-speed dependent matrix ][G  and the 

geometric stiffness matrix ][ gK  are neither symmetric nor 

skew-symmetric.  The response vector U and the forcing vector 

)(τF  in (12) have the following forms,   
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where A and B are column matrices formed by all bAmn /)(τ  

and bBmn /)(τ , and )(τf  is a column matrix. 

Equation (12) governs the in-plane forced response of an 

axially moving plate. To find the natural frequencies and the 

mode shapes of the free in-plane vibration, neglect the 

nonhomogeneous forcing term on the right-hand side of the 

equation, and rewritten the set of the second order differential 

equations into a set of first order differential equations, which 

yield the following eigenvalue problem, 
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where ][I  is an identity matrix. The eigenvalues of the above 

equation are in pairs of complex conjugates, 

jjjj is ω±λ=− 2,12 , j=1, 2, …, L, where )1)(1(2 ++= NML   is 

the total degrees of freedom of the discretized system. The 

eigenvectors of the above equation are also in pairs of complex 

conjugates, jjjj iYXZ ±=− 2,12 , j=1, 2, …, L. The imaginary 

part of the eigenvalue jω  is the non- dimensionalized natural 

frequency of the jth mode of the axially moving plate, while 

jjj ωλ−=ς /  is the damping ratio of the jth mode of the axially 

moving plate. If the real parts of all eigenvalues are smaller than 

or equal to 0, the axially moving plate is stable; otherwise, the 

axially moving plate is unstable. Therefore, the critical speeds 

for the in-plane vibration of the plate can be obtained when the 

real part of one eigenvalue becomes positive. 

To calculate the in-plane forced response of the axially 

moving plate, assume the edge excitation is simply harmonic in 

time, i.e., tyqtyf Ω= sin)(),( , where Ω  is the exciting 

frequency. The forcing vector )(τF  in (12) will have the form 

τΩ=τ
~

sin)( 0QF , where 0Q  is a constant vector, and  

Ea /)1(
~ 22 ρν−Ω=Ω . To match the form of the forcing 

vector, assume the response vector to be of the form, 

 

τΩ+τΩ=τ
~

cos
~

sin)( cs UUU                           (14) 

 

where sU  and cU  are the sine and cosine components of the 

response vector, respectively. Substituting (14) into (12) yields 

the following equation, 
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Once sU  and sU  are solved, the functions )(τmnA  and 

)(τmnB  are determined, from which the in-plane responses u 

and v are calculated. Since the response vector contains the sine 

and cosine components, the functions )(τmnA  and )(τmnB  

consist of the sine and cosine components also, i.e., 
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where s
mnA , c

mnA , s
mnB , and c

mnB  are constants. The responses  

u and v can be written in the amplitude-phase angle form, 
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where the amplitudes 
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and the phase angles 
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III. NUMERICAL RESULTS 

A. Free Vibration 

In order to verify the correctness of the results obtained in this 

work, comparison is carried out with the results by Shin et al. 

[10]. Table I presents the lowest six natural frequencies of an 

axially moving rectangular plate without internal damping. It is 

observed that with M=N=8, the numerical results obtained in 

this work agree excellently with those reported in the reference 

[10]. The maximum difference between these two sets of results 

using the same degrees of freedom is about 0.05%. Fig. 2 

illustrates the lowest six mode shapes of an axially moving 

rectangular plate with internal damping. The u-component and 

the v-component of each mode shape are drawn in different 

plots, respectively. Since the moving speed of the plate is very 

low, the mode shapes almost preserve the symmetry class that is 

owned only by stationary plates. The figure shows that the 

u-components of the first and the fourth mode shapes are 

anti-symmetric in both the x- and y-directions. The 

u-components of the second and the fifth mode shapes are 

symmetric in the x-direction and are anti- symmetric in the 

y-direction. The u-component of the third mode shape is 

anti-symmetric in the x-direction and is symmetric in the 

y-direction, while that of the sixth mode shape is symmetric in 

both the x- and y-directions. The figure shows the opposite trend 

for the v-components. Moreover, the fifth mode shape of the 

axially moving rectangular plate is a purely u-component mode. 

The symmetry class of the mode shapes disperses gradually as 

the moving speed of the plate becomes higher because the 

moving–speed dependent matrix and the geometric stiffness 

matrix are neither symmetric nor skew-symmetric. 

Table II shows the lowest six natural frequencies and modal 

damping ratios of an axially moving rectangular plate with 

internal damping. It is found that the natural frequencies of the 

plate with internal damping are slightly lower than those of the 

plate without internal damping, and the modal damping ratio is 

monotonically increasing for higher modes. Fig. 3 depicts the 

real and the imaginary parts of the eigenvalues of the lowest 

seven modes of an axially moving rectangular plate with 

internal damping. In Fig. 3 (a), all the imaginary parts of the 

eigenvalues, which are the natural frequencies of the axially 

moving plate, drop as the moving speeds of the plate increase. 

At V
~
=0.2486, the imaginary part of the lowest mode reduces to 

zero. Moreover, veering phenomena occur when the imaginary 

part of the seventh mode meets that of the sixth mode at 

V
~
=0.1587; when the imaginary part of the sixth mode meets 

that of the fifth mode at V
~
=0.1637, and when the imaginary 

part of the sixth mode meets that of the seventh mode at 

V
~
=0.1686. In Fig. 3 (b), all the real parts of the eigenvalues are 

negative and hold nearly constant except the followings. The 

real part of the lowest mode rises and becomes positive at the 

speed which the imaginary part of the lowest mode reduces to 

zero. That is the moving plate becomes unstable at this speed, 

and this speed is called the first critical speed of the moving 

plate. The real parts of the fifth, sixth and seventh modes jump 

up and down respectively, and cross each other at the speeds 

where veering phenomena occur. Because the internal damping 

of the plate in this figure is small, Fig. 3 (a) looks very similar to 

that obtained by Shin et al. [10] in which no internal damping is 

considered. 

B. Forced Vibration 

Fig. 4 illustrates the forced response of an axially moving 

plate subjected to excitations uniformly distributed on two 

simply supported edges at zero and the lowest five resonant 

frequencies. All u-components of the response plots in the 

figure are nearly anti-symmetric in the axial direction and are 

nearly symmetric in the lateral direction, whereas all 

v-components of the response plots show the opposite symmetry 

class, that is, nearly symmetric in the axial direction and nearly 

anti-symmetric in the lateral direction. This trend loses 

gradually for higher resonant frequencies. Because the response 

plots possess the same symmetry class of the third mode, the 

amplitudes of the response plot at the third resonant frequency 

are one-order larger than those at the other resonant frequencies. 

Except for that, the response amplitudes generally reduce 

gradually as the resonant frequencies get higher, and the static 

deformation of the plate subjected to static edge loads are close 

to the forced response amplitudes at the first resonant 

frequency.  

Fig. 5 shows the forced response of an axially moving plate 

subjected to excitations linearly distributed on two simply 

supported edges such that the distribution of the excitations are 

anti-symmetric in the lateral direction. All u-components of the 

response plots in the figure are almost anti-symmetric in both 

axial and lateral directions, whereas all v-components of the 

response plots are almost symmetric in both directions. Again, 

this trend loses gradually for higher resonant frequencies. 

Because the response plots possess the same symmetry class of 
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the first and the fourth modes, the amplitudes of the response 

plot at the first resonant frequency are at least two-order larger 

than those at the other resonant frequencies, and the amplitudes 

of the response plot at the fourth resonant frequency are larger 

than those at the second and the third resonant frequencies. The 

response plot at the first resonant frequency is similar to the 

static deformation plot subjected to static edge loads, and the 

response amplitudes at the first resonant frequency are about 

one hundred times of the static deformation subjected to static 

edge loads, which is the inverse of the internal damping factor 

c~ . Note that the amplitudes of the response plot at the first 

resonant frequency in this figure are even larger than those of 

the plate subjected to uniformly distributed edge excitations at 

the third resonant frequency, as shown in Fig. 3 (c).  

The forced response of an axially moving plate subjected to 

excitations linearly, anti-symmetrically distributed on the 

middle halves of two simply supported edges is depicted in Fig. 

6. The distribution of the excitations is again anti- symmetric in 

the lateral direction, and the intensity of the excitation is twice 

as that in Fig. 5. All corresponding plots in both figures look 

similar, but the amplitudes in this figure are a little bit smaller 

than those in the previous figure. 

The effect of the internal damping on the forced response of 

an axially moving plate is shown in Fig. 7. In this figure, the 

forced response of the plate considered in Fig. 5 but with a 

larger internal damping factor is illustrated. Comparing between 

both figures, it is observed that the response plots in both figures 

look similar, and the response plots at the first, the second, and 

the fourth resonant frequencies in this figure deviate more from 

the mode shapes of the plate than the corresponding plots in Fig. 

5. Because the response plots possess the same symmetry class 

of the first and the fourth modes, the amplitude ratios between 

Figs. 5 and 7 at the first and the fourth resonant frequencies are 

about 10:1, which is approximately inversely proportional to the 

internal damping ratio between these two figures. But the 

amplitudes between these two figures at the other resonant 

frequencies are of the same orders.   

The effect of the aspect ratio on the forced response of an 

axially moving plate is presented in Fig. 8. In this figure, the 

forced response of a square plate is considered. Because the 

aspect ratio of the plate is smaller, the natural frequencies of the 

plate rise and the mode shapes of the plate change also. The 

u-component of the first mode shape is anti-symmetric in both 

the x- and y-directions. The u-components of the second and the 

fourth mode shapes are symmetric in the x-direction and are 

anti-symmetric in the y-direction. The u-components of the third 

and the fifth mode shapes are anti-symmetric in the x-direction 

and are symmetric in the y-direction. The v-components of the 

mode shapes have the opposite class of symmetry. Because the 

distribution of the edge excitation is linear, anti-symmetric in 

the lateral direction, the amplitudes of the response at the first 

resonant frequency is the highest among those at the lowest five 

resonant frequencies. In addition, the amplitudes of the response 

at the first resonant frequency in this figure are much smaller 

than those at the first resonant frequency in Fig. 5 (a) because 

the aspect ratio of the plate in this figure is smaller than that of 

the plate considered in Fig. 5, and hence the plate considered in 

this figure is more stiffer. 

IV. CONCLUSIONS 

The free and forced in-plane vibrations of axially moving 

plates subjected to arbitrarily distributed edge excitations on 

two opposite, simply-supported edges are studied by the 

extended Ritz method in this work. Numerical results for the 

natural frequencies, mode shapes and the critical speed of the 

free in-plane vibration and the response amplitudes of the 

forced in-plane vibration are presented for different system 

parameters and the distribution of the edge excitations. The 

numerical results for the natural frequencies, mode shapes and 

the critical speed of the free in-plane vibration are compared 

with [10], and excellent agreement of the numerical results 

between these two works is observed. From these numerical 

results, the following conclusions can be drawn: 

1) The mode shapes of the corresponding stationary plate 

preserve symmetry class, and the u-components and 

v-components of the mode shapes belong to the opposite 

symmetry class. The symmetry class of the mode shapes of 

the free in-plane vibration disperses gradually as the 

moving speed of the plate becomes higher.  

2) The natural frequencies of the plate with internal damping 

are slightly lower than those of the plate without internal 

damping, and the modal damping ratio is monotonically 

increasing for higher modes. 

3) At the first critical speed, the imaginary part of the lowest 

mode reduces to zero, and the real part of the lowest mode 

becomes positive. Veering phenomena occur among the 

fifth, sixth and seventh modes when two imaginary parts of 

these modes meet each other, and the real parts of these 

modes jump up and down respectively and cross each other 

at the speeds where veering phenomena occur. 

4) For an axially moving plate subjected to excitations 

symmetrically distributed in the lateral direction on two 

simply supported edges, all u-components of the response 

plots are nearly anti-symmetric in the axial direction and 

are nearly symmetric in the lateral direction. For an axially 

moving plate subjected to excitations anti-symmetrically 

distributed in the lateral direction on two simply supported 

edges, all u-components of the response plots are nearly 

anti-symmetric in both the axial and the lateral directions. 

The v-components of the response plots show the opposite 

symmetry class. This trend loses gradually for higher 

resonant frequencies and faster moving speeds.  

5) If the response plot possesses the same symmetry class as 

the mode shape of a mode, the amplitudes of the response 

plot at that resonant frequency will be much larger than 

those at the other resonant frequencies. Except for that, the 

response amplitudes generally reduce gradually as the 

resonant frequencies get higher. 

6) The effect of the internal damping is very effective only 

when the symmetry class of the edge excitation meets the 
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same symmetry class of the mode shape at that resonant 

frequency. Otherwise, its effect is insignificant. 
 

TABLE I 

THE NATURAL FREQUENCIES OF AN UNDAMPED AXIALLY MOVING PLATE 

ba / =3,V
~
=0.1, c

~ =0 

Mode 

no. 
1 2 3 4 5 6 

Present 

work 
0.6937 2.2885 2.9494 4.0641 

5.575

8 
5.7422 

[10] 0.6937 2.2882 2.9493 4.0619 
5.575

8 
5.7419 

Error 0% 
0.0131

% 

0.0034

% 

0.0542

% 
0% 

0.0052

% 

 

TABLE II 

THE NATURAL FREQUENCIES AND MODAL DAMPING RATIOS OF A DAMPED 

AXIALLY MOVING PLATE 

ba / =3,V
~
=0.1, c

~ =0.01 

Mode 

no. 
1 2 3 4 5 6 

jω  0.6937 2.2883 2.9490 4.0631 5.5736 5.7397 

jς  0.0022 0.0063 0.0075 0.011 0.0139 0.0148 

 

 

Fig. 1 An axially moving plate subjected to arbitrarily distributed 

excitations 

 

 

 

(a) 1st mode 

 

 

 

(b) 2nd mode 

 

 

 

(c) 3rd mode 

 

 

 

(d) 4th mode 

 

 

v 

u 

v 

u 

v 

u 

v 

u 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:7, 2013

1455

 

 

 

 

(e) 5th mode 

 

 

 

(f) 6th mode 

Fig. 2 The mode shapes of a damped axially moving plate 

ba / =3,V
~
=0.01, c~ =0.01 

 

 

(a) Imaginary part 

 

 

(b) Real part 

Fig. 3 The eigenvalues curves of the lowest seven modes of an axially 

moving plate ba / =3, c~ =0.01 

 

 

 

(a) 1/ωΩ =0 

 

 

(b) 1/ωΩ =0.9999 
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(c) 1/ωΩ =3.0749 

 

 

 

(d) 1/ωΩ =3.8237 

 

 

 

(e) 1/ωΩ =5.4108 

 

 

 

(f) 1/ωΩ =7.1456 

Fig. 4 The forced response plots of an axially moving plate subjected 

to uniformly distributed excitations ba / =3,V
~
=0.01, c~ =0.01 

 

 

 

(a) 1/ωΩ =0 

 

 

 

(b) 1/ωΩ =0.9999 
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(c) 1/ωΩ =3.0749 

 

 

 
(d) 1/ωΩ =3.8237 

 

 

(e) 1/ωΩ =5.4108 

 

 

 

 

 

 
(f) 1/ωΩ =7.1456 

Fig. 5 The forced response plots of an axially moving plate subjected 

to linearly, anti-symmetrically distributed excitations 

ba / =3,V
~
=0.01, c~ =0.01 

 

 

 

(a) 1/ωΩ =0 

 

 

 

(b) 1/ωΩ =0.9999 
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(c) 1/ωΩ =3.0749 

 

 

 

(d) 1/ωΩ =3.8237 

 

 

 

(e) 1/ωΩ =5.4108 

 

 

 

 

 

 

 

 

(f) 1/ωΩ =7.1456 

Fig. 6 The forced response plots of an axially moving plate subjected 

to excitations linearly, anti-symmetrically distributed on the middle 

halves of the edges ba / =3,V
~
=0.01, c~ =0.01 

 

 

 

(a) 1/ωΩ =0 

 

 

 

(b) 1/ωΩ =0.9992 
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(c) 1/ωΩ =3.0529 

 

 

 

(d) 1/ωΩ =3.7813 

 

 

 

(e) 1/ωΩ =5.2899 

 

 

 

 

 

 

 

 

 

(f) 1/ωΩ =6.8650 

Fig 7 The forced response plots of an axially moving plate subjected to 

linearly, anti-symmetrically distributed excitations 

ba / =3,V
~
=0.01, c~ =0.1 

 

  

(a) 1/ωΩ =0 

 

   

(b) 1/ωΩ =1.0 

 

  

(c) 1/ωΩ =1.321 
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(d) 1/ωΩ =1.8677 

 

  

(e) 1/ωΩ =2.3079 

 

  

(f) 1/ωΩ =2.3901 

Fig. 8 The forced response plots of an axially moving plate subjected 

to linearly, anti-symmetrically distributed excitations 

ba / =1,V
~
=0.01, c~ =0.01 
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