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Abstract—In this paper, we propose a novel approach for image 

segmentation via fuzzification of Rènyi Entropy of Generalized 
Distributions (REGD). The fuzzy REGD is used to precisely measure 
the structural information of image and to locate the optimal 
threshold desired by segmentation. The proposed approach draws 
upon the postulation that the optimal threshold concurs with 
maximum information content of the distribution. The contributions 
in the paper are as follow: Initially, the fuzzy REGD as a measure of 
the spatial structure of image is introduced. Then, we propose an 
efficient entropic segmentation approach using fuzzy REGD. 
However the proposed approach belongs to entropic segmentation 
approaches (i.e. these approaches are commonly applied to grayscale 
images), it is adapted to be viable for segmenting color images. 
Lastly, diverse experiments on real images that show the superior 
performance of the proposed method are carried out. 
 

Keywords—Entropy of generalized distributions, entropy 
fuzzification, entropic image segmentation.  

I. INTRODUCTION 

MAGE segmentation is an elementary and significant 
component in many applications such as image analysis, 

pattern recognition, medical diagnosis and currently in robotic 
vision. However, it is one of the most difficult and challenging 
tasks in image processing, and determines the quality of the 
final results of the image analysis. Instinctively, image 
segmentation is the process of dividing an image into different 
regions such that each region is homogeneous while not a 
union of any two adjacent regions. An additional requirement 
would be that these regions have a correspondence to real 
homogeneous regions belonging to objects in the scene. 

 Various algorithms using different approaches have been 
proposed for image segmentation. These approaches include 
local edge detection (e.g. [1]), deformable curves (e.g. [2]), 
morphological region-based approaches (e.g. [3-5]), global 
optimization approaches on energy functions and stochastic 
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model-based methods (e.g. [6-8]). 
Recent developments of statistical mechanics based on a 
concept of nonextensive entropy have intensified the interest 
of investigating a possible extension of Shannon’s entropy to 
Information Theory [9]. This interest appears mainly due to 
similarities between Shannon and Boltzmann/Gibbs entropy 
functions. The nonextensive entropy is a new proposal in 
order to generalize the Boltzmann/Gibbs’s traditional entropy 
to nonextensive systems (i.e. strong correlated systems are 
good candidates to be nonextensive). In this theory a new 
parameter α is introduced as a real number associated with the 
nonextensivity of the system. 

In this paper we propose a new approach for image 
segmentation which applies for the first time fuzzy conception 
on the Rènyi entropy of generalized distributions. Our work 
for image segmentation does better in comparison to the most 
recent entropic methods [10].  

The remainder of the paper is organized as follows. In the 
next section, the essential concepts of Rènyi entropy of 
generalized distributions and nonextensive systems are 
addressed. Then, the proposed approach is elaborately 
described in section 3. Section 4 presents the experimental 
results that show the performance of the proposed approach. 
Finally, section 5 is dedicated for outlining the benefits of the 
proposed approach and concluding the paper. 

II. ENTROPY OF GENERALIZED DISTRIBUTIONS 

In 1948 Shannon [11] redefined the entropy of 
Boltzmann/Gibbs as a measure of uncertainty regarding the 
information content of a system. He defined an expression for 
measuring the amount of information produced by a process. 
Let � � ��1,�2,…,�n� be a finite discrete probability 
distribution, that is, suppose  �� � 0, � � 1,2, … , �  and ∑ �� � 1.����  The amount of uncertainty of the distribution P, 
that is, the amount of uncertainty concerning the outcome of 
an experiment, the possible results of which have the 
probabilities �� , ��, . . . , �� is called the entropy of the 
distribution and is usually measured by the quantity ���� �����, ��, . . . , ���, introduced by Shannon and defined by 

����, ��, … , ��� � ∑ ������ �������   (1) 

It is easy to see that the Shannon entropy for the 
conjunction of two distributions P and Q satisfies 
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���  !� � ���� " ��!�  (2)
 
Which states one of the most important properties of entropy, 
namely, its additivity: the entropy of a combined experiment 
consisting of the performance of two independent experiments 
is equal to the sum of the entropies of these two experiments. 
The formalism defined by Eq. (1) has been shown to be 
restricted to the Boltzmann-Gibbs-Shannon (BGS) statistics. 

However, for nonextensive systems, some kind of extension 
appears to become necessary. Rènyi in 1959 [12] proposed a 
wider class of entropies which are useful for describing the 
properties of nonextensive systems and defined as 

 �#���, ��, … , ��� � �#$� ���� ∑ ��#����   (3)

 
where α & 0 and α ' 1. The real number α is called an 
entropic order that characterizes the degree of nonextensivity. 
This expression reduces to Shannon entropy in the limit α (1. Thus Shannon's measure of entropy is the limiting of the 
measure of entropy H* and it is called the measure of entropy 
of order 1 of the distribution. 

It is worth mentioning that the parameter α in Rènyi entropy 
is typically interpreted as a quantity characterizing the degree 
of nonextensivity of a physical system [13]. In some cases the 
parameter α has no physical meaning, but it gives new 
possibilities in the agreement of theoretical models and 
experimental data [14]. In other cases, α is solely determined 
by constraints of the problem and by this means α may have a 
physical meaning [15].  

We shall see that in order to get the fine characterization of 
Rènyi entropy, it is advantageous to extend the notion of a 
probability distribution, and define entropy for the generalized 
distributions. The characterization of measures of entropy (and 
information) becomes much simpler if we consider these 
quantities as defined on the set of generalized probability 
distributions.  

Let +Ω, Ρ. be a probability space that is, Ω an arbitrary 
nonempty set, called the set of elementary events, and P a 
probability measure, that is, a nonnegative and additive set 
function for which  P�Ω� � 1. Let us call a function ξ �ξ�ω�  which is defined for ω 2 Ω� , where 3� 4 3. If ��3��  �  1 we call ξ an ordinary (or complete) random 
variable, while if  0 5 ��3�� 6  1  we call ξ an incomplete 
random variable. Evidently, an incomplete random variable 
can be interpreted as a quantity describing the result of an 
experiment depending on chance which is not always 
observable, only with probability ��3�� 5  1. The distribution 
of a generalized random variable will be called a generalized 
probability distribution. Thus a finite discrete generalized 
probability distribution is simply a sequence ��, ��, … , �� of 
nonnegative numbers such that setting � � ��1,�2,…,�n� and 
taking 

 7��� � ∑ ������   (4)

 
where 7��� is the weight of the distribution and 0 5 7��� 6 1. A distribution that has a weight less than 1 will be called an 
incomplete distribution. Now, using Eq. (3) and Eq. (4), the 

Rènyi entropy for the generalized distribution can be written 
as follows 

 

�#���, ��, … , ��� � �#$� ���� 8∑ ��9��:;<�=� >  (5)

 
Rènyi entropy has a nonextensive property for statistical 

independent systems, defined by the following pseudo 
additivity entropic formula 

 �#�?  @� � �#�?� " �#�@� " �A B 1� · �#�?� · �#�@�(6) 

III.  PROPOSED SEGMENTATION METHOD 

In the occurrence of too much noise in the image the 
process of segmentation becomes a tricky. While there are 
much more techniques for image segmentation, some of them 
are time-consuming and the others call for huge storage space. 
The proposed technique achieves the task of segmentation in a 
novel way. This technique not only surmounts the noise in 
image but also it calls for neither more time nor massive 
storage space. This happens by the advantage of using fuzzy 
Rènyi entropy of generalized distributions to measure the 
structural information of image and then locate the optimal 
threshold depending on the postulation that the optimal 
threshold corresponds to the segmentation with maximum 
structure (i.e., maximum information content of the 
distribution). The proposed technique methodologically 
comprises the following main steps:  

1. Pre-processing 

Firstly, Gaussian smoothing is performed by convolving an 
image with a Gaussian operator in order to suppress of image 
noise. As an additional result of applying this step, isolated 
noise points and small structures are filtered out.  

2. Fuzzy entropic thresholding 

This step takes in the subsequent sub steps: 
2.1 Entropies calculation  

For an n graylevels image let �D � ��1,�2,…,�n�  be the 
probability distribution. From this distribution, we could 
derive two sub probability distributions, one for the 
foreground (class A) and the other for the background (class 
B) given by �E � F��G���H  and  �I � F��G��HJ��  respectively; 
where t is the threshold value. Subsequently the priori Rènyi 
entropy of generalized distributions for each distribution can 
be defined as follows 

 

�# E�K� � 1A B 1 ���� L∑ ��E�#H���∑ �EH��� M (7)

�#I�K� � 1A B 1 ���� L∑ ��I�#���HJ�∑ �I���HJ� M (8)

2.2 Entropy fuzzification 

Fuzzy sets have been introduced by L.A. Zadeh (1965) as an 
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extension of the classical notion of a set [16]. Fuzzy sets are 
sets whose elements have degrees of membership. 
Mathematically, a fuzzy set, A is defined as set whose 
elements characterized by a one-to-one function called 
member function, µO�xQ� where xQ refers to the i-th element in 
the set. This membership function assigns a membership value 
to every element in the fuzzy set, which is suggestive of the 
amount of vagueness in the fuzzy set. The membership value 
of an element in a fuzzy set lies in [0, 1]. A higher 
membership value refers to stark containment of the element 
in the set, while a lower value indicates weak containment.  
The fuzzification of entropy at this juncture comprises the 
process of incorporating the fuzzy membership into the 
relations of entropy described by (7) and (8). Hence fuzzy 
segmentation deems the fuzzy memberships as an indication 
of how strongly a pixel value belongs to the background or to 
the foreground. Really, the farther away a value of pixel is 
from a presumed threshold (the deeper in its region), the 
greater becomes its probability to belong to a specific class. 
As a result, for any foreground and background pixel, which is R levels below or  R levels above a given threshold  K, the 
membership values are determined by 
 SE�K B R� � 0.5 " ∑ ��H$��U�:V���H�   (9)

that is, its measure of belonging to the foreground (class A), 
and by SI�K " R� � 0.5 " ∑ ��HJ��U�:;�+�$��H�.   (10)

respectively (see Fig. 1). 
Evidently on the value corresponding to the threshold, one 

should have the maximum ambiguity, such that  µO�t� �µX�t� � 0.5. Now, considering the two equations (9), (10), the 
fuzzy form of entropic equations (7), (8) can be written as 

 

�# E�K� � �#$� ���� YZ [\]���^9_
�:;∑ \]���_�:; `  (11)

�#I�K� � �#$� ���� YZ [\a���^9�
�:_b;∑ \a��:_b; ��� `  (12)

2.3 Getting the optimum threshold 

In image processing, thresholding is the most regularly used 
method to distinguish objects from background. In this step 
the optimum threshold value  tc is automatically determined 
from maximizing the total entropy, �#EJI�K�. This value will 
be used for preliminary segmentation (thresholding). When 
total entropy is maximized, the value of parameter t that 
maximizes the function is believed to be the optimum 
threshold value [17]. Mathematically, the problem can be 
formulated as shown below: 
 

Kc � de�fdg 8 �A?"@�K�> 
� de�fdg hhL �# E�K� " �#I�K�"�A B 1�  · �# E�K� ·  �#I�K�Mhh  

(13) 
 
In the case of RGB color images, the preceding scalar 
equation is replaced with the following vector equation  
 

Kic � de�fdg hhj �# E[Ki^ " �#I[Ki^"�A B 1�  · �# E[Ki^ ·  �#I[Ki^khh  
(14)

where  Ki � �Kl, Km , KI� and the optimum threshold vector 
satisfies 
 nKicn � o�plKl��"�pmKm�� " �pIKI�� (15)

where pl,  pm , pI are the normalized energies of the channels q, r, d�s @ respectively, that is, 
 pl " pm " pI � 1 (16)

 

 

Fig.1 Fuzzy membership as an indication of how strongly a pixel 
belongs to its region. 

3. Post-processing 

This step consists of the following sub steps: 

3.1 Morphological filtering 

This step aims to enhance the results of the previous 
thresholding step.  Because of the inconsistency within the 
color of objects, the binary image maybe contains some holes 
inside. The process of filling holes attempts to get rid of the 
holes form the binary image. This problem can be overcome 
by the filling holes process. Opening with small structure 
element is used to separate some objects that are still 
connected in small number of pixels [18]. In image 
processing, dilation, erosion, filling holes and opening are all 
identified as morphological operations. 

µΒ(t+i)µΑ(t-i)

t-i t               t+i
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3.2 Watersheding 

In this step, watershed algorithm [19] is applied on the 
Euclidean Distance Transform (EDT) of the image. The EDT 
of a binary image works as: for each pixel in the binary image, 
the transform assigns a number that is the distance between 
that pixel and the nearest nonzero pixel of the image. The 
distance is calculated using the Euclidean distance metric. The 
peaks of the distance transform lay in the middle of each 
object. The idea is to run watershed using these peaks as 
markers. For this, we invert the distance transform so that the 
peaks become the regional minima the objects are correctly 
separated by watershed. 

3.3 Wrong objects removals 

This step contributes to remove incorrect objects according to 
the range of size of the object. Consequently tiny noise objects 
of sizes that are less than the minimum predefined threshold 
can be discarded. Also objects whose size greater than the 
maximum threshold size can be removed as well. It is worth to 
say that those thresholds are user-defined data and dependent 
on the application. The preceding steps of the proposed fuzzy 
entropic segmentation method can be depicted by the block 
diagram in Fig. 2. 

 

 

Fig.2 Block diagram of the proposed segmentation method. 

IV. EXPERIMENTAL RESULTS 

In this section, we present the results of the proposed 
method and make a comparison with another segmentation 
method based on Tsallis entropy (see [15] for more details). 
Firstly, to investigate the proposed approach for image 
segmentation we have initiated by different image histograms. 
Each of these histograms describes the “foreground” and the 
“background”. As demonstrated earlier, the segmentation 
procedure searches for a luminance value that separates the 
two regions “foreground” and “background” in the image. 
This process allows judging the quality of segmentation result 
as function of some parameters such as amplitude, position 
and width of the peaks in the histograms. All these parameters 
have a key role in the characterization of the image, as for 
instance: homogeneity of the scene illumination (graylevel 

contrast), image and object size, “foreground” and 
“background” texture, noisy images, etc. 

To evaluate the proposed method, several real images have 
been utilized and many values of the parameter α are 
experimented. All the results presented here were obtained at 
the same value of parameter α (α=0.9).  In figure 3 an image 
of flower with a heterogeneous distribution of light around it, 
leading to an irregular histogram of two peaks. The proposed 
entropic method could be very practical in such applications. 

 

 

Fig.3 Entropic segmentation for image of a flower with a 
heterogeneous distribution of light around. 

 
Fig. 4 shows a well-known image of “Lena” with a 

complicated background. In the figure, many regions on the 
face, hair and hat are interlaced. However, the proposed 
approach could successfully segment the image into desired 
regions, as shown below.  The regions after segmentation are 
more consistent and are not affected by the inextricable 
background. In Fig. 5, an RGB color image of woman with a 
background of skin-like color around it, leading to a similarity 
between foreground color and background color. It is clear 
that the proposed fuzzy entropic approach could appropriately 
identify all regions of image especially when the approach 
takes into account the color information. 

It is worth mentioning here that most of the previous 
proposed entropic segmentation methods related to our 
method (e.g. Tsallis method) have merely dealt with grayscale 
images. On the other hand the proposed method has 
successfully extended and adapted the concept of entropy via 
the fuzzification to be viable for segmenting color images. 
This is happening for the first time.  Furthermore the proposed 
method rapidly did the task of segmentation (i.e. less than one 
second was sufficient for segmenting an image of size equal to 360 v 280 by using an ordinary Desktop PC (Intel Pentium 4 
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Processor 360, 1 GB RAM) running Microsoft Windows XP). 
 

 

Fig.4. Fuzzy entropic segmentation for Lena image with a knotty 
background. 

 
 

 

Fig.5. Fuzzy entropic segmentation for color image of a woman with 
a skin-like color distribution around. 

 

Fig.6. Fuzzy entropic segmentation for color image of a hand with a 
skin-like color distribution around. 

V. CONCLUSION 

In this paper, we have described a new approach for image 
segmentation via fuzzification of Rènyi entropy. The proposed 
approach could successfully segment both grayscale and color 
images. Furthermore it could do better when applied to noisy 
images or images of complicated backgrounds compared to 
other entropic segmentation approaches. The preliminary 
results obtained, show that using the formalism of fuzzy Rènyi 
entropy is more viable than using entropy alone in image 
segmentation task. An additional benefit of the approach 
comes from the rapidity and easiness of implementation. 
Although the proposed approach has been applied to still 
images, it can be straightforwardly applied to motion scenes 
due to its rapidity.   
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