
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3073

Abstract—Class cohesion is an important object-oriented

software quality attribute. It indicates how much the members in a
class are related. Assessing the class cohesion and improving the
class quality accordingly during the object-oriented design phase
allows for cheaper management of the later phases. In this paper, the
notion of distance between pairs of methods and pairs of attribute
types in a class is introduced and used as a basis for introducing a
novel class cohesion metric. The metric considers the method-
method, attribute-attribute, and attribute-method direct interactions.
It is shown that the metric gives more sensitive values than other
well-known design-based class cohesion metrics.

Keywords—Object-oriented software quality, object-oriented
design, class cohesion.

I. INTRODUCTION
popular goal of software engineering is to develop
techniques and tools to develop applications that have

high quality. Applications that have high quality are more
stable and maintainable. In order to assess and improve the
quality of an application during the development process,
developers and managers use several metrics. These metrics
estimate the quality of different software attributes, such as
cohesion, coupling, and complexity.

The cohesion of a module refers to the relatedness of the
module components. The module that has high cohesion
performs one basic function and cannot be split into separate
modules easily. Highly cohesive modules are more
understandable, modifiable, and maintainable [1].

In object-oriented paradigm, classes are the basic modules.
The members of a class are the attributes and methods.
Therefore, class cohesion refers to the relatedness of the class
members. The class which its members are highly correlated
has high cohesion and cannot be split into separate classes
easily. The degree of class cohesion gives an indication for the
quality of class design; where a highly cohesive class is well
designed and a lowly cohesive class is poorly designed.

Several class cohesion metrics have been proposed in the
literature. These metrics can be classified into design-based
and code-based. Design-based class cohesion metrics require
inspecting high-level design artifacts, such as method
interfaces [2, 3, 4] to estimate the class cohesion. Code-based

The author would like to acknowledge the support of this work by Kuwait

University Research Grant WI03/07.
Jehad Al Dallal is with Department of Information Sciences, Kuwait

University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

class cohesion metrics e.g., [1, 5, 6, 7, 8, 9, 10, 11], require
inspecting the class internal code to measure the class
cohesion. Code-based cohesion metrics are more accurate than
design-based ones, because they use a finer-grained artifact,
which is the code itself. At the code level, all method-method,
method-attribute, and attributes-attributes interactions are
precisely defined. On the other hand, design-based class
cohesion metrics predict cohesion weaknesses early at design
level. Detecting class cohesion weaknesses and correcting the
class artifacts accordingly late during the implementation
phase are much more costly than performing the same tasks
early during the design phase. Improving the class cohesion
during the design phase saves development time, reduces
development costs, and increases the overall software quality.

The proposed design-based class cohesion metrics have
several drawbacks. The first drawback is that some design-
based metrics are based on poorly studied hypotheses. For
instance, in order to increase the accuracy of the measured
class cohesion, the design-based metrics attempt to predict the
actual interactions that would be implemented during the
implementation phase. The method-attribute interactions are
not defined at the high-level design phase. Therefore, as in [3]
and [14], to predict the method-attribute interactions, the types
of method parameters are used instead of the attributes. The
hypothesis is that the attributes rely on the method parameters
as a basis for the work done by the class. However, this
hypothesis is not supported with a strong empirical study. In
[3], only 21 C++ classes are studied to support the hypothesis.
The second drawback is that some metrics are
environmentally dependent. For instance, in [2] a metric is
introduced for Ada-object systems. The metric may not be
suitable for other environments, such as object-oriented
systems. The third drawback is that some key features of
object-oriented programming languages, such as inheritance,
are not considered in the proposed metrics. The fourth
drawback is that, as far as we know, the Unified Modeling
Language (UML), a standard language for modeling the
object-oriented high-level design, is not used as an artifact to
support the measurement of class cohesion in any of the
proposed design-based class-cohesion metrics. The fifth
drawback is that some proposed metrics, such as CAMC [3]
and NHD [4], are not validated against class cohesion metric
necessary-properties. The sixth drawback is that some metrics
ignore indirect interactions and method invocation
interactions. Finally, the research in the area of design-based
class cohesion measuring lacks some important empirical

A Design-Based Cohesion Metric for Object-
Oriented Classes

Jehad Al Dallal

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3074

studies to examine the affect of considering the inheritance
relationships, method invocation interactions, indirect
interactions, and inclusion of the interactions of the special
types of methods, such as constructors, destructors, accessors,
and modifiers in the metrics.

In this paper, some predefined design-based class cohesion
metrics are overviewed. In addition, a new model is
introduced to represent the relationship between the parameter
types and the attribute types. A novel design-based class
cohesion metric that uses the model is introduced and called
the Distance Design-based Direct Class Cohesion (D3C2)
metric. The metric considers the method-method, method-
attribute, and attribute-attribute direct interactions identified
using the Unified Modeling Language (UML) class diagram.
The notion of distance between a pair of methods and a pair of
attribute types is defined and used as a basis to measure the
class cohesion. Several sample cases are used to assess the
sensitivity of the metric to model changes comparing to the
sensitivity of other well-known design-based class cohesion
metrics.

This paper is organized as follows. Section II overviews
related work. Section III defines the model used by the
introduced metric. Section IV defines the metric, and Section
V compares the metric with other metrics in terms of
sensitivity. Finally, Section VI provides conclusions and a
discussion of future work.

II. RELATED WORK
In this section, several predefined design-based class-

cohesion metrics are overviewed and discussed. In addition,
other related work in the area of measuring software cohesion
is overviewed. Finally, the specifications of UML class
diagram and its relation to this work is briefly illustrated.

A. Design-based Class-Cohesion Metrics
Several metrics are proposed in the literature to measure the

class cohesion during the software high-level design phase.
These metrics use different models and different formulas as
follows:

1. Ratio of Cohesive Interactions
Briand et al. [2] define a design-based cohesion metric

called the Ratio of Cohesive Interactions (RCI) for Ada
object-systems. The metric considers only the data to data
(DD) and data to subroutine (DS) interactions. In Ada, a type
and variables of that type can be defined inside a software
part. Briand et al. consider each definition of a variable of a
type defined within the software part as a cohesive interaction
between the variable and the type. Interactions among
variables within subroutines are not considered, because their
details are not available during the design phase. The DS
interaction occurs if a type defined within the software part
matches the type of one of the subroutine parameters, or a
variable within the software part is listed in the method
parameter list. The RCI metric is defined as the ratio of the
number of cohesive interactions of a module to the total

number of possible cohesive interactions. The RCI metric
does not take the indirect interactions into account. In
addition, Briand et al. consider the inclusion of method
invocation interactions and inheritance relations as subjects
for future work.

Briand et al. [2] define three properties for cohesion
metrics. The first property, called normalization, is that the
cohesion measure belongs to a specific interval [0, Max]. The
second property, called monotonicity, is that adding cohesive
interactions to the module cannot decrease its cohesion. The
third property, called cohesive modules, is that merging two
unrelated modules into one module does not increase the
module's cohesion. The total cohesion of split classes is the
weighted summation of the cohesion of the individual classes.

2. Cohesion among Methods in a Class
Bansiya et al. [3] propose a design-based class cohesion

metric called Cohesion Among Methods in a Class (CAMC).
In this metric, only the method-method interactions are
considered. The CAMC metric uses a parameter occurrence
matrix that has a row for each method and a column for each
data type that appears at least once as the type of a parameter
in at least one method in the class. The value in row i and
column j in the matrix equals 1 when ith method has a
parameter of jth data type, and equals 0 otherwise. In the
matrix, the type of the class is always included in the
parameter type list, and every method has an interaction with
this data type, because every method implicitly has a self
parameter. This means that one of the columns is filled
entirely with 1s. The CAMC metric is defined as the ratio of
the total number of 1s in the matrix to the total size of the
matrix. Counsell et al. [4] suggest omitting the type of the
class from the parameter occurrence matrix and calculating
CAMC using the modified matrix. We refer to this metric as
CAMCc.

3. Normalized Hamming Distance (NHD) Metric
Counsell et al. [4] propose design-based class cohesion

metric called the Normalized Hamming Distance (NHD). In
this metric, only the method-method interactions are
considered. The metric uses the same parameter occurrence
matrix used by CAMC metric (the type of the class is not
considered). The metric calculates the average of the
parameter agreement between each pair of methods. The
parameter agreement between a pair of methods is defined as
the number of places in which the parameter occurrence
vectors of the two methods are equal. Formally, the metric is
defined as follows:

∑∑∑
=

−

= +=

−
−

−=
−

=
l

j
jj

k

j

k

ji
ij xkx

klk
c

klk
NHD

1

1

1 1
)(

)1(
21

)1(
2

 (1)
where l is the number of columns, k is the number of rows, aij
is the number of entries in rows i and j in which both are equal
to 1, and xj is the number of 1s in the jth column of the
parameter occurrence matrix.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3075

B. Other Cohesion Measuring Related Work
In 1979, Yourdon et al. [12] proposed seven levels of

cohesion, which included coincidental, logical, temporal,
procedural, communicational, sequential, and functional. The
cohesion levels are listed in ascending order according to their
desirability. Since then, several cohesion metrics have been
proposed for procedural and object-oriented programming
languages. Different models are used to measure the cohesion
of procedural programs, such as control flow graph [13],
variable dependence graph [14], slicing metrics [15], and
program data slices [16] [17]. In [18] and [19], cohesion is
measured indirectly by examining the quality of the structured
designs.

Several code-based class cohesion metrics are proposed in
the literature. These metrics are based on the use or share of
the class instance variables. In [5], the LCOM metric counts
the number of pairs of methods that do not share instance
variables. Chidamber [6] proposes another version for the
LCOM metric that calculates the difference between the
number of method pairs that do and do not share instance
variables. Li and Henry [20] use an undirected graph that
represents each method as a node and the sharing of at least an
instance variable as an edge. The class cohesion is measured
as the number of connected components in the graph. This
class cohesion is extended in [7] by adding an edge between a
pair of methods, if one of them invokes the other. Bieman and
Kang [8] propose two class cohesion metrics, TCC and LCC,
to measure the relative number of directly connected pairs of
methods and relative number of directly or indirectly
connected pairs of methods, respectively. These two metrics
consider two methods to be connected, if they share at least
one instance variable. Cohesion metrics DCD and DCI [9] are
similar to TCC and LCC, respectively, but by considering two
methods connected when one of them invokes the other.
Wang et al. [10] introduce a DMC class cohesion metric based
on a dependence matrix that represents the dependence degree
among the instance variables and methods in a class. In [11] a
class cohesion metric that considers the cardinality of
intersection between each pair of methods is proposed. In [21]
and [22] class cohesion metrics similar to CAMC but for the
method/instance variable matrix are proposed.

C. UML Class Diagram
UML is a standard language used for modeling object-

oriented design. UML 2.0 [23] consists of 13 types of
diagrams. In this paper, we are interested in class diagram.
The class diagram describes the system's classes and the static
relationship between them. The description of a class includes
the names and types of the attributes and the names, return
types, and parameter types of the methods. Fig 1 shows a
sample class diagram for the AccountDialog class.

III. MODEL DEFINITION
In [3] and [4], the parameter occurrence matrix uses the

parameter types as bases for their metrics. Their argument is
that it is expected that the method uses the attributes that their

types are matching the types of the parameters. The main
criticism for this argument is that some methods can have
parameters of types not matching the types of the attributes. In
this case, methods that share these types are considered
cohesive despite the fact that they do not share any attributes.
In addition, the parameter occurrence matrix does not inform
whether all attributes are used within the methods. Therefore,
in some cases, the class is considered fully cohesive despite
the fact that some of its attributes are never used by the
methods. Since the aim is to predict the share of attributes
between the methods, we introduce the Direct Attribute-Type
(DAT) matrix that uses the types of the attributes themselves
instead of using the types of the method parameters. The
matrix is a binary k×l matrix, where k is the number of
methods and l is the number of distinct attribute types in the
class of interest. To construct the matrix, the names and return
types of the methods and the types of the parameters and the
attributes are extracted from the UML class diagram
overviewed in Section 2.3. The DAT matrix has rows indexed
by the methods and columns indexed by the distinct attribute
types, and for 1≤i≤k, 1≤j≤l,

⎪⎩

⎪
⎨
⎧

=
 otherwise 0

 method,th ofreturn or parameters the
 of oneleast at for typea is typedatath if 1

i
j

mij

Fig. 1 UML class diagram for AccountDialog

The matrix explicitly models the direct attribute-method

interactions. A method has a cohesive interaction with an
attribute, if the attribute type matches the type of at least one
parameter or return of the method. In addition, the matrix
implicitly models the method-method and attribute-attribute
interactions. A method has a cohesive interaction with another
method, if their parameters or returns share the same attribute
type. An attribute has a cohesive interaction with another
attribute, if their types are shared in a method. This indicates
that the method defines an interaction between the two
attributes. A binary value 1 in the DAT matrix indicates a
cohesive attribute-method interaction. A cohesive method-
method interaction is represented in the DAT by two rows
sharing binary values 1 in a column. Similarly, a cohesive
attribute-attribute interaction is represented in the DAT by two
columns sharing binary values 1 in a row. In this matrix, the
return type of the method is considered. The reason is that it is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3076

occasionally noticeable that some methods access some
attributes not passed as parameters and return results that
match the types of the accessed attributes. Consequently, the
return type gives an indication for the accessed attributes
within methods, and therefore, it should be considered in the
class cohesion measurement.

Fig. 2 shows the DAT matrix of the AccountDialog class.
The matrix is constructed using the information provided by
the UML class diagram given in Fig 1. The matrix shows that
three of the attribute types are used by showInfo method, one
of the attribute types is used by showAddress method, and one
of the attributes is used by readName method (as a return
type).

Fig. 2 The DAT matrix for the AccountDialog class

IV. THE DISTANCE DESIGN-BASED DIRECT CLASS COHESION
(D3C2) METRIC DEFINITION

The D3C2 metric uses the DAT matrix to measure the
method-method interactions caused by sharing attribute types,
the attribute-attribute interactions caused by the expected use
of attribute within the methods, and the attribute-method
interactions. The different types of cohesion caused by the
three types of interactions are referred to as Method-Method
through Attributes Cohesion (MMAC), Attribute-Attribute
Cohesion (AAC), and Attribute-Method Cohesion (AMC),
respectively.

A. MMAC and AAC Metrics
The similarity between two items is the collection of their

shared properties, and the distance is the opposite [24]. In the
context of the DAT matrix introduced in Section 3, the
distance between two rows and two columns quantifies the
lack of cohesion between a pair of methods and a pair of
attributes, respectively. The distance between a pair of rows or
columns is defined as the number of entries in a row or
column that have different binary values than the
corresponding ones in the other row or column. The
normalized distance, denoted as ndist(i,j), between a pair of
rows or columns i and j is defined as the ratio of the distance
between the two rows or columns to the number of entities Y
in the row or column of the matrix, and it is defined formally
as follows:

∑ ∑
−

= +=−
−=

1

1 1
),(

)1(
2

1)(
k

i

k

ij
jindist

kk
CMMAC (2)

where ⊕ is the logical exclusive-or relation (i.e., equals 1 if
the two operands have different values). A distance measure
has to satisfy three properties: (1) the distance is always

greater than or equal to zero, (2) the distance relation is
symmetric, and (3) the distance between an element and itself
is equal to zero [24]. For a pair of rows or columns, the
minimum number of corresponding entries that have different
binary values is zero; that is it when both rows or columns are
identical. On the other hand, the maximum number of
corresponding entities that have different binary values is
equal to the total number of cells in the row or column. This
occurs when each corresponding entries have different binary
values. As a result, the normalized distance ranges in the
interval [0, 1]. Since relation ⊕ is symmetric, the normalized
distance between any pair of rows or columns is symmetric.
Finally, the exclusive-or of an entry and itself is equal to zero.
Therefore, the distance between a row or column and itself is
equal to zero. As a result, the metric given in Formula 2 is a
distance measure.

Generally, cohesion refers to the degree of similarity
between module components. Similarity and distance are
complementary measures. As a result, cohesion and distance
are complementary measures [24]. Formally, we define
cohesion of a pair of methods or attributes as the degree of
similarity between them, and it is calculated as follows:

 C(i,j) = 1- ndist(i,j) (3)

The MMAC is the average cohesion of all pairs of methods,
and the AAC is the average cohesion of all pairs of attributes.
Formally, using the DAT matrix, the MMAC of a class C
consists of k methods and l distinct attribute types is defined
formally as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

=
==

=
∑∑

−

= +=

1

1 1
otherwise.),(

)1(
2

1, if 1
0,or 0 if 0

)(k

i

k

ij
jiC

kk

k
lk

CMMAC (4)

Given the fact that the normalized distance between any
pair of methods is symmetric and by substituting Formula 3
into Formula 4, the MMAC of class C is calculated in the case
of having more than one method in the class as follows:

∑ ∑
−

= +=−
−=

1

1 1
),(

)1(
21)(

k

i

k

ij
jindist

kk
CMMAC (5)

By substituting Formula 2 into Formula 5, the MMAC of
class C is calculated in the case of having more than one
method in the class as follows:

∑∑∑
−

= += =

⊕
−

−=
1

1 1 1
)(

)1(
21)(

k

i

k

ij

l

w
jwiw mm

klk
CMMAC (6)

The following metric is an alternative form of the MMAC
metric, which facilitates the analysis of the metric and speeds
up its computation:

 String int Date Address
showInfo 1 1 1 0
showAddress 0 0 0 1
showExtraInfo 0 0 0 0
readName 1 0 0 0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3077

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

−

=
==

= ∑
= otherwise.

)1(

)1(

1, if 1
0,or 0 if 0

)(
1

klk

xx

k
lk

CMMAC l

i
ii

 (7)

where xi is the number of 1s in the ith column of the DAT
matrix.
Proof: By definition, when k=1 or k=0 and l=0, Formula 4 and
6 are equal. Otherwise, for the ith column, there are xi(xi-1)/2
similarities between the methods, and therefore, there are k(k-
1)/2- xi(xi-1)/2 differences between the methods. By
definition,

⎥
⎦

⎤
⎢
⎣

⎡ −
−

−
−

−=

−
−

−
−

−=

∑

∑

=

=

l

i

ii

l

i

ii

xxklk
klk

xxkk
klk

CMMAC

1

1

2
)1(

2
)1(

)1(
21

)
2

)1(
2

)1((
)1(

21)(

The result follows. ■
Similarly, the AAC of a class C is defined formally as
follows:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

−

=
==

= ∑
= otherwise.

)1(

)1(

1, if 1
0,or 0 if 0

)(
1

lkl

yy

l
lk

CAAC k

i
ii

 (8)

where yi is the number of 1s in the ith row of the DAT
matrix.

For example, using Formula 7, the MMAT for
AccountDialog class is calculated as follows:

042.0
)3)(4(4

)0(1)0(1)0(1)1(2log)(=
+++

=AccountDiaMMAT

Using Formula 8, the AAC for AccountDialog class is
calculated as follows:

125.0
)3)(4(4

)0(1)1(0)0(1)2(3log)(=
+−++AccountDiaAAC

B. AMC Metric
The notion of similarity and distance is applicable only

when the considered pair is of the same entity. Therefore, the
notion of similarity and distance is applicable for pairs of
method-method and attribute-attribute, but it is not applicable
for pairs of attribute-method, because attributes and methods
are of two different entities. In this case, the cohesion is the
average number of attribute-method interactions represented
in the DAT matrix. In other words, the AMC is the ratio of the
number of 1s in the DAT matrix to the total size of the matrix.
The AMC of a class C is defined formally as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧ ==

= ∑∑
= = otherwise.

0,or 0 if 0

)(
1 1

kl

m

lk

CAMC
k

i

l

j
ij (9)

Using Formula 9, AMC(AccountDialog)=5/16=0.313

C. D3C2 Metric
The D3C2 metric is not defined if the class has no methods

and no attributes. The D3C2 metric is defined as the weighted
summation of the MMAC, AAC, and AMC metrics. The D3C2
of a class C is defined for k>1 and l>1 as follows:

lkAPMP
CAMClkCAACAPCMMACMPCCD

++
++

=
)(*)(*)(*)(23

 (10)

where MP is the number of method pairs, and AP is the
number of distinct attribute-types pairs. By substituting MP
and AP with their formulas in Formula 10 and considering all
cases of k and l except when both are equal to 0, the D3C2 is
more formally defined as follows:

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−+−
+−+−

==
==

=
otherwise.

2)1()1(
)(2)()1()()1(

0, and 1 if1
1, and 0 if0

)(23

lkllkk
ClkAMCCAACllCMMACkk

lk
lk

CCD
(11)

Using Formula 11, the D3C2 for AccountDialog class is
calculated as follows:

227.0
)4)(4(2)3(4)3(3

)313.0)(4)(4(2)125.0)(3(4)042.0)(3(4log)(23 =
++

++
=AccountDiaCD

V. SENSITIVITY
Table I shows several patterns for the matrices used by

CAMCc, NHD, and D3C2 metrics. The table shows that the
value of the CAMCc metric result is the same for classes A
and B despite the fact that the intuition informs that class A is
more cohesive than class B. The same scenario applies for
classes D and C. The NHD metric violates the intuition by
giving the same result for classes A, B, and D and by
considering class C to be more cohesive than class D. The
D3C2 metric follows the intuition for all the listed cases. The
metric results show that class A is more cohesive than class B,
which is expected, because none of the pairs of rows or
columns in the matrix representing class B share any
commonality, whereas the pairs of columns in the matrix
representing class A share some commonalities. Class D is
more cohesive than class A, because the pairs of columns and
the pairs of rows in the matrix representing class D share
some commonalities. Class C is more cohesive than class D,
because the matrix representing class C has more pairs of
rows sharing some commonalities. Finally, class E is the most
cohesive, because its matrix shows that it has the largest
number of cohesive interactions among the other matrices.
This shows that the D3C2 metric is more sensitive than the
other two metrics, and it gives more meaningful and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3078

representative results.

VI. CONCLUSION AND FUTURE WORK
This paper introduces a design-based class cohesion metric

that considers three types of interactions: method-method
interactions caused by sharing attribute types, attribute-
attribute interactions caused by the expected use of attributes
within the methods, and attribute-method interactions. The
metric uses a matrix constructed using a UML class diagram
available at the high-level design phase. The metric uses the
distance between pairs of methods and pairs of attributes as
bases to compute their degree of similarity.

The introduced metric can be improved in several
directions, such as considering indirect interactions and
method invocation interactions. In the future, we plan to
compare our metric with others empirically. In addition, we
plan to introduce a similar code-based class metric and study
it empirically.

TABLE I
VALUES OF DIFFERENT COHESION METRICS ON 5 SAMPLE CLASSES
Class Matrix

pattern
CAMCc NHD D3C2

A

0.2 0.6 0.16

B

0.2 0.6 0.11

C

0.36 0.68 0.29

D

0.36 0.44 0.26

E

0.8 0.6 0.76

REFERENCES
[1] Z. Chen, Y. Zhou, and B. Xu, A novel approach to measuring class

cohesion based on dependence analysis, Proceedings of the International
Conference on Software Maintenance, 2002, pp. 377-384.

[2] L. C. Briand , S. Morasca , and V. R. Basili, Defining and validating
measures for object-based high-level design, IEEE Transactions on
Software Engineering, Vol. 25, No. 5, 1999, pp. 722-743.

[3] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A class cohesion metric for
object-oriented designs, Journal of Object-Oriented Program, Vol. 11,
No. 8, pp. 47-52. 1999.

[4] S. Counsell , S. Swift , and J. Crampton, The interpretation and utility of
three cohesion metrics for object-oriented design, ACM Transactions on

Software Engineering and Methodology (TOSEM), Vol. 15, No. 2,
2006, pp.123-149.

[5] S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-
Oriented Design, Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), Special Issue of SIGPLAN Notices, Vol.
26, No. 10, 1991, pp. 197-211.

[6] S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented
Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476-493.

[7] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object
oriented systems, Proceedings of the International Symposium on
Applied Corporate Computing, 1995, pp. 25-27.

[8] J. M. Bieman and B. Kang, Cohesion and reuse in an object-oriented
system, Proceedings of the 1995 Symposium on Software reusability,
Seattle, Washington, United States, pp. 259-262, 1995.

[9] L. Badri and M. Badri, A Proposal of a new class cohesion criterion: an
empirical study, Journal of Object Technology, Vol. 3, No. 4, 2004.

[10] J. Wang, Y. Zhou, L. Wen, Y. Chen, H. Lu, and B. Xu, DMC: a more
precise cohesion measure for classes. Information and Software
Technology, Vol. 47, No. 3, 2005, pp. 167-180.

[11] L. Fernández, and R. Peña, A sensitive metric of class cohesion,
International Journal of Information Theories and Applications, Vol. 13,
No. 1, 2006, pp. 82-91.

[12] E. Yourdon and L. Constantine, Structured Design, Prentice-Hall,
Englewood Cliffs, 1979.

[13] T. Emerson, A discriminant metrics for module cohesion, In Proceedings
of the 7th International Conference on Software Engineering, 1984, pp.
294-303.

[14] A. Lakhotia, Rule-based approach to computing module cohesion,
Proceedings of the 15th international conference on Software
Engineering, Baltimore, US, 1993, pp. 35-44.

[15] L. Ott and J. Thuss, Slice based metrics for estimating cohesion,
Proceedings of the First International Software Metrics Symposium,
Baltimore, 1993, pp. 71-81.

[16] J. Bieman and L. Ott, Measuring functional cohesion, IEEE
Transactions on Software Engineering, Vol. 20, No. 8, 1994, pp. 644-
657.

[17] J. Al Dallal, Using distance measurement for software functional
cohesion, IASTED International Conference on Software Engineering
(SE 2005), Innsbruck, Austria, 2005, pp. 132-137.

[18] D. Troy and S. Zweben, Measuring the quality of structured designs,
Journal of Systems and Software, 2, 1981, pp. 113-120.

[19] J. Bieman and B. Kang, Measuring design-level cohesion, IEEE
Transactions on Software Engineering, Vol. 24, No. 2, 1998, pp. 111-
124.

[20] W. Li and S.M. Henry, Maintenance metrics for the object oriented
paradigm. In Proceedings of 1st International Software Metrics
Symposium, Baltimore, MD, 1993, pp. 52-60.

[21] B. Henderson-sellers, Object-Oriented Metrics Measures of Complexity,
Prentice-Hall, 1996.

[22] L. C. Briand, J. Daly, and J. Wuest, A unified framework for cohesion
measurement in object-oriented systems, Empirical Software
Engineering - An International Journal, Vol. 3, No. 1, 1998, pp. 65-117.

[23] D. Pilone and N. Pitman, UML 2.0 in a Nutshell, O'Reilly Media, Inc.,
2nd edition, 2005, pp. 234.

[24] F. Simon, S. Loffler, C. Lewerentz, Distance based cohesion measuring,
Proceedings of the FESMA'99, Amsterdam, Netherlands, 1999, pp. 69-
83.

