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Abstract—Class cohesion is an important object-oriented 

software quality attribute. It indicates how much the members in a 
class are related. Assessing the class cohesion and improving the 
class quality accordingly during the object-oriented design phase 
allows for cheaper management of the later phases. In this paper, the 
notion of distance between pairs of methods and pairs of attribute 
types in a class is introduced and used as a basis for introducing a 
novel class cohesion metric. The metric considers the method-
method, attribute-attribute, and attribute-method direct interactions. 
It is shown that the metric gives more sensitive values than other 
well-known design-based class cohesion metrics. 
 

Keywords—Object-oriented software quality, object-oriented 
design, class cohesion.  

I. INTRODUCTION 
popular goal of software engineering is to develop 
techniques and tools to develop applications that have 

high quality. Applications that have high quality are more 
stable and maintainable. In order to assess and improve the 
quality of an application during the development process, 
developers and managers use several metrics. These metrics 
estimate the quality of different software attributes, such as 
cohesion, coupling, and complexity.  

The cohesion of a module refers to the relatedness of the 
module components. The module that has high cohesion 
performs one basic function and cannot be split into separate 
modules easily. Highly cohesive modules are more 
understandable, modifiable, and maintainable [1].  

In object-oriented paradigm, classes are the basic modules. 
The members of a class are the attributes and methods. 
Therefore, class cohesion refers to the relatedness of the class 
members. The class which its members are highly correlated 
has high cohesion and cannot be split into separate classes 
easily. The degree of class cohesion gives an indication for the 
quality of class design; where a highly cohesive class is well 
designed and a lowly cohesive class is poorly designed.  

Several class cohesion metrics have been proposed in the 
literature. These metrics can be classified into design-based 
and code-based. Design-based class cohesion metrics require 
inspecting high-level design artifacts, such as method 
interfaces [2, 3, 4] to estimate the class cohesion. Code-based 
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class cohesion metrics e.g., [1, 5, 6, 7, 8, 9, 10, 11], require 
inspecting the class internal code to measure the class 
cohesion. Code-based cohesion metrics are more accurate than 
design-based ones, because they use a finer-grained artifact, 
which is the code itself. At the code level, all method-method, 
method-attribute, and attributes-attributes interactions are 
precisely defined. On the other hand, design-based class 
cohesion metrics predict cohesion weaknesses early at design 
level. Detecting class cohesion weaknesses and correcting the 
class artifacts accordingly late during the implementation 
phase are much more costly than performing the same tasks 
early during the design phase. Improving the class cohesion 
during the design phase saves development time, reduces 
development costs, and increases the overall software quality.  

The proposed design-based class cohesion metrics have 
several drawbacks. The first drawback is that some design-
based metrics are based on poorly studied hypotheses. For 
instance, in order to increase the accuracy of the measured 
class cohesion, the design-based metrics attempt to predict the 
actual interactions that would be implemented during the 
implementation phase. The method-attribute interactions are 
not defined at the high-level design phase. Therefore, as in [3] 
and [14], to predict the method-attribute interactions, the types 
of method parameters are used instead of the attributes. The 
hypothesis is that the attributes rely on the method parameters 
as a basis for the work done by the class. However, this 
hypothesis is not supported with a strong empirical study. In 
[3], only 21 C++ classes are studied to support the hypothesis. 
The second drawback is that some metrics are 
environmentally dependent. For instance, in [2] a metric is 
introduced for Ada-object systems. The metric may not be 
suitable for other environments, such as object-oriented 
systems. The third drawback is that some key features of 
object-oriented programming languages, such as inheritance, 
are not considered in the proposed metrics. The fourth 
drawback is that, as far as we know, the Unified Modeling 
Language (UML), a standard language for modeling the 
object-oriented high-level design, is not used as an artifact to 
support the measurement of class cohesion in any of the 
proposed design-based class-cohesion metrics. The fifth 
drawback is that some proposed metrics, such as CAMC [3] 
and NHD [4], are not validated against class cohesion metric 
necessary-properties. The sixth drawback is that some metrics 
ignore indirect interactions and method invocation 
interactions. Finally, the research in the area of design-based 
class cohesion measuring lacks some important empirical 
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studies to examine the affect of considering the inheritance 
relationships, method invocation interactions, indirect 
interactions, and inclusion of the interactions of the special 
types of methods, such as constructors, destructors, accessors, 
and modifiers in the metrics. 

In this paper, some predefined design-based class cohesion 
metrics are overviewed. In addition, a new model is 
introduced to represent the relationship between the parameter 
types and the attribute types. A novel design-based class 
cohesion metric that uses the model is introduced and called 
the Distance Design-based Direct Class Cohesion (D3C2) 
metric. The metric considers the method-method, method-
attribute, and attribute-attribute direct interactions identified 
using the Unified Modeling Language (UML) class diagram. 
The notion of distance between a pair of methods and a pair of 
attribute types is defined and used as a basis to measure the 
class cohesion. Several sample cases are used to assess the 
sensitivity of the metric to model changes comparing to the 
sensitivity of other well-known design-based class cohesion 
metrics. 

This paper is organized as follows. Section II overviews 
related work. Section III defines the model used by the 
introduced metric. Section IV defines the metric, and Section 
V compares the metric with other metrics in terms of 
sensitivity. Finally, Section VI provides conclusions and a 
discussion of future work.  

II. RELATED WORK 
In this section, several predefined design-based class-

cohesion metrics are overviewed and discussed. In addition, 
other related work in the area of measuring software cohesion 
is overviewed. Finally, the specifications of UML class 
diagram and its relation to this work is briefly illustrated. 

A. Design-based Class-Cohesion Metrics 
Several metrics are proposed in the literature to measure the 

class cohesion during the software high-level design phase. 
These metrics use different models and different formulas as 
follows: 

1.  Ratio of Cohesive Interactions 
Briand et al. [2] define a design-based cohesion metric 

called the Ratio of Cohesive Interactions (RCI) for Ada 
object-systems. The metric considers only the data to data 
(DD) and data to subroutine (DS) interactions. In Ada, a type 
and variables of that type can be defined inside a software 
part. Briand et al. consider each definition of a variable of a 
type defined within the software part as a cohesive interaction 
between the variable and the type. Interactions among 
variables within subroutines are not considered, because their 
details are not available during the design phase. The DS 
interaction occurs if a type defined within the software part 
matches the type of one of the subroutine parameters, or a 
variable within the software part is listed in the method 
parameter list. The RCI metric is defined as the ratio of the 
number of cohesive interactions of a module to the total 

number of possible cohesive interactions. The RCI metric 
does not take the indirect interactions into account. In 
addition, Briand et al. consider the inclusion of method 
invocation interactions and inheritance relations as subjects 
for future work.   

Briand et al. [2] define three properties for cohesion 
metrics. The first property, called normalization, is that the 
cohesion measure belongs to a specific interval [0, Max]. The 
second property, called monotonicity, is that adding cohesive 
interactions to the module cannot decrease its cohesion. The 
third property, called cohesive modules, is that merging two 
unrelated modules into one module does not increase the 
module's cohesion. The total cohesion of split classes is the 
weighted summation of the cohesion of the individual classes. 

2.  Cohesion among Methods in a Class 
Bansiya et al. [3] propose a design-based class cohesion 

metric called Cohesion Among Methods in a Class (CAMC). 
In this metric, only the method-method interactions are 
considered. The CAMC metric uses a parameter occurrence 
matrix that has a row for each method and a column for each 
data type that appears at least once as the type of a parameter 
in at least one method in the class. The value in row i and 
column j in the matrix equals 1 when ith method has a 
parameter of jth data type, and equals 0 otherwise. In the 
matrix, the type of the class is always included in the 
parameter type list, and every method has an interaction with 
this data type, because every method implicitly has a self 
parameter. This means that one of the columns is filled 
entirely with 1s. The CAMC metric is defined as the ratio of 
the total number of 1s in the matrix to the total size of the 
matrix. Counsell et al. [4] suggest omitting the type of the 
class from the parameter occurrence matrix and calculating 
CAMC using the modified matrix. We refer to this metric as 
CAMCc. 

3.  Normalized Hamming Distance (NHD) Metric 
Counsell et al. [4] propose design-based class cohesion 

metric called the Normalized Hamming Distance (NHD). In 
this metric, only the method-method interactions are 
considered. The metric uses the same parameter occurrence 
matrix used by CAMC metric (the type of the class is not 
considered). The metric calculates the average of the 
parameter agreement between each pair of methods. The 
parameter agreement between a pair of methods is defined as 
the number of places in which the parameter occurrence 
vectors of the two methods are equal. Formally, the metric is 
defined as follows: 
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where l is the number of columns, k is the number of rows, aij 
is the number of entries in rows i and j in which both are equal 
to 1, and xj is the number of 1s in the jth column of the 
parameter occurrence matrix. 
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B. Other Cohesion Measuring Related Work 
In 1979, Yourdon et al. [12] proposed seven levels of 

cohesion, which included coincidental, logical, temporal, 
procedural, communicational, sequential, and functional. The 
cohesion levels are listed in ascending order according to their 
desirability. Since then, several cohesion metrics have been 
proposed for procedural and object-oriented programming 
languages. Different models are used to measure the cohesion 
of procedural programs, such as control flow graph [13], 
variable dependence graph [14], slicing metrics [15], and 
program data slices [16] [17]. In [18] and [19], cohesion is 
measured indirectly by examining the quality of the structured 
designs. 

Several code-based class cohesion metrics are proposed in 
the literature. These metrics are based on the use or share of 
the class instance variables. In [5], the LCOM metric counts 
the number of pairs of methods that do not share instance 
variables. Chidamber [6] proposes another version for the 
LCOM metric that calculates the difference between the 
number of method pairs that do and do not share instance 
variables. Li and Henry [20] use an undirected graph that 
represents each method as a node and the sharing of at least an 
instance variable as an edge. The class cohesion is measured 
as the number of connected components in the graph. This 
class cohesion is extended in [7] by adding an edge between a 
pair of methods, if one of them invokes the other. Bieman and 
Kang [8] propose two class cohesion metrics, TCC and LCC, 
to measure the relative number of directly connected pairs of 
methods and relative number of directly or indirectly 
connected pairs of methods, respectively. These two metrics 
consider two methods to be connected, if they share at least 
one instance variable. Cohesion metrics DCD and DCI [9] are 
similar to TCC and LCC, respectively, but by considering two 
methods connected when one of them invokes the other. 
Wang et al. [10] introduce a DMC class cohesion metric based 
on a dependence matrix that represents the dependence degree 
among the instance variables and methods in a class. In [11] a 
class cohesion metric that considers the cardinality of 
intersection between each pair of methods is proposed. In [21] 
and [22] class cohesion metrics similar to CAMC but for the 
method/instance variable matrix are proposed.  

C. UML Class Diagram 
UML is a standard language used for modeling object-

oriented design. UML 2.0 [23] consists of 13 types of 
diagrams. In this paper, we are interested in class diagram. 
The class diagram describes the system's classes and the static 
relationship between them. The description of a class includes 
the names and types of the attributes and the names, return 
types, and parameter types of the methods. Fig 1 shows a 
sample class diagram for the AccountDialog class. 

III. MODEL DEFINITION 
In [3] and [4], the parameter occurrence matrix uses the 

parameter types as bases for their metrics. Their argument is 
that it is expected that the method uses the attributes that their 

types are matching the types of the parameters. The main 
criticism for this argument is that some methods can have 
parameters of types not matching the types of the attributes. In 
this case, methods that share these types are considered 
cohesive despite the fact that they do not share any attributes. 
In addition, the parameter occurrence matrix does not inform 
whether all attributes are used within the methods. Therefore, 
in some cases, the class is considered fully cohesive despite 
the fact that some of its attributes are never used by the 
methods. Since the aim is to predict the share of attributes 
between the methods, we introduce the Direct Attribute-Type 
(DAT) matrix that uses the types of the attributes themselves 
instead of using the types of the method parameters. The 
matrix is a binary k×l matrix, where k is the number of 
methods and l is the number of distinct attribute types in the 
class of interest. To construct the matrix, the names and return 
types of the methods and the types of the parameters and the 
attributes are extracted from the UML class diagram 
overviewed in Section 2.3. The DAT matrix has rows indexed 
by the methods and columns indexed by the distinct attribute 
types, and for 1≤i≤k, 1≤j≤l, 
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Fig. 1 UML class diagram for AccountDialog 

 
The matrix explicitly models the direct attribute-method 

interactions. A method has a cohesive interaction with an 
attribute, if the attribute type matches the type of at least one 
parameter or return of the method. In addition, the matrix 
implicitly models the method-method and attribute-attribute 
interactions. A method has a cohesive interaction with another 
method, if their parameters or returns share the same attribute 
type. An attribute has a cohesive interaction with another 
attribute, if their types are shared in a method. This indicates 
that the method defines an interaction between the two 
attributes. A binary value 1 in the DAT matrix indicates a 
cohesive attribute-method interaction. A cohesive method-
method interaction is represented in the DAT by two rows 
sharing binary values 1 in a column. Similarly, a cohesive 
attribute-attribute interaction is represented in the DAT by two 
columns sharing binary values 1 in a row. In this matrix, the 
return type of the method is considered. The reason is that it is 
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occasionally noticeable that some methods access some 
attributes not passed as parameters and return results that 
match the types of the accessed attributes. Consequently, the 
return type gives an indication for the accessed attributes 
within methods, and therefore, it should be considered in the 
class cohesion measurement. 

Fig. 2 shows the DAT matrix of the AccountDialog class. 
The matrix is constructed using the information provided by 
the UML class diagram given in Fig 1. The matrix shows that 
three of the attribute types are used by showInfo method, one 
of the attribute types is used by showAddress method, and one 
of the attributes is used by readName method (as a return 
type). 
 

 
Fig. 2 The DAT matrix for the AccountDialog class 

IV. THE DISTANCE DESIGN-BASED DIRECT CLASS COHESION 
(D3C2) METRIC DEFINITION 

The D3C2 metric uses the DAT matrix to measure the 
method-method interactions caused by sharing attribute types, 
the attribute-attribute interactions caused by the expected use 
of attribute within the methods, and the attribute-method 
interactions. The different types of cohesion caused by the 
three types of interactions are referred to as Method-Method 
through Attributes Cohesion (MMAC), Attribute-Attribute 
Cohesion (AAC), and Attribute-Method Cohesion (AMC), 
respectively. 

A. MMAC and AAC Metrics 
The similarity between two items is the collection of their 

shared properties, and the distance is the opposite [24]. In the 
context of the DAT matrix introduced in Section 3, the 
distance between two rows and two columns quantifies the 
lack of cohesion between a pair of methods and a pair of 
attributes, respectively. The distance between a pair of rows or 
columns is defined as the number of entries in a row or 
column that have different binary values than the 
corresponding ones in the other row or column. The 
normalized distance, denoted as ndist(i,j), between a pair of 
rows or columns i and j is defined as the ratio of the distance 
between the two rows or columns to the number of entities Y 
in the row or column of the matrix, and it is defined formally 
as follows: 
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where ⊕ is the logical exclusive-or relation (i.e., equals 1 if 
the two operands have different values). A distance measure 
has to satisfy three properties: (1) the distance is always 

greater than or equal to zero, (2) the distance relation is 
symmetric, and (3) the distance between an element and itself 
is equal to zero [24]. For a pair of rows or columns, the 
minimum number of corresponding entries that have different 
binary values is zero; that is it when both rows or columns are 
identical. On the other hand, the maximum number of 
corresponding entities that have different binary values is 
equal to the total number of cells in the row or column. This 
occurs when each corresponding entries have different binary 
values. As a result, the normalized distance ranges in the 
interval [0, 1]. Since relation ⊕ is symmetric, the normalized 
distance between any pair of rows or columns is symmetric. 
Finally, the exclusive-or of an entry and itself is equal to zero. 
Therefore, the distance between a row or column and itself is 
equal to zero. As a result, the metric given in Formula 2 is a 
distance measure.  

Generally, cohesion refers to the degree of similarity 
between module components. Similarity and distance are 
complementary measures. As a result, cohesion and distance 
are complementary measures [24]. Formally, we define 
cohesion of a pair of methods or attributes as the degree of 
similarity between them, and it is calculated as follows: 

      C(i,j) = 1- ndist(i,j)                                (3) 

The MMAC is the average cohesion of all pairs of methods, 
and the AAC is the average cohesion of all pairs of attributes. 
Formally, using the DAT matrix, the MMAC of a class C 
consists of k methods and l distinct attribute types is defined 
formally as follows:  
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Given the fact that the normalized distance between any 
pair of methods is symmetric and by substituting Formula 3 
into Formula 4, the MMAC of class C is calculated in the case 
of having more than one method in the class as follows: 
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By substituting Formula 2 into Formula 5, the MMAC of 
class C is calculated in the case of having more than one 
method in the class as follows: 
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The following metric is an alternative form of the MMAC 
metric, which facilitates the analysis of the metric and speeds 
up its computation: 

 String int Date Address 
showInfo 1 1 1 0 
showAddress 0 0 0 1 
showExtraInfo 0 0 0 0 
readName 1 0 0 0 
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where xi is the number of 1s in the ith column of the DAT 
matrix.  
Proof: By definition, when k=1 or k=0 and l=0, Formula 4 and 
6 are equal. Otherwise, for the ith column, there are xi(xi-1)/2 
similarities between the methods, and therefore, there are k(k-
1)/2- xi(xi-1)/2 differences between the methods. By 
definition, 
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The result follows. ■ 
Similarly, the AAC of a class C is defined formally as 
follows: 
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where yi is the number of 1s in the ith row of the DAT 
matrix. 

For example, using Formula 7, the MMAT for 
AccountDialog class is calculated as follows: 

042.0
)3)(4(4

)0(1)0(1)0(1)1(2log)( =
+++

=AccountDiaMMAT

Using Formula 8, the AAC for AccountDialog class is 
calculated as follows: 

125.0
)3)(4(4

)0(1)1(0)0(1)2(3log)( =
+−++AccountDiaAAC

 
B. AMC Metric 
The notion of similarity and distance is applicable only 

when the considered pair is of the same entity. Therefore, the 
notion of similarity and distance is applicable for pairs of 
method-method and attribute-attribute, but it is not applicable 
for pairs of attribute-method, because attributes and methods 
are of two different entities. In this case, the cohesion is the 
average number of attribute-method interactions represented 
in the DAT matrix. In other words, the AMC is the ratio of the 
number of 1s in the DAT matrix to the total size of the matrix. 
The AMC of a class C is defined formally as follows: 
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Using Formula 9, AMC(AccountDialog)=5/16=0.313 

C. D3C2 Metric 
The D3C2 metric is not defined if the class has no methods 

and no attributes. The D3C2 metric is defined as the weighted 
summation of the MMAC, AAC, and AMC metrics. The D3C2 
of a class C is defined for k>1 and l>1 as follows: 
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where MP is the number of method pairs, and AP is the 
number of distinct attribute-types pairs. By substituting MP 
and AP with their formulas in Formula 10 and considering all 
cases of k and l except when both are equal to 0, the D3C2 is 
more formally defined as follows: 
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Using Formula 11, the D3C2 for AccountDialog class is 
calculated as follows: 

227.0
)4)(4(2)3(4)3(3
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V. SENSITIVITY 
Table I shows several patterns for the matrices used by 

CAMCc, NHD, and D3C2 metrics. The table shows that the 
value of the CAMCc metric result is the same for classes A 
and B despite the fact that the intuition informs that class A is 
more cohesive than class B. The same scenario applies for 
classes D and C. The NHD metric violates the intuition by 
giving the same result for classes A, B, and D and by 
considering class C to be more cohesive than class D. The 
D3C2 metric follows the intuition for all the listed cases. The 
metric results show that class A is more cohesive than class B, 
which is expected, because none of the pairs of rows or 
columns in the matrix representing class B share any 
commonality, whereas the pairs of columns in the matrix 
representing class A share some commonalities. Class D is 
more cohesive than class A, because the pairs of columns and 
the pairs of rows in the matrix representing class D share 
some commonalities. Class C is more cohesive than class D, 
because the matrix representing class C has more pairs of 
rows sharing some commonalities. Finally, class E is the most 
cohesive, because its matrix shows that it has the largest 
number of cohesive interactions among the other matrices. 
This shows that the D3C2 metric is more sensitive than the 
other two metrics, and it gives more meaningful and 
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representative results. 

VI. CONCLUSION AND FUTURE WORK 
This paper introduces a design-based class cohesion metric 

that considers three types of interactions: method-method 
interactions caused by sharing attribute types, attribute-
attribute interactions caused by the expected use of attributes 
within the methods, and attribute-method interactions. The 
metric uses a matrix constructed using a UML class diagram 
available at the high-level design phase. The metric uses the 
distance between pairs of methods and pairs of attributes as 
bases to compute their degree of similarity. 

The introduced metric can be improved in several 
directions, such as considering indirect interactions and 
method invocation interactions. In the future, we plan to 
compare our metric with others empirically. In addition, we 
plan to introduce a similar code-based class metric and study 
it empirically. 
 

TABLE I 
VALUES OF DIFFERENT COHESION METRICS ON 5 SAMPLE CLASSES 
Class Matrix 

pattern 
CAMCc NHD D3C2

A 

 
 
 
 

0.2 0.6 0.16 

B 

 
 
 
 

0.2 0.6 0.11 

C 

 
 
 
 

0.36 0.68 0.29 

D 

 
 
 
 

0.36 0.44 0.26 

E 

 
 
 
 

0.8 0.6 0.76 
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