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Simulating Discrete Time Model Reference 
Adaptive Control System with Great Initial 

Error 
Bubaker M. F. Bushofa and Abdel Hafez A. Azab

Abstract—This article is based on the technique which is called 
Discrete Parameter Tracking (DPT). First introduced by A. A. Azab 
[8] which is applicable for less order reference model. The order of 
the reference model is (n-l) and n is the number of the adjustable 
parameters in the physical plant.  

The technique utilizes a modified gradient method [9] where the 
knowledge of the exact order of the nonadaptive system is not 
required, so, as to eliminate the identification problem. The 
applicability of the mentioned technique (DPT) was examined 
through the solution of several problems.  

This article introduces the solution of a third order system with 
three adjustable parameters, controlled according to second order 
reference model. The adjustable parameters have great initial error 
which represent condition.  

Computer simulations for the solution and analysis are provided 
to demonstrate the simplicity and feasibility of the technique. 

 
Keywords—Adaptive Control System, Discrete Parameter 

Tracking, Discrete Time Model. 

I. INTRODUCTION 
HE model reference adaptive control (MRAC) technique 
has been a popular approach to the control of the systems 

operating in the presence of the parameter and environmental 
variations. In such a scheme, the dynamic characteristics of 
the plant are specified in a reference model and the input 
signal or the controllable parameters of the plant are adjusted, 
continuously or discretely, so that its response will duplicate 
that of the model as closely as possible. The identification of 
the plant dynamic performance is not necessary and hence a 
fast adaptation can be achieved. 

A large number of practical control problems can be 
formulated as discrete time model reference adaptive system. 
Examples are: Process Control [1], Power Systems Control 
[2], Signal Processing [3], etc. The available techniques for the 
solution for such problems are of the following type: local 
parametric optimization theory [4], Lyapunov function 
techniques [5], [6] and hyperstability and positively concepts 
[7]. Most of these techniques avoid the identification problem, 
but stresses that the order of the reference model must be the 
same as that of the nonadaptive system. 
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In this paper a modified gradient tracking technique is 
proposed to solve the discrete model reference adaptive 
system when the exact order of the nonadaptive system is not 
known. The method requires that the order of the reference 
model be equal to (n-1) where n is the number of the 
controllable parameters of the discrete plant.  

The mentioned Discrete Parameter Tracking (DPT) 
technique is utilized to solve a third order nonadaptive system 
having three adjustable parameters controlled according to a 
second order reference model. The adjustable parameters 
suffer a great initial error which represents a severe practical 
operating condition for many of the mentioned available 
adaptive techniques.  

The organization of the rest of the paper is as follows: in 
section 2 the principle adaptation is presented followed by the 
mathematical function of the proposed technique illustrated 
through the mentioned third order discrete time linear variant 
physical system, representing our nonadaptive portion and a 
second order discrete input-output relationship representing 
the reference model. The concept is illustrated in section 3 
through the solution of the mentioned problem and conclusion 
appears in section 4. 

II. PRINCIPLE OF ADAPTATION 

Consider the following single-input/single-output discrete 
model reference adaptive system shown in Fig. (1) and 
represented by: 

(a) The adjustable physical plant. 
g3c(k-3) + α2c(k-2) + α1c(k-1) + α0c(k) = r(k) (1) 

and 
g3 = constant. (2) 
α2(k) = g2(k) + h2(k). 
α1(k) = g1(k) + h1(k). (3) 
α0(k) = g0(k) + h0(k). 
Where r(k) is the input sequence, c(k) is the output of the 

adjustable system, k is the sample number, α0(k), α1(k) and 
α2(k) are the adjustable system parameters, h0(k), h1(k) and 
h2(k) are the controllable adjustable system parameters, g0(k), 
g1(k), and g2(k) are the parts of system parameters which 
change due to acting disturbances. 

(b) The desired input-output relationship (Reference 
Model). 

T 
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A2y(k-2) + A1y(k-1) + A0y(k) = r(k) (4) 

Where y(k) is the desired output of the reference mode, and 
A2, A1 and A0 are constants reference model parameters.  

(c) The generalized output error,  
e(k) = c(k) – y(k) (5) 

 

Fig. 1 Block diagram of the proposed system. 
The parameters, g2(k), g1(k) and g0(k) are assumed to vary 

over extreme ranges within the operating environments of the 
nonadaptive system. Assuming also that there exists a value of 
h2(k), h1(k) and h0(k) for which the system will behave like the 
chosen model. The input information to the adaptation 
mechanism is the generalized error e(k) and its output will be 
discretely adjusting values of h2(k), h1(k) and h0(k). The 
objective is to formulate the adaptation mechanism equations. 
If no limitations are placed on the values which may be 
assumed by h2(k), h1(k) and h0(k), then regardless of what 
values g2(k), g1(k) and g0(k) take on, the output of both the 
physical plant and the reference model will be approximately 
identical whenever some chosen function of the error will be 
minimized. The error function used in this work is: 

2
2102

1 )]2()1()([)( −+−+= keqkeqkeqef  (6) 
Where q0, q1 and q2 are constant factors. 
The objective of the adaptation mechanism is the 

minimization of the error function which is a quadratic form of 
the error and depends indirectly on the differences: 

222 )()( Akk −=αδ   (7) 
111 )()( Akk −= αδ   (8) 

000 )()( Akk −=αδ  (9) 
Assuming that g2(k), g1(k) and g0(k) vary slowly as 

compared to the basic time constants of the nonadaptive 
adjustable system and the reference model, and the adaptive 
mechanism will be designed to adjust the parameters h2(k), 
h1(k) and h0(k) at a rate which is much greater than the rate of 
variation of g2(k), g1(k) and g0(k), one can use the gradient 
optimization technique which leads to the following basic 
adaptation rule:  
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Where k2, k1 and k0 are arbitrary positive constants.  
If the development where to continue to be based upon 

equations (10), (11) and (12). The resulting design would 
require explicit knowledge of α2(k), α1(k) and α0(k) and 
consequently g2(k), g1(k) and g0(k). 

Now suppose that α2(k), α1(k) and α0(k) are treated as 
constants and A2, A1 and A0 are to be adjusted so as to cause 
δ2(k), δ1(k) and δ0(k) to approach the same value, then the 
variations in A2, A1 and A0 become: 
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The objective is not to change A2, A1 and A0. However to 
change α2(k), α1(k) and α0(k). Since the same change in δ2, δ1 
and δ0, can be obtained by subtracting ΔA2, ΔA1 and ΔA0 from 
α2, α1 and α0 rather than adding them to A2, A1 and A0. Now 
the error function f(e) is driven to minimum by determining 
the appropriate increments for A2, A1 and A0 and applying the 
negative of these increments to α2, α1 and α0. 

The resulting equations for the variation in α2, α1 and α0 are: 
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Since it is assumed that the adaptation mechanism will be 
designed so as to adjust the parameters h2, h1 and h0 in a rate 
much greater than the changes in g2, g1 and g0 (i.e. Δhi » Δgi)·  

Equations (16), (17) and (18) can be approximated as: 
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When equation (6) was substituted into (19), (20) and (21) 
the partial derivative was carried out, equations (19), (20) and 
(21) yield to: 
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The terms 
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 in the above equations can 

be represented by: 
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Where D represents the delay operation. Again assuming 
slow variation, the order of the two linear operators in the 
righthand side of equation (25) and (26) can be interchanged, 
yielding to:  

ii A
kyD

A
ky

∂
∂

=
∂
−∂ )()2( 2  (27) 

ii A
kyD

A
ky

∂
∂

=
∂
−∂ )()1(  (28) 

Now introducing the notation: 
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The adaptive adjusting mechanism equations could be 
written as: 

[ ]
[ ])2()1()(             

)2()1()(            
)1()(

222120

2102

22

−+−+×
−+−+−

−=

kuqkuqkuq
keqkeqkeqk

khkh
 (30) 

[ ]
[ ])2()1()(             

)2()1()(            
)1()(

121110

2101

11

−+−+×
−+−+−

−=

kuqkuqkuq
keqkeqkeqk

khkh
 (31) 

[ ]
[ ])2()1()(             

)2()1()(            
)1()(

020100

2100

00

−+−+×
−+−+−

−=

kuqkuqkuq
keqkeqkeqk

khkh
 (32) 

The only unknown quantities in the above equations are 
u2(k), u1(k) and u0(k) .  

Consider the difference equation of the reference model, 
and taking the partial derivative of both sides with respect to 
the parameter A0, and interchanging the two linear operators as 
equation (27) and (28), employing the notation introduced in 
equation (29), we get: 

)()()1()2( 000102 kykuAkuAkuA −=+−+−  (33) 
Similarly, but differentiating with respect to A1 and A2, yield 

to: 
)1()()1()2( 201112 −−=+−+− kykuAkuAkuA  (34) 

)2()()1()2( 202122 −−=+−+− kykuAkuAkuA  (35) 
Equations (33), (34) and (35) represent three difference 

equations with available forcing functions and their solutions 
provide the values of u0(k), u1(k) and u2(k) for equations (30), 
(31) and (32). 

The complete set of difference equations which describe the 
adaptive system operation can be written as: 
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III. SOLUTION OF EXAMPLE 

Using the proposed technique, computer simulation was 
carried out to adapt the following example:  

(a) The adjustable system.  

)()()(
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kchgkchgkcg

=++
−++−++−

  

Where the parameters g0, g1 and g2 are assumed to vary and 
the numerical values of the system parameters were chosen 
initially to be: 

 
96.7)( 00 =+ hg  82.11)( 11 −=+ hg  

86.5)( 22 =+ hg  13 −=g  
and hi are assumed initially to be equal to zero.  

(b) The reference model.  
r(k) = 6.25y(k) + 1)-7.5y(k- 2)-2.25y(k .  

(c) The input:  
The input signal r(k) was chosen to be sampled square 

pulses of magnitude equal to ±2.0 and duration of 100 sec. 
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Simulation Results: 
Simulation were carried out with the system parameters g2,  

g1 and g0 varying inear1y according to the following 
equations: 

 
kkg 01.086.5)(2 −−=   

kkg 01.082.11)(1 −−=   

100k                                  0.0           
100k0                    01.096.7)(0

>=
≤≤−= kkg

  
According to the adaptation technique described in section 

2, the set of difference equations describing the dynamics of 
the adaptive mechanism are: 
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y(k)- = (k)6.25u + 1)-(k7.5u- 2)-(k2.25u 000 . 

1)-y(k- = (k)6.25u + 1)-(k7.5u- 2)-(k2.25u 111 . 
2)-y(k- = (k)6.25u + 1)-(k7.5u- 2)-(k2.25u 222 . 

 
The constant parameters of the adaptive mechanism were 

obtained by trial and error technique, (any set of parameters 
that secure the stability of the adaptive process), intently we 
choose them near optimum to represent inaccuracy which can 
be seen as part of initial error, to be: 

 
300 =k ;             301 =k ; ,302 =k  
30 =q ;               31 −=q  12 =q  

 
The results of simulation are shown in Fig.s 2 through 6 

which show the proper function of adaptive process even with 
the inaccurate choice of the adjusting mechanism parameters.  

Now we pass to the main object of this paper, which is the 
great initial error, so, we start by changing the initial value of 
g0 to be equal to 6, the results of this case are given in Figs. 7 
through 11. Then g0(0) = 7 and the results are shown in Figs. 
12 through l6. Finally g0(0) = 9 with results shown in Figs. 17 
through 21.  
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Fig. 2 hi for optimum parameters. 
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Fig. 3 Model Y & System C for optimum parameters. 
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Fig. 4 Error between Model & System for optimum parameters. 
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Fig. 5 h0 versus h1 for optimum parameters. 
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Fig. 6 h0 versus h2 for optimum parameters. 
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Fig. 7 hi for g0 = 6. 
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Fig. 8 Model Y & System C for g0 = 6. 
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Fig. 9 Error between Model & System for g0 = 6. 

-1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

h0(k)

h1
(k

)

 
Fig. 10 h0 versus h1 for g0 = 6. 
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Fig. 11 h0 versus h2 for g0 = 6. 
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Fig. 12 hi for g0 = 7. 
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Fig. 13 Model Y & System C for g0 = 7. 
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Fig. 14 Error between Model & System for g0 = 7. 
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Fig. 15 h0 versus h1 for g0 = 7. 
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Fig. 16 h0 versus h2 for g0 = 7. 
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Fig. 17 hi for g0 = 9. 
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Fig. 18 Model Y and System C for g0 = 9. 

0 100 200 300 400 500 600
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

k

e(
k)

 
Fig. 19 Error between Model and System for g0 = 9. 
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Fig. 20 h0 versus h1 for g0 = 9. 
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Fig. 21 h0 versus h2 for g0 = 9. 
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From the last results Figs. 2 through 21, it is clear the 
proper functioning of the introduced technique.  

We did the same for the initial value of g1 to be equal to -
11, -12 and -13, the results are given in Figs. 22 through 26, 
27 through 31 and 32 through 36 respectively.  

Then, again we did the same for the initial value of g2 to be 
equal 5, 6 and 7 and the results for this case are given in Figs. 
37 through 41, 42 through 46 and 47 through 51 respectively. 
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Fig. 22 hi for g1 = -11. 
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Fig. 23 Model Y and System C for g1 = -11. 
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Fig. 24 Error between Model & System for g1 = -11. 
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Fig. 25 h0 versus h1 for g1 = -11. 
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Fig. 26 h0 versus h2 for g1 = -11. 
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Fig. 27 hi for g1 = -12. 
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Fig. 28 Model Y and System C for g1 = -12. 
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Fig. 29 Error between Model & System for g1 = -12. 
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Fig. 30 h0 versus h1 for g1 = -12. 
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Fig. 31 h0 versus h2 for g1 = -12. 
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Fig. 32 hi for g1 = -13. 
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Fig. 33 Model Y and System C for g1 = -13. 
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Fig. 34 Error between Model & System for g1 = -13. 
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Fig. 35 h0 versus h1 for g1 = -13. 
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Fig. 36 h0 versus h2 for g1 = -13. 
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Fig. 37 hi for g2 = 5. 
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Fig. 38 Model Y and System C for g2 = 5. 
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Fig. 39 Error between Model & System for g2 = 5. 
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Fig. 40 h0 versus h1 for g2 = 5. 
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Fig. 41 h0 versus h2 for g2 = 5. 
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Fig. 42 hi for g2 = 6. 
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Fig. 43 Model Y and System C for g2 = 6. 
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Fig. 44 Error between Model & System for g2 = 6. 
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Fig. 45 h0 versus h1 for g2 = 6. 
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Fig. 46 h0 versus h2 for g2 = 6. 
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Fig. 47 hi for g2 = 7. 
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Fig. 48 Model Y and System C for g2 = 7. 
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Fig. 49 Error between Model & System for g2 = 7. 
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Fig. 50 h0 versus h1 for g2 = 7. 
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Fig. 51 h0 versus h2 for g2 = 7. 

Comments: 
1) It is of much importance to know that the desired output 

(reference model output) could be obtained from the 
nonadaptive portion. i.e. there is a set of parameters that 
can make the two outputs approximately identical. 

2) The aim of the introduced example was only to prove that 
the adaptive adjusting mechanism designed according to 
the introduced Discrete Parameter Tracking (DPT) 
technique can sustain the problem of great initial error 
which is practically common problem.  

3) In the above example, the behavior of the adaptive 
mechanism was studied for other initial values of g0, g1 
and g2, the results proved to be working satisfactory. (The 
results are not included).  
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IV. CONCLUSION 
The introduced Discrete Parameter Tracking (DPT) 

technique which is based on the concept of modified gradient 
technique in contrary to other known techniques which stress 
that the order of reference model must be the same as that of 
the nonadaptive system, this technique enables us to solve the 
discrete time model reference adaptive system when the exact 
order of the nonadaptive system is not known. The method 
requires that the order of reference model is chosen in relation 
to the number of controlable parameters, and that it exist a set 
of the controllable parameters for which the output of the 
nonadaptive portion will duplicate the reference model output.  

Computer simulation shows that if the parameters of the 
adaptive adjusting mechanism are properly chosen to be 
optimum or even near the optimum, the technique may sustain 
severe practical problems such as great initial error. 
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