The Elliptic Curves $y^2 = x^3 - t^2x$ over \mathbf{F}_p

Ahmet Tekcan

Abstract—Let p be a prime number, \mathbf{F}_p be a finite field and $t \in \mathbf{F}_p^* = \mathbf{F}_p - \{0\}$. In this paper we obtain some properties of elliptic curves $E_{p,t}: y^2 = y^2 = x^3 - t^2x$ over \mathbf{F}_p . In the first section we give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x,y) on $E_{p,t}$. We give a formula for the number of rational points on $E_{p,t}$ over \mathbf{F}_p^n for an integer $n \geq 1$. We also give some formulas for the sum of x-and y-coordinates of the points (x,y) on $E_{p,t}$. In the third section we consider the rank of $E_t: y^2 = x^3 - t^2x$ and its 2-isogenous curve E_t over \mathbf{Q} . We proved that the rank of E_t and E_t is 2 over \mathbf{Q} . In the last section we obtain some formulas for the sums $\sum_{t \in \mathbf{F}_p^*} a_{p,t}^n$ for an integer $n \geq 1$, where $a_{p,t}$ denote the trace of Frobenius.

Keywords—elliptic curves over finite fields, rational points on elliptic curves, rank, trace of Frobenius.

I. Introduction

Mordell began his famous paper [13] with the words Mathematicians have been familiar with very few questions for so long a period with so little accomplished in the way of general results, as that of finding the rational points on elliptic curves. The history of elliptic curves is a long one, and exciting applications for elliptic curves continue to be discovered. Recently, important and useful applications of elliptic curves have been found for cryptography [6,11,12], for factoring large integers [9], and for primality proving [1,5]. The mathematical theory of elliptic curves was also crucial in the proof of Fermat's Last Theorem [19].

Let q be a positive integer, \mathbf{F}_q be a finite field and let \mathbf{F}_q denote the algebraic closure of \mathbf{F}_q with $\mathrm{char}(\overline{\mathbf{F}}_q) \neq 2,3$. An elliptic curve E over \mathbf{F}_q is defined by an equation

$$E_{q,a,b}: y^2 = x^3 + ax + b,$$

where $a,b \in \mathbf{F}_q$ and $4a^3 + 27b^2 \neq 0$. We can view an elliptic curve $E_{q,a,b}$ as a curve in projective plane \mathbf{P}^2 , with a homogeneous equation $y^2z = x^3 + axz^2 + bz^3$, and one point at infinity, namely (0,1,0). This point ∞ is the point where all vertical lines meet. We denote this point by O. Let

$$E_{q,a,b}(\mathbf{F}_q) = \{(x,y) \in \mathbf{F}_q \times \mathbf{F}_q : y^2 = x^3 + ax + b\}$$

denote the set of rational points (x,y) on $E_{q,a,b}$. Then it is a subgroup of $E_{q,a,b}$. The order of $E_{q,a,b}(\mathbf{F}_q)$, denoted by $\#E_{q,a,b}(\mathbf{F}_q)$, is defined as the number of the rational points on $E_{q,a,b}$ (for further details see [15,17,18]), and is given by

$$#E_{q,a,b}(\mathbf{F}_q) = 1 + \sum_{x \in \mathbf{F}_q} \left(1 + \frac{x^3 + ax + b}{\mathbf{F}_q} \right)$$
(1)
$$= q + 1 + \sum_{x \in \mathbf{F}_q} \left(\frac{x^3 + ax + b}{\mathbf{F}_q} \right),$$

Ahmet Tekcan is with the Uludag University, Department of Mathematics, Faculty of Science, Bursa-TURKEY, email: tekcan@uludag.edu.tr, http://matematik.uludag.edu.tr/AhmetTekcan.htm.

where $(\frac{\cdot}{F_a})$ denotes the Legendre symbol.

Let

$$#E_{q,a,b}(\mathbf{F}_q) = q + 1 - a_{q,a,b}.$$
 (2)

Then $a_{q,a,b}$ is called the trace of Frobenius and satisfies the inequality

$$|a_{q,a,b}| \leq 2\sqrt{q}$$

known as the Hasse interval [18, p.91]. The formula (1) can be generalized to any field \mathbf{F}_{q^n} for an integer $n \geq 2$ [18, p.97]. Let $\#E_{q.a.b}(\mathbf{F}_q) = q + 1 - a_{q.a.b}$ and let

$$X^{2} - a_{q,a,b}X + q = (X - \alpha)(X - \beta).$$
 (3)

Then the order of $E_{q,a,b}$ over \mathbf{F}_{q^n} is

$$#E_{q,a,b}(\mathbf{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n).$$
 (4)

II. Rational Points on Elliptic Curves
$$E_{p,t}: y^2 = x^3 - t^2 x \ {\rm Over} \ {\bf F}_p.$$

In [16], we consider the elliptic curves $E_{p,\lambda}: y^2 = x(x-1)$ $(x-\lambda)$ over \mathbf{F}_p for $\lambda \neq 0,1$, where p is a prime number and \mathbf{F}_p is a finite field. We consider the rational points on $E_{p,\lambda}$ and also its rank over \mathbf{Q} . In the present paper we consider the elliptic curves

$$E_{p,t}: y^2 = x^3 - t^2 x (5$$

over \mathbf{F}_p for an integer $t \in \mathbf{F}_p^*$. This elliptic curve was studied by Lemmermeyer and Mollin [8] in the sense of its Tate-Shafarevich group. Here we only consider its rational points, rank and trace of Forbenius.

Let Q_p denote the set of quadratic residues. Let $Q_p^{4,+}$ denote the set of 4th power of elements of \mathbf{F}_p^* and let $Q_p^{4,-} = \mathbf{F}_p^* - Q_p^{4,+}$. Set $Q_p^4 = Q_p^{4,+} \cup Q_p^{4,-}$. Then $\#Q_p^{4,+} = \#Q_p^{4,-} = \frac{p-1}{4}$ and $\#Q_p^4 = \frac{p-1}{2}$. Recall that the order of $E_{p,t}: y^2 = x^3 - t^2x$ over \mathbf{F}_p is given in [18, p.105] by

- 1. If $p \equiv 3 \pmod{4}$, then $\#E_{p,t}(\mathbf{F}_p) = p + 1$.
- 2. If $p \equiv 1 \pmod{4}$, write $p = a^2 + b^2$, where a and b are integers with b is even and $a + b \equiv 1 \pmod{4}$, then

$$\#E_{p,t}(\mathbf{F}_p) = \left\{ \begin{array}{ll} p+1-2a & if \ k \in Q_p^{4,+} \\ p+1+2a & if \ k \in Q_p^{4,-} \\ p+1 \pm 2b & if \ k \notin Q_p. \end{array} \right.$$

First we generalize this result to any field \mathbf{F}_{p^n} for an integer n > 2.

Theorem 2.1: Let $E_{p,t}: y^2 = x^3 - t^2x$ be an elliptic curve over \mathbf{F}_p .

1) If $p \equiv 3 \pmod{4}$, then

$$\#E_{p,t}(\mathbf{F}_{p^n}) = \begin{cases} (p^{\frac{n}{2}} - 1)^2 & if \ n \equiv 0 \, (mod \, 4) \\ p^n + 1 & if \ n \equiv 1, 3 \, (mod \, 4) \\ (p^{\frac{n}{2}} + 1)^2 & if \ n \equiv 2 \, (mod \, 4). \end{cases}$$

$$\begin{aligned} \text{2) If } p &\equiv 1 (mod \, 4) \text{, then } \# E_{p,t}(\mathbf{F}_{p^n}) = p^n + 1 - \\ & \left\{ \begin{array}{ll} (a+ib)^n + (a-ib)^n & \text{if } t^2 \in Q_p^{4,+} \\ (-a+ib)^n + (-a-ib)^n & \text{if } t^2 \in Q_p^{4,-}. \end{array} \right. \end{aligned}$$

Proof: 1. Let $p \equiv 3 \pmod{4}$. Then $\#E_{p,t}(\mathbf{F}_p) = p+1$. Hence $a_{p,t} = 0$ by (2). Let

$$X^2 + p = (X - \alpha)(X - \beta)$$

for $\alpha = i\sqrt{p}$ and $\beta = -i\sqrt{p}$ by (3).

Let $n \equiv 0 \pmod{4}$, i.e. n = 4m for an integer $m \ge 1$. Then we get

$$\begin{array}{rcl} \alpha^n + \beta^n & = & (i\sqrt{p})^{4m} + (-i\sqrt{p})^{4m} \\ & = & i^{4m}(\sqrt{p})^{4m} + (-i)^{4m}(\sqrt{p})^{4m} \\ & = & p^{2m} + p^{2m} \\ & = & 2p^{2m} \\ & = & 2n^{\frac{n}{2}}. \end{array}$$

Therefore $\#E_{p,t}(\mathbf{F}_{p^n}) = p^n + 1 - (\alpha^n + \beta^n) = p^n + 1 - 2p^{\frac{n}{2}} = (p^{\frac{n}{2}} - 1)^2$ by (4).

Let $n \equiv 1 \pmod{4}$, say n = 1 + 4m. Then we get

$$\alpha^{n} + \beta^{n} = (i\sqrt{p})^{n} + (-i\sqrt{p})^{n}$$

$$= i^{4m+1}(\sqrt{p})^{4m+1} + (-i)^{4m+1}(\sqrt{p})^{4m+1}$$

$$= i(\sqrt{p})^{4m+1} + (-i)(\sqrt{p})^{4m+1}$$

$$= 0.$$

Therefore $\#E_{p,t}(\mathbf{F}_{p^n})=p^n+1-(\alpha^n+\beta^n)=p^n+1.$ Let $n\equiv 2(mod\ 4), \ \text{say}\ n=2+4m.$ Then we get

$$\begin{array}{rcl} \alpha^n + \beta^n & = & (i\sqrt{p})^n + (-i\sqrt{p})^n \\ & = & i^{4m+2}(\sqrt{p})^{4m+2} + (-i)^{4m+2}(\sqrt{p})^{4m+2} \\ & = & (-1)p^{2m+1} + (-1)p^{2m+1} \\ & = & -2p^{2m+1} \\ & = & -2p^{\frac{n}{2}}. \end{array}$$

Therefore $\#E_{p,t}(\mathbf{F}_{p^n})=p^n+1-(\alpha^n+\beta^n)=p^n+1+2p^{\frac{n}{2}}=(p^{\frac{n}{2}}+1)^2.$

Finally, let $n \equiv 3 \pmod{4}$, say n = 3 + 4m. Then we get

$$\begin{array}{lcl} \alpha^n + \beta^n & = & (i\sqrt{p})^n + (-i\sqrt{p})^n \\ & = & i^{4m+3}(\sqrt{p})^{4m+3} + (-i)^{4m+3}(\sqrt{p})^{4m+3} \\ & = & (-i)(\sqrt{p})^{4m+3} + i(\sqrt{p})^{4m+3} \\ & = & 0 \end{array}$$

Therefore $\#E_{p,t}(\mathbf{F}_{p^n}) = p^n + 1 - (\alpha^n + \beta^n) = p^n + 1$. 2. Let $p \equiv 1 (mod \, 4)$, and let $t^2 \in Q_p^{4,+}$. Then $\#E_{p,t}(\mathbf{F}_p) = p + 1 - 2a$ and hence $a_{p,t} = 2a$ by (2). Let

$$X^{2} - 2aX + p = (X - \alpha)(X - \beta)$$
$$= X^{2} - X(\alpha + \beta) + \alpha\beta.$$

Then $2a = \alpha + \beta$ and $p = \alpha\beta$. Hence we get

$$2a = \alpha + \frac{p}{\alpha} \iff \alpha^2 - 2a\alpha + p = 0$$
$$\Leftrightarrow \alpha_{1,2} = \frac{2a \pm \sqrt{4a^2 - 4p}}{2}$$
$$\Leftrightarrow \alpha_{1,2} = a \pm ib.$$

Therefore

$$\alpha_1 = a + ib \Rightarrow \beta_1 = \frac{p}{\alpha_1} = a - ib$$

or

$$\alpha_2 = a - ib \Rightarrow \beta_2 = \frac{p}{\alpha_2} = a + ib.$$

Consequently in both cases, the order of $E_{p,t}$ over \mathbf{F}_{p^n} is

$$#E_{p,t}(\mathbf{F}_{p^n}) = p^n + 1 - (\alpha^n + \beta^n)$$

= $p^n + 1 - [(a+ib)^n + (a-ib)^n].$

Let $t^2\in Q_p^{4,-}.$ Then $\#E_{p,t}(\mathbf{F}_p)=p+1+2a$ and hence $a_{p,t}=-2a$ by (2). Let

$$X^{2} + 2aX + p = (X - \alpha)(X - \beta)$$
$$= X^{2} - X(\alpha + \beta) + \alpha\beta.$$

Then $-2a = \alpha + \beta$ and $p = \alpha\beta$. Hence we get

$$\begin{split} -2a &= \alpha + \frac{p}{\alpha} &\iff \alpha^2 + 2a\alpha + p = 0 \\ &\Leftrightarrow \alpha_{1,2} = \frac{-2a \pm \sqrt{4a^2 - 4p}}{2} \\ &\Leftrightarrow \alpha_{1,2} = -a \pm ib. \end{split}$$

Therefore

$$\alpha_1 = -a + ib \Rightarrow \beta_1 = \frac{p}{\alpha_1} = -a - ib$$

OI

$$\alpha_2 = -a - ib \Rightarrow \beta_2 = \frac{p}{\alpha_2} = -a + ib.$$

Consequently the order of $E_{p,t}$ over \mathbf{F}_{p^n} is

$$#E_{p,t}(\mathbf{F}_{p^n}) = p^n + 1 - (\alpha^n + \beta^n)$$

= $p^n + 1 - [(-a + ib)^n + (-a - ib)^n].$

This completes the proof.

In the following table some values of p, a and b is given.

p	a	b	p	a	b
5	1	2	229	15	2
13	3	2	233	13	8
17	1	4	241	15	4
29	5	2	257	1	16
37	1	6	269	13	10
41	5	4	277	9	14
53	7	2	281	5	16
61	5	6	293	17	2
73	3	8	313	13	12
89	5	8	317	11	14
97	9	4	337	9	16
101	1	10	349	5	18
109	3	10	353	17	8
113	7	8	373	7	18
137	11	4	389	17	10
149	7	10	397	19	6
157	11	6	401	1	20
173	13	2	409	3	20
181	9	10	421	15	14
193	7	12	433	17	12
197	1	14	449	7	20

In the following examples the orders of $E_{p,t}: y^2 = x^3 - t^2x$ over \mathbf{F}_{p^n} are given for $2 \le n \le 15$.

Example 2.1: Let p=23 and t=2. Then the order of $E_{23,2}: y^2=x^3-4x$ over \mathbf{F}_{23^n} is

n	\mathbf{F}_{23^n}
2	576
3	12168
4	278784
5	6436344
6	148060224
7	3404825448
8	78310425600
9	1801152661464
10	41426524086336
11	952809757913928
12	21914624135948544
13	504036361936467384
14	11592836331348400704
15	266635235464391245608

Example 2.2: Let p=13. Then a=3 and b=2. Let t=4. Then $t^2\equiv 3 \pmod{13}$. So $t^2\in Q_{13}^{4,+}=\{1,3,9\}$. Then the order of $E_{13,4}:y^2=x^3-3x$ over \mathbf{F}_{13^n} is

n	\mathbf{F}_{13^n}
2	160
3	2216
4	28800
5	372488
6	4830880
7	62757416
8	815731200
9	10604386564
10	137857808810
11	1792157762000
12	23298078210000
13	302875099300000
14	3937376432000000
15	51185893380000000

Similarly let p=13 and t=11. Then $t^2\equiv 4 (mod\ 13)$. So $t^2\in Q_{13}^{4,-}$. Therefore the order of $E_{13,11}:y^2=x^3-4x$ over ${\bf F}_{13^n}$ is

n	${\bf F}_{13^n}$
2	160
3	2180
4	28800
5	370100
6	4830880
7	62739620
8	815731200
9	106041612184
10	137857808810
11	1792163026000
12	23298078210000
13	302875113900000
14	3937376432000000
15	51185892640000000

Now we consider some properties of rational points on elliptic curve $E_{p,t}$.

Theorem 2.2: Let [x] denote the x-coordinates of (x,y) on $E_{p,t}$. Then sum of [x] on $E_{p,t}$ is

$$\sum\nolimits_{[x]} E_{p,t}(\mathbf{F}_p) = \sum \left(1 + \left(\frac{x^3 - t^2x}{\mathbf{F}_p}\right)\right).x$$

for all primes p

Proof: We know that

$$\left(\frac{x^3 - t^2x}{\mathbf{F}_p}\right) = \left\{ \begin{array}{ll} 0 & if \ x^3 - t^2x \ is \ zero \\ 1 & if \ x^3 - t^2x \ is \ a \ square \\ -1 & if \ x^3 - t^2x \ is \ not \ a \ square. \end{array} \right.$$

Let $\left(\frac{x^3-t^2x}{\mathbf{F}_p}\right)=0$. Then $x^3-t^2x=0$, and hence this equation has three solutions x=0, x=t and x=-t. Then $y^2\equiv 0\ (mod\ p)\Leftrightarrow y\equiv 0\ (mod\ p)$. So for such a point x, we have a point (x,0) on $E_{p,t}$. Therefore we get (x+0).x=x is added to the sum.

Let $\left(\frac{x^3-t^2x}{\mathbf{F}_p}\right)=1$. Then x^3-t^2x is a square in \mathbf{F}_p . Let $x^3-t^2x=k^2$ for any $k\in\mathbf{F}_p^*$. Then $y^2\equiv k^2\ (mod\ p)\Leftrightarrow y=\pm k$, that is, for any point (x,k) on $E_{p,t}$, the point (x,-k) is also on $E_{p,t}$. Therefore for each point x we have (1+1).x=2x is added to the sum.

is added to the sum. Finally, let $\left(\frac{x^3-t^2x}{\mathbf{F}_p}\right)=-1$. Then x^3-t^2x is not a square in \mathbf{F}_p . Therefore the equation $y^2\equiv x^3-t^2x \pmod{p}$ has no solution. Therefore for each point x, we have (1+(-1)).x=0 as we claimed.

Theorem 2.3: Let [y] denote the y-coordinates of (x, y) on $E_{p,t}$.

1) If $p \equiv 3 \pmod{4}$, then the sum of [y] on $E_{p,t}$ is

$$\sum_{[y]} E_{p,t}(\mathbf{F}_p) = \frac{p^2 - 3p}{2}.$$

2) If $p \equiv 1 \pmod{4}$, then the sum of [y] on $E_{p,t}$ is

$$\sum_{[y]} E_{p,t}(\mathbf{F}_p) = \begin{cases} \frac{p^2 - (2a+3)p}{2} & \text{if } t^2 \in Q_p^{4,+} \\ \frac{p^2 + (2a-3)p}{2} & \text{if } t^2 \in Q_p^{4,-}. \end{cases}$$

Proof: 1. Let $p \equiv 3 \pmod 4$. Note that the cubic equation $x^3-t^2x=0$ has three solutions x=0, x=t and x=-t. For the other values of x, we have both x and -x. One of these gives two points. The one makes x^3-t^2x a square. So there are two values of y since $y^2=x^3-t^2x$ is square. Let $x^3-t^2x=k^2$ for any $k\in \mathbf{F}_p^*$. Then we have $y^2=k^2$ if and only if y=k and y=-k=p-k. So the sum of these values of y is k+(p-k)=p. We know that there are $\frac{p-3}{2}$ points x such that $y^2=x^3-t^2x$ is a square. Therefore the sum of y-coordinates of all points (x,y) is

$$p\left(\frac{p-3}{2}\right) = \frac{p^2 - 3p}{2}.$$

2. Let $p\equiv 3(mod\,4)$. If $t^2\in Q_p^{4,+}$, then $E_{p,t}(\mathbf{F}_p)=p+1-2a$. We know that the cubic equation $x^3-t^2x=0$ has three solutions x=0, x=t and x=-t, that is, there are three points (0,0),(t,0),(-t,0) on $E_{p,t}$. The sum of y-coordinates of these points is 0. Further we have to disregard the point ∞ . Then there are (p+1-2a)-4=p-2a-3 points (x,y) on

 $E_{p,t}$ such that $y \neq 0$. Half of these points make $x^3 - t^2x$ a square, that is, there are $\frac{p-2a-3}{2}$ points x such that $x^3 - t^2x$ is a square. Let $x^3 - t^2x = k^2$ for any $k \in \mathbf{F}_p^*$. Then we have $y^2 = k^2$ if and only if y = k and y = -k = p - k. So the sum of these values of y is k + (p - k) = p. Hence the sum of y-coordinates of all points (x, y) on $E_{p,t}$ is

$$p\left(\frac{p-2a-3}{2}\right) = \frac{p^2 - (2a+3)p}{2}.$$

If $t^2\in Q_p^{4,-}$, then $E_{p,t}(\mathbf{F}_p)=p+1+2a$. The cubic equation $x^3-t^2x=0$ has three solutions x=0,x=t and x=-t, that is, there are three points (0,0),(t,0),(-t,0) on $E_{p,t}$ and the sum of y-coordinates of these points is 0. Further we have to disregard the point ∞ . Then there are (p+1+2a)-4=p+2a-3 points (x,y) on $E_{p,t}$ such that $y\neq 0$. Half of these points make x^3-t^2x a square, that is, there are $\frac{p+2a-3}{2}$ points x such that x^3-t^2x is a square. Let $x^3-t^2x=k^2$ for any $k\in \mathbf{F}_p^*$. Then we have $y^2=k^2$ if and only if y=k and y=-k=p-k. So the sum of these values of y is k+(p-k)=p. Hence the sum of y-coordinates of all points (x,y) on $E_{p,t}$ is

$$p\left(\frac{p+2a-3}{2}\right) = \frac{p^2 + (2a-3)p}{2}.$$

Theorem 2.4: Let $\mathbf{E}_{p,t} = \left\{ E_{p,t} : t \in \mathbf{F}_p^* \right\}$ denote the set of all elliptic curves $E_{p,t}$ over \mathbf{F}_p . Then

$$\sum_{t \in \mathbf{F}_p^*} \# \mathbf{E}_{p,t}(\mathbf{F}_p) = \frac{p^2 - 1}{2}$$

for all primes p.

Proof: Note that there are $\frac{p-1}{2}$ elliptic curves $E_{p,t}$ in $\mathbf{E}_{p,t}$ over \mathbf{F}_p . We know that the order of $E_{p,t}$ over \mathbf{F}_p is p+1 when $p \equiv 3 \pmod{4}$. Therefore the total number of the points (x,y) on all elliptic curves $E_{p,t}$ in $\mathbf{E}_{p,t}$ over \mathbf{F}_p is

$$(p+1)\left(\frac{p-1}{2}\right) = \frac{p^2-1}{2}.$$

Let $p\equiv 1 (mod\ 4)$. If $t^2\in Q_p^{4,+}$, then the order of $E_{p,t}$ over \mathbf{F}_p is p+1-2a, and if $t^2\in Q^{4,-}$, then the order of $E_{p,t}$ over \mathbf{F}_p is p+1+2a. Further the order of $Q_p^{4,+}$ and $Q_p^{4,-}$ is $\frac{p-1}{4}$. Therefore the total number of the points (x,y) on all elliptic curves $E_{p,t}$ in $\mathbf{E}_{p,t}$ over \mathbf{F}_p is

$$\begin{split} &\frac{p-1}{4}(p+1-2a) + \frac{p-1}{4}(p+1+2a) \\ &= \frac{p-1}{4}(p+1-2a+p+1+2a) \\ &= \frac{p-1}{4}(2p+2) \\ &= \frac{p^2-1}{2}. \end{split}$$

as we claimed.

Theorem 2.5: The sum of [y] in $\mathbf{E}_{n,t}(\mathbf{F}_n)$ is

$$\sum\nolimits_{t \in \mathbf{F}_p^*} \mathbf{E}_{p,t}(\mathbf{F}_p) = \frac{p^3 - 4p^2 + 3p}{4}$$

for all primes p.

Proof: Let $p \equiv 3 \pmod 4$. We know that the sum of [y] is $\frac{p^2-3p}{2}$. Further there are $\frac{p-1}{2}$ elliptic curves in $\mathbf{E}_{p,t}$. Therefore the sum of [y] of all points (x,y) on all elliptic curves $E_{p,t}$ in $\mathbf{E}_{p,t}(\mathbf{F}_p)$ is

$$\left(\frac{p-1}{2}\right)\left(\frac{p^2-3p}{2}\right) = \frac{p^3-4p^2+3p}{4}.$$

Let $p\equiv 1(mod\,4)$. We know that there are $\frac{p-1}{4}$ elements in both $Q_p^{4,+}$ and $Q_p^{4,-}$. Further by Theorem 2.3, if $t^2\in Q_p^{4,+}$, then the the sum of [y] of all points on elliptic curves $E_{p,t}$ is $\frac{p^2-(2a+3)p}{2}$, and if $t^2\in Q_p^{4,-}$, then the the sum of [y] of all points on elliptic curves $E_{p,t}$ is $\frac{p^2+(2a-3)p}{2}$. Therefore the sum of [y] of all points on elliptic curves $E_{p,t}$ is

$$\begin{split} & \left(\frac{p-1}{4}\right) \left[\frac{p^2 - (2a+3)p}{2} + \frac{p^2 + (2a-3)p}{2}\right] \\ & = \left(\frac{p-1}{4}\right) \left(\frac{2p^2 - 6p}{2}\right) \\ & = \frac{p^3 - 4p^2 + 3p}{4}. \end{split}$$

III. Rank of
$$E_t: y^2 = x^3 - t^2x$$
 Over \mathbf{Q} .

Let E be an elliptic curve over \mathbf{Q} . By Mordell's theorem, we know that $E(\mathbf{Q})$ is a finitely generated abelian group, that is, $E(\mathbf{Q}) = E(\mathbf{Q})_{tors} \times \mathbf{Z}^r$. Further by Mazur's theorem,

$$E(Q)_{tors} \cong \mathbf{Z}/n\mathbf{Z} \text{ for } 1 \leq n \leq 10 \text{ or } n = 12$$

or

$$E(Q)_{tors} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}$$
 for $1 \leq n \leq 4$.

On the other hand, it is not known that what values of rank r are possible for elliptic curves over \mathbf{Q} . The main idea is that a rank can be arbitrary large. The current record is an example of elliptic curve with rank ≥ 28 , found by Elkies [3] in 2006. The previous record one with rank ≥ 24 , found by Martin and McMillen [10] in 2000. The highest rank of an elliptic curve which is known exactly (not only a lower bound for rank) is equal to 18, and it was found by Elkies [3] in 2006. It improves previous records due to Kretschmer [7](rank = 10), Schneiders-Zimmer [14](rank = 11), Fermigier [4](rank = 14), Dujella [2](rank = 15) and Elkies [3](rank = 17).

Recall that the 2-isogenous curve of an elliptic curve

$$E_{a,b}: y^2 = x^3 + ax^2 + bx$$

is given by

$$\overline{E}_{ab}: y^2 = x^3 + \overline{a}x^2 + \overline{b}x,\tag{6}$$

where $\overline{a} = -2a$ and $\overline{b} = a^2 - 4b$. Then there exists a 2-isogeny ϕ from $E_{a,b}$ to $\overline{E}_{a,b}$ given by

$$\phi: E_{a,b} \to \overline{E}_{a,b}, \quad \phi(x,y) = \left(\frac{y^2}{x^2}, \frac{y(b-x^2)}{x^2}\right).$$

Conversely, there exists a dual isogeny ψ from $\overline{E}_{a,b}$ to $E_{a,b}$ given by

$$\psi : \overline{E}_{a,b} \to E_{a,b}, \quad \psi(x,y) = \left(\frac{y^2}{4x^2}, \frac{y(a^2 - 4b - x^2)}{8x^2}\right).$$

Let

$$2^{r} = \frac{\#\alpha(E_{a,b}(\mathbf{Q}))\#\overline{\alpha}(\overline{E}_{a,b}(\mathbf{Q}))}{4},\tag{7}$$

where α is a homomorphism

$$\alpha: E_{a,b}(\mathbf{Q}) \to \mathbf{Q}^*/\mathbf{Q}^{*2}$$

such that

$$\begin{array}{l} 0 \rightarrow 1 \left(mod\mathbf{Q}^{*2} \right) \\ (0,0) \rightarrow b \left(mod\mathbf{Q}^{*2} \right) \\ (x,y) \rightarrow x \left(mod\mathbf{Q}^{*2} \right), \end{array}$$

where \mathbf{Q}^* is the multiplicative group of rational units, and \mathbf{Q}^{*2} is the subgroup consisting of perfect squares. So $\mathbf{Q}^*/\mathbf{Q}^{*2}$ is like the non-zero rational numbers, with two elements identified if their quotient is the square of a rational number. We shall call α the Weil map (in fact it is actually a group homomorphism). We found the Weil map from the group of rational points on $E_{a,b}$ to the group $\mathbf{Q}^*/\mathbf{Q}^{*2}$ by studying the rational points on torsors

$$T^{(\psi)}(b_1): N^2 = b_1 M^4 + a M^2 e^2 + b_2 e^4, \tag{8}$$

where b_1 runs through the square free divisors of $b = b_1b_2$. Then $\alpha(E_{a,b}(\mathbf{Q}))$ consists of $b(mod \mathbf{Q}^{*2})$, together with those $b_1(mod \mathbf{Q}^{*2})$ such that (8) has a solution (N, M, e).

Similarly, $\overline{\alpha}$ is an Weil map, which is from the group of rational points on $\overline{E}_{a,b}$ to the group $\mathbf{Q}^*/\mathbf{Q}^{*2}$ by studying the rational points on torsors

$$T^{(\phi)}(\bar{b}_1): N^2 = \bar{b}_1 M^4 + \bar{a} M^2 e^2 + \bar{b}_2 e^4, \tag{9}$$

where \bar{b}_1 runs through the square free divisors of $\bar{b} = \bar{b}_1\bar{b}_2$. Then $\bar{\alpha}(\bar{E}_{a,b}(\mathbf{Q}))$ consists of $\bar{b}(mod \mathbf{Q}^{*2})$, together with those $\bar{b}_1(mod \mathbf{Q}^{*2})$ such that (9) has a solution (N, M, e).

Note that the 2-isogenous curve of our curve $E_t: y^2 = x^3 - t^2x$ is

$$\overline{E}_t : y^2 = x^3 + 4t^2x \tag{10}$$

if t is odd, or

$$\overline{E}_t: y^2 = x^3 + \frac{t^2}{4}x\tag{11}$$

if t is even by (6). Now we can consider the rank of E_t and \overline{E}_t over ${\bf Q}$.

Theorem 3.1: The rank of E_t and \overline{E}_t over \mathbf{Q} is 2.

Proof: Elliptic curves with a rational point of order 2 like our curves $E_t: y^2 = x^3 - t^2x$ come attached with a 2-isogeny $\phi: E_t \to \overline{E}_t$ (depending of choice of point if E_t has three rational points of order 2) as we mentioned above.

Now consider the our elliptic curve $E_t: y^2 = x^3 - t^2x$. Then there are four possibilities for $b_1 = -t^2$ which are ± 1 and $\pm t$.

If $b_1 = 1$, then the equation

$$N^2 = M^4 - t^2 e^4$$

has a solution $(N, M, e) = (t^2, t, 0)$. If $b_1 = -1$, then the equation

$$N^2 = -M^4 + t^2 e^4$$

has a solution (N,M,e)=(t,0,-1). If $b_1=t,$ then the equation

$$N^2 = tM^4 - te^4$$

has a solution $(N, M, e) = (0, t^2, t^2)$ and if $b_1 = -t$, then the equation

$$N^2 = -tM^4 + te^4$$

has a solution $(N, M, e) = (0, t^2, -t^2)$. So

$$\alpha(E_t(\mathbf{Q})) = \{\pm 1, \pm t \pmod{\mathbf{Q}^{*2}}\} \text{ and}$$

$$\#\alpha(E_t(\mathbf{Q})) = 4$$
(12)

by (8).

Now we consider the 2-isogeny of E_t . If t is odd, then the 2-isogenous curve of E_t is \overline{E}_t : $\underline{y}^2=x^3+4t^2x$ by (10). Then there are four possibilities for $\overline{b}_1=4t^2$ which are ± 1 and $\pm 2t$.

If $\overline{b}_1 = 1$, then the equation

$$N^2 = M^4 + 4t^2e^4$$

has a solution (N,M,e)=(2t,0,1). If $\overline{b}_1=-1,$ then the equation

$$N^2 = -M^4 - 4t^2e^4$$

has no solution (N,M,e) since its right-hand side is strictly negative. If $\bar{b}_1=2t$, then the equation

$$N^2 = 2tM^4 + 2te^4$$

has no solution (N, M, e) and if $\bar{b}_1 = -2t$, then the equation

$$N^2 = -2tM^4 - 2te^4$$

has no solution (N,M,e) since its right-hand side is strictly negative. Hence

$$\overline{\alpha}(\overline{E}_t(\mathbf{Q})) = \{1 \pmod{\mathbf{Q}^{*2}}\} \text{ and } \#\overline{\alpha}(\overline{E}_t(\mathbf{Q})) = 1$$

by (9).

If t is even, then the 2-isogenous curve of E_t is $\overline{E}_t: y^2 = x^3 + \frac{t^2}{4}x$ by (11). Let t = 2k for integers $k \ge 1$. Then \overline{E}_t becomes an elliptic curve has the form $\overline{E}_t: y^2 = x^3 + k^2x$. Then there are four possibilities for $\overline{b}_1 = k^2$ which are ± 1 and $\pm k$

If $\overline{b}_1 = 1$, then the equation

$$N^2 = M^4 + k^2 e^4$$

has a solution (N,M,e)=(k,0,1). If $\overline{b}_1=-1,$ then the equation

$$N^2 = -M^4 - k^2 e^4$$

has no solution (N,M,e) since its right-hand side is strictly negative. If $\bar{b}_1=k$, then the equation

$$N^2 = kM^4 + ke^4$$

has no solution and if $\bar{b}_1 = -k$, then the equation

$$N^2 = -kM^4 - ke^4$$

has no solution since its right-hand side is strictly negative. Hence

$$\overline{\alpha}(\overline{E}_t(\mathbf{Q})) = \{1 \pmod{\mathbf{Q}^{*2}}\} \text{ and } \#\overline{\alpha}(\overline{E}_t(\mathbf{Q})) = 1$$

by (9). So in both cases, i.e. whether t is even or odd, we have

$$\overline{\alpha}(\overline{E}_t(\mathbf{Q})) = \{1 \pmod{\mathbf{Q}^{*2}}\} \text{ and}$$

$$\#\overline{\alpha}(\overline{E}_t(\mathbf{Q})) = 1.$$
(13)

Applying (12) and (13), we get

$$2^{r} = \frac{\#\alpha(E_{t}(\mathbf{Q})).\#\overline{\alpha}(\overline{E}_{t}(\mathbf{Q}))}{4}$$

$$= \frac{4.1}{4}$$

$$= 4$$

$$\Leftrightarrow r = 2$$

Consequently, the rank of $E_t(\mathbf{Q})$ and $\overline{E}_t(\mathbf{Q})$ over \mathbf{Q} is 2 by (7) as we claimed.

IV. Trace of Frobenius of Elliptic Curves
$$E_{p,t}: y^2 = x^3 - t^2 x. \label{eq:energy}$$

Let $a_{p,t}$ denote the trace of Frobenius of elliptic curve $E_{p,t}$: $y^2=x^3-t^2x$. Then by (2), we get $\#E_{p,t}(\mathbf{F}_p)=p+1-a_{p,t}$. In this section we will obtain some relations on the sums

$$\sum\nolimits_{t\in \mathbf{F}_{+}^{*}}a_{p,t}^{n}$$

for an integer $n \geq 1$.

Theorem 4.1: Let $a_{p,t}$ denote the trace of Frobenius of elliptic curve $E_{p,t}$.

1) If $p \equiv 3 \pmod{4}$, then

$$\sum\nolimits_{t\in\mathbf{F}_{n}^{*}}a_{p,t}^{n}=0$$

for all integers $n \geq 1$.

2) Let $p \equiv 1 \pmod{4}$, write $p = a^2 + b^2$. i. If $a + b \equiv 1 \pmod{4}$, then

$$\sum_{t^2 \in Q^{4,+}} a_{p,t}^n = 2^{n-2} a^n (p-1)$$

and

$$\sum\nolimits_{t^2 \in {\cal O}^{4,-}} a^n_{p,t} = (-1)^n 2^{n-2} a^n (p-1).$$

ii. If $a + b \equiv 3 \pmod{4}$, then

$$\sum\nolimits_{t^2 \in Q^{4,+}} a^n_{p,t} = (-1)^n 2^{n-2} a^n (p-1)$$

and

$$\sum\nolimits_{t^2 \in Q^{4,-}} \! a^n_{p,t} \ = \ 2^{n-2} a^n (p-1).$$

for all integers $n \geq 1$.

Proof: 1. Let $p\equiv 3(mod\,4)$. Then $E_{p,t}({\bf F})=p+1$. So $a_{p,t}=0$ by (2). Consequently all powers of sums of $a_{p,t}=0$ is 0, that is

$$\sum\nolimits_{t\in \mathbf{F}_{n}^{*}}a_{p,t}^{n}=0$$

for all integers $n \ge 1$.

2. Let $p\equiv 1(mod\,4)$ and let $a+b\equiv 1(mod\,4)$. If $t^2\in Q_p^{4,+}$, then $a_{p,t}=2a$ and hence the sum of $a_{p,t}^n$ over $t^2\in Q_p^{4,+}$ is

$$\begin{split} \sum\nolimits_{t^2 \in Q^{4,+}} a^n_{p,t} &= & \#Q^{4,+}_p. \sum\nolimits_{t^2 \in Q^{4,+}} a^n_{p,t} \\ &= & \#Q^{4,+}_p. (2a)^n \\ &= & \frac{p-1}{4}.2^n a^n \\ &= & 2^{n-2}(p-1)a^n. \end{split}$$

If $t^2 \in Q_p^{4,-}$, then $a_{p,t}=-2a$ and hence the sum of $a_{p,t}^n$ over $t^2 \in Q_p^{4,-}$ is

$$\begin{split} \sum\nolimits_{t^2 \in Q^{4,-}} \! a^n_{p,t} &= & \# Q^{4,-}_p. \sum\nolimits_{t^2 \in Q^{4,-}} \! a^n_{p,t} \\ &= & \# Q^{4,-}_p. (-2a)^n \\ &= & \frac{p-1}{4}. (-1)^n 2^n a^n \\ &= & (-1)^n 2^{n-2} (p-1) a^n. \end{split}$$

Let $a+b\equiv 3(mod\,4).$ If $t^2\in Q^{4,+}_p,$ then $a_{p,t}=-2a$ and hence the sum of $a^n_{p,t}$ over $t^2\in Q^{4,+}_p$ is

$$\begin{split} \sum\nolimits_{t^2 \in Q^{4,+}} a^n_{p,t} &= & \#Q^{4,+}_p. \sum\nolimits_{t^2 \in Q^{4,+}} a^n_{p,t} \\ &= & \#Q^{4,+}_p. (-2a)^n \\ &= & \frac{p-1}{4}. (-1)^n 2^n a^n \\ &= & (-1)^n 2^{n-2} (p-1) a^n. \end{split}$$

If $t^2 \in Q_p^{4,-}$, then $a_{p,t}=2a$ and hence the sum of $a_{p,t}^n$ over $t^2 \in Q_p^{4,-}$ is

$$\begin{split} \sum\nolimits_{t^2 \in Q^{4,-}} a^n_{p,t} &= \#Q^{4,-}_p. \sum\nolimits_{t^2 \in Q^{4,-}} a^n_{p,t} \\ &= \#Q^{4,-}_p.(2a)^n \\ &= \frac{p-1}{4}.2^n a^n \\ &= 2^{n-2}(p-1)a^n. \end{split}$$

Form above theorem we can give the following theorem.

Theorem 4.2: If $p \equiv 1 \pmod{4}$, then

$$\sum\nolimits_{t \in \mathbf{F}_p^*} a_{p,t}^n = \left\{ \begin{array}{cc} 0 & \text{if } n \text{ is odd} \\ \\ 2^{n-1} a^n (p-1) & \text{if } n \text{ is even} \end{array} \right.$$

for all integers $n \ge 1$.

Proof: Let $p \equiv 1 (mod \, 4)$ and let $a+b \equiv 1 (mod \, 4).$ Then we know that

$$\sum_{t^2 \in Q^{4,+}} a_{p,t}^n = 2^{n-2} a^n (p-1)$$

and

$$\sum\nolimits_{t^2 \in Q^{4,-}} a^n_{p,t} \quad = \quad (-1)^n 2^{n-2} a^n (p-1).$$

$$\begin{split} \sum\nolimits_{t \in \mathbf{F}_p^*} a_{p,t}^n &=& \sum\nolimits_{t^2 \in Q^{4,+}} a_{p,t}^n + \sum\nolimits_{t^2 \in Q^{4,-}} a_{p,t}^n \\ &=& 2^{n-2} a^n (p-1) - 2^{n-2} a^n (p-1) \\ &=& 0. \end{split}$$

If n is even, then

$$\begin{split} \sum\nolimits_{t \in \mathbf{F}_p^*} \! a_{p,t}^n &=& \sum\nolimits_{t^2 \in Q^4,+} \! a_{p,t}^n + \sum\nolimits_{t^2 \in Q^4,-} \! a_{p,t}^n \\ &=& 2^{n-2} a^n (p-1) + 2^{n-2} a^n (p-1) \\ &=& 2 (2^{n-2} a^n (p-1)) \\ &=& 2^{n-1} a^n (p-1). \end{split}$$

Similarly let $a + b \equiv 3 \pmod{4}$. Then we know that

$$\sum\nolimits_{t^2 \in O^{4,+}} a^n_{p,t} = (-1)^n 2^{n-2} a^n (p-1)$$

and

$$\sum\nolimits_{t^2 \in Q^{4,-}} a^n_{p,t} \ = \ 2^{n-2} a^n (p-1).$$

If n is odd, then

$$\sum_{t \in \mathbf{F}_p^*} a_{p,t}^n = \sum_{t^2 \in Q^{4,+}} a_{p,t}^n + \sum_{t^2 \in Q^{4,-}} a_{p,t}^n$$

$$= -2^{n-2} a^n (p-1) + 2^{n-2} a^n (p-1)$$

$$= 0.$$

If n is even, then

$$\begin{split} \sum\nolimits_{t \in \mathbf{F}_p^*} a_{p,t}^n &=& \sum\nolimits_{t^2 \in Q^{4,+}} a_{p,t}^n + \sum\nolimits_{t^2 \in Q^{4,-}} a_{p,t}^n \\ &=& 2^{n-2} a^n (p-1) + 2^{n-2} a^n (p-1) \\ &=& 2(2^{n-2} a^n (p-1)) \\ &=& 2^{n-1} a^n (p-1). \end{split}$$

REFERENCES

- [1] A.O.L. Atkin and F. Moralin. Eliptic Curves and Primality Proving. Math. Comp. 61 (1993), 29-68.
- A. Dujella. An Example of Elliptic Curve over Q with Rank Equal to
- Proc. Japan Acad. Ser. A Math. Sci. **78**(2002), 109–111.
 N.D. Elkies. Some More Rank Records: E(Q) = (Z/2Z) * Z¹⁸, (Z/4Z) * Z¹², (Z/8Z) * Z⁶, (Z/2Z) * (Z/6Z) * Z⁶. Number Theory Listserver, Jun 2006.
- [4] S. Fermigier. Exemples de Courbes Elliptiques de Grand Rang sur $\mathbf{Q}(t)$ et sur Q Possedant des points d'ordre 2. C.R. Acad. Sci. Paris Ser. I **322**(1996), 949–952.
- [5] S. Goldwasser and J. Kilian. Almost all Primes can be Quickly Certified. In Proc. 18th STOC, Berkeley, May 28-30, 1986, ACM, New York (1986), 316-329.
- N. Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag, 1994.
- [7] T.J. Kretschmer. Construction of Elliptic Curves with Large Rank. Math. Comp. 46 (1986), 627-635.
- [8] F. Lemmermeyer and R.A. Mollin. On the Tate-Shafarevich Groups of $y^2 = x(x^2 - k^2)$. Acta Math. Universitatis Comenianae **LXXII**(1) (2003), 73–80.
- [9] H.W.Jr. Lenstra. Factoring Integers with Elliptic Curves. Annals of Maths. 126(3) (1987), 649-673.
- [10] R. Martin and W. McMillen. An Elliptic Curve Over Q with Rank at least 24. Number Theory Listserver, May 2000.

- [11] V.S. Miller. Use of Elliptic Curves in Cryptography, in Advances in Cryptology-CRYPTO'85. Lect. Notes in Comp. Sci. 218, Springer-Verlag, Berlin (1986), 417-426.
- [12] R.A. Mollin. An Introduction to Cryptography. Chapman&Hall/CRC,
- [13] L.J. Mordell. On the Rational Solutions of the Indeterminate Eqnarrays of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.
- [14] U. Schneiders and H.G. Zimmer. The Rank of Elliptic Curves upon Quadratic Extensions, in: Computational Number Theory. (A. Petho, H.C. Williams, H.G. Zimmer, eds.), de Gruyter, Berlin, 1991.
- [15] R. Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Theorie des Nombres de Bordeaux 7(1995), 219-254.
- [16] A. Tekcan. The Elliptic Curves $y^2 = x(x-1)(x-\lambda)$. Accepted by Ars Combinatoria.
- [17] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.
- [18] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman&Hall /CRC, Boca London, New York, Washington DC, 2003.
- [19] A. Wiles. Modular Elliptic Curves and Fermat's Last Theorem. Annals of Maths. 141(3) (1995), 443-551.