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Algebraic Quantum Error Correction Codes
Ming-Chung Tsai, Post doc., NTHU Kuan-Peng Chen, Assistant Researcher, NCHC, and Zheng-Yao

Abstract—A systematic and exhaustive method based on the group
structure of a unitary Lie algebra is proposed to generate an enormous
number of quantum codes. With respect to the algebraic structure,
the orthogonality condition, which is the central rule of generating
quantum codes, is proved to be fully equivalent to the distinguisha-
bility of the elements in this structure. In addition, four types of
quantum codes are classified according to the relation of the codeword
operators and some initial quantum state. By linking the unitary Lie
algebra with the additive group, the classical correspondences of some
of these quantum codes can be rendered.
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I. INTRODUCTION

WHEN quantum information is transmitted or manipu-
lated in noisy environments, the information gets lost

gradually due to the baneful interaction with the environment.
To protect the fragile quantum states, error-correction codes
are essential to safeguard the quantum data during the pro-
cesses of quantum computation and communication. In this
report, a systematic method based on the group structure of
a unitary Lie algebra su(2p), called quotient-algebra parti-

tion [1], is proposed to exhaustively generate quantum codes.
According to the linking of the group structure in su(2p) and
admissible quantum codes, we are able to construct additive

(stabilizer) quantum error correction codes as well as non-

additive ones. Furthermore, the generated quantum codes can
be classified into four types by relating the quantum states
and codeword operators. We have found a new category of
non-additive quantum error correction codes that is still under
search by [2]. Of interest is that two types of these codes dis-
close their classical correspondences during the construction.
The scheme introduced in this article helps the discovery of
new types of quantum codes that may have higher efficiency
or ability to error correction.

II. QUOTIENT-ALGEBRA PARTITION IN A UNITARY LIE
ALGEBRA

A single qubit state can suffer three types of errors re-
spectively represented by the Pauli matrices: the bit error
σ1 = |0〉〈1|+ |1〉〈0|, phase error σ3 = |0〉〈0| − |1〉〈1| and bit-
phase error σ2 = −i|0〉〈1|+i|1〉〈0|. For a p-qubit states, p ≥ 1,
a set of N encountered errors E = {E0, E1, · · · , EN−1}

is chosen from the set G = {I, σ1, σ2, σ3}
⊗p comprising

all tensor products of p Pauli matrices, namely E0≤r<N =
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σi1 ⊗ σi2 ⊗ · · · ⊗ σip ∈ G for the identity I = σ0 and
0 ≤ i1, i2, · · · , ip ≤ p. Note that the operator I ⊗ I ⊗ · · · ⊗ I
indicates that no errors occur. A quantum code, denoted as
[[p,K]], is a subspace with the code length p and dimension
K of the Hilbert space H2p . We generate such codes in this
section by investigating the structure of the Lie algebra su(2p).

By writing all the 22p generators (including the identity) of
the Lie algebra su(2p) in terms of the spinors in the set G, the
algebra su(2p) forms a group under the multiplication. That
is, a generator S = σi1 ⊗ σi2 ⊗ · · ·σip of su(2p) is a tensor
product of p Pauli matrices and S1 ·S2 = S3 ∈ su(2p) for all
S1, S2 ∈ su(2p), 0 ≤ i1, i2, · · · , ip ≤ p. Let the set

C = {Si : ∀ Si, Sj ∈ G, 0 ≤ i, j < 2p,

[Si, Sj ] = Si · Sj − Sj · Si = 0} (1)

be a maximal abelian subalgebra of su(2p), which is called
the Cartan subalgebra and spanned by all the commuting

spinors of G. Up to the sign factor, it is easy to check
that the subalgebra C containing in total 2p generators is a
subgroup of su(2p) under the same group operation, namely
S1 · S2 = S3 ∈ C for all S1, S2 ∈ C. An example of a Cartan
subalgebra C0 is shown in Fig. 1 which consists of all diagonal
generators.

As described in [1], the subalgebra C can generate a parti-
tion, denoted as {P(C)}, in su(2p) consisting of 2p subspaces
{Wi; i = 0, 1, · · · , 2p − 1 and W0 = C} satisfying the rule:

∀ S1 ∈ Wi, S2 ∈ Wj , ∃! l, s.t., S1 · S2 = S3 ∈ Wl, (2)

here 0 ≤ i, j, l < 2p. It is instructive to redenoting the
subscripts of these subspaces by p-digit binary strings of the
additive group Zp

2 . Thus the rule of Eq. 2 can be rephrased
as,

∀ S1 ∈ Wζ , S2 ∈ Wη, S1 · S2 = S3 ∈ Wζ+η, (3)

here ζ, η being a p-digit binary string of the additive group Zp
2

under the bitwise addition and W0 = C. Under this notation,
the isomorphism between the Lie algebra su(2p) and the group
can be rendered.

Theorem 1: The partition {P(C)} generated by a Cartan
subalgebra C of the Lie algebra su(2p) is isomorphic to the
additive group Zp

2 .
The detailed proof via a constructive procedure is made in [1].
The Cartan subalgebra C is regarded as a ”subgroup” and the
subspace Wζ a ”coset” of the partition {P(C)}.

As depicted in Fig. 1, the Cartan subalgebra C0 uniquely
can generate the quotient-algebra part partition {P(C)} =
{Wζ ; ζ ∈ Z3

2} in the Lie algebra su(8). The generators
of these eight subspaces Wζ , ζ ∈ Z3

2 , are related by
the 3-digit binary strings. For instance, the multiplication
I ⊗ σ1 ⊗ σ1 · σ1 ⊗ σ1 ⊗ I = σ1 ⊗ I ⊗ σ1 of the two spinors
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C0 =W000 = {I ⊗ I ⊗ I, σ3 ⊗ I ⊗ I, I ⊗ σ3 ⊗ I, I ⊗ I ⊗ σ3, σ3 ⊗ σ3 ⊗ I, σ3 ⊗ I ⊗ σ3, I ⊗ σ3 ⊗ σ3, σ3 ⊗ σ3 ⊗ σ3};

W001 = {I ⊗ I ⊗ σ1, σ3 ⊗ I ⊗ σ1, I ⊗ I ⊗ σ2, σ3 ⊗ I ⊗ σ2, I ⊗ σ3 ⊗ σ1, σ3 ⊗ σ3 ⊗ σ1, I ⊗ σ3 ⊗ σ2, σ3 ⊗ σ3 ⊗ σ2};

W010 = {I ⊗ σ1 ⊗ I, σ3 ⊗ σ1 ⊗ I, I ⊗ σ2 ⊗ I, σ3 ⊗ σ2 ⊗ I, I ⊗ σ1 ⊗ σ3, σ3 ⊗ σ1 ⊗ σ3, I ⊗ σ2 ⊗ σ3, σ3 ⊗ σ2 ⊗ σ3};

W011 = {I ⊗ σ1 ⊗ σ1, I ⊗ σ2 ⊗ σ2, I ⊗ σ2 ⊗ σ1, I ⊗ σ1 ⊗ σ2, σ3 ⊗ σ1 ⊗ σ1, σ3 ⊗ σ2 ⊗ σ2, σ3 ⊗ σ2 ⊗ σ1, σ3 ⊗ σ1 ⊗ σ2};

W100 = {σ1 ⊗ I ⊗ I, σ1 ⊗ σ3 ⊗ I, σ2 ⊗ I ⊗ I, σ2 ⊗ σ3 ⊗ I, σ1 ⊗ I ⊗ σ3, σ1 ⊗ σ3 ⊗ σ3, σ2 ⊗ I ⊗ σ3, σ2 ⊗ σ3 ⊗ σ3};

W101 = {σ1 ⊗ I ⊗ σ1, σ2 ⊗ I ⊗ σ2, σ2 ⊗ I ⊗ σ1, σ1 ⊗ I ⊗ σ2, σ1 ⊗ σ3 ⊗ σ1, σ2 ⊗ σ3 ⊗ σ2, σ2 ⊗ σ3 ⊗ σ1, σ1 ⊗ σ3 ⊗ σ2};

W110 = {σ1 ⊗ σ1 ⊗ I, σ2 ⊗ σ2 ⊗ I, σ2 ⊗ σ1 ⊗ I, σ1 ⊗ σ2 ⊗ I, σ1 ⊗ σ1 ⊗ σ3, σ2 ⊗ σ2 ⊗ σ3, σ2 ⊗ σ1 ⊗ σ3, σ1 ⊗ σ2 ⊗ σ3};

W111 = {σ1 ⊗ σ1 ⊗ σ1, σ2 ⊗ σ2 ⊗ σ1, σ2 ⊗ σ1 ⊗ σ1, σ1 ⊗ σ2 ⊗ σ1, σ2 ⊗ σ1 ⊗ σ2, σ1 ⊗ σ2 ⊗ σ2, σ1 ⊗ σ1 ⊗ σ2, σ2 ⊗ σ2 ⊗ σ2}

Fig. 1. A partition generated by a Cartan subalgebra C0 of su(8).

TABLE II
ERROR CORRECTION CODES IN CLASSICAL AND QUANTUM REGIMES.

Classical Regime Quantum Regime

A set of errors E = {λ0, λ1, · · · , λN−1} ⊂ Z
p
2 . A set of spinor errors E = {E0, E1, · · · , EN−1} ⊂ su(2p), Ei ∈ Wλi

,
0 ≤ i < N and su(2p) =

⋃

λ∈Z
p

2

Wλ.

A code [p,K] = {ω0, ω1, · · · , ωK−1} satisfying the condition λi +
ωm 6= λj + ωn, 0 ≤ i, j < N and 0 ≤ m,n < K, can correct the error
set E .

A code [[p,K]] = Span{S0|ψ0〉, S1|ψ0〉, · · · , SK−1|ψ0〉} satisfying
the condition EiSm|ψ0〉 6= EjSn|ψ0〉, 0 ≤ i, j < N and 0 ≤ m,n <
K, can correct the error set E , here Sm ∈ Wωm

for ωm ∈ Z
p
2 .

[p,K] is a linear code if {ωm} is a subgroup of Zp
2 . [[p,K]] is a code of type-I if

⋃

ωm

Wωm
is a subgroup of su(2p).

[p,K] is a nonlinear code if {ωm} is not a subgroup of Zp
2 . [[p,K]] is a quantum code of type-II if

⋃

ωm

Wωm
is not a subgroup of

su(2p).
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I ⊗ σ1 ⊗ σ1 ∈ W011 and σ1 ⊗ σ1 ⊗ I ∈ W110 must belong
to the subspace W011+101 = W101. Thanks to the existence
of the group structure in su(2p), a scheme can be designed to
acquire quantum codes.

III. CONSTRUCTING QUANTUM CODES

For a given error set E = {E0, E1, · · · , EN−1} ⊂ G, a
Cartan subalgebra C ⊂ su(2p) is chosen to generate a partition
{P(C)} = {Wλ : ∀ λ ∈ Zp

2} in su(2p), such that the N errors
are distributed to N different subspaces, namely Ei ∈ Wλi

and λi 6= λj if Ei 6= Ej , here 0 ≤ i < N and E0 = I⊗p.
Then an initial state

|ψ0〉 =
∑
S∈C

S|00 · · · 0〉 (4)

is produced by applying all the spinors of the Cartan subalge-
bra C to the p-qubit zero state. Being a basis codeword, the
initial state is a seed to search other codewords to generate
the required code subspace. A set of K codeword spinors

B = {S0 = I⊗p, S1, · · · , SK−1} ⊂ G, (5)

respectively chosen from the K subspaces, are applied to the
initial state |ψ0〉 to generate the set of K states

BS = {|ψr〉 : 0 ≤ r < K} = {|ψr〉 = Sr|ψ0〉 : 0 ≤ r < K}.
(6)

The set BS comprising K basis codewords forms a generating
set of a code subspace [[p,K]] with the length p and dimension
K. As long as a Cartan subalgebra C is given, a unique
partition {P(C)} is generated and there produce an enormous
number of quantum codes.

Theorem 2: Every Cartan subalgebra of the Lie algebra
su(2p) can decide quantum codes [[p,K]] with the code length
p and dimension 0 < K ≤ 2p.
An implication of this theorem is that, for a given error set,
one can always find its error-correction code by choosing
appropriate Cartan subalgebra; referring [3] for the more
detail.

The corrupted state

|ψij〉 = Ei|ψj〉 = Ei · Sj |ψ0〉 (7)

is produced by applying the error operator Ei to a basis
codeword |ψj〉 = Sj |ψ0〉, 0 ≤ i < N and 0 ≤ j < K.
We say that the code [[p,K]] has the ability to correct the
error set E if

Wτ1 6= Wτ2 for any Ei1 · Sj1 ∈ Wτ1 and Ei2 · Sj2 ∈ Wτ2 ,
(8)

here 0 ≤ i1, i2 < N , 0 ≤ j1, j2 < K and τ1, τ2 ∈ Zp
2 .

Each corrupted state indicates a syndrome during the process
of error-correction and the result of Eq. 8 implies that all
the syndromes are distinguishable. There have in total MN
syndromes listed here and the code [[p,K]] obeys the so-called
quantum Hamming bound MN ≤ 2p.

Up to the normalization, the state |ψ0〉 = |000〉 is the initial
state created by applying the spinors of the Cartan subalgebra
C0 in Fig. 1. By selecting any spinor in the subspace W111 as

a codeword spinor, say σ1 ⊗ σ1 ⊗ σ1, another basis codeword
|ψ1〉 = σ1⊗σ1⊗σ1|ψ0〉 = |111〉 is produced. The set {|ψ0〉 =
|000〉, |ψ1〉 = |111〉} is a basis to generate a quantum code
[[3, 2]] with the length 3 and dimension 2, which can correct
an error set such as E = {I⊗I⊗σ1, σ1⊗I, σ1⊗I⊗I}. In fact,
this code can correct any error set that comprises three spinors
from the subspaces W001, W010 and W100 respectively.

IV. CLASSIFICATION OF QUANTUM CODES

Following the procedure of construction in the last section,
a basis codeword is created by applying a codeword spinor
to an initial state. Since a Cartan subalgebra C is a sub-
group of su(2p) under the multiplication, the set of strings
C = {αr ∈ Zp

2 ; r = 0, 1, · · · , 2k − 1} for the initial state
|ψ0〉 =

∑
S∈C

S|00 · · · 0〉 =
∑2k

r=1(−1)ǫr |αr〉 as of Eq. 4
forms a subgroup of the additive group Zp

2 . For a fixed initial
state, there produce two types of quantum codes according to
whether or not the set of codeword spinors B is a subgroup
of su(2p) under the multiplication. Yet for a fixed B, there
admit the other two types of quantum codes. It is instructive to
classify the generated quantum codes by the different options
of |ψ0〉 and B, as shown in Table I.

Type B C

I g. g. additive
II n.g. g. nonadditive
III g. n.g. nonadditive
IV n.g. n.g. nonadditive

TABLE I
THE CLASSIFICATION OF QUANTUM CODES GENERATED BY THE SCHEME
IN THIS REPORT; HERE G. (N.G.) INDICATES THAT B AND C ARE (NOT) A

SUBGROUP OF LIE ALGEBRA su(2p) AND THE ADDITIVE GROUP Z
p
2

RESPECTIVELY.

Four types of quantum codes are generated. The quantum
code of type-I in Table I, which is an additive code (stabilizer
code), corresponds to both C and B being a subgroup of Zp

2

and P(C) respectively. The remaining codes are nonadditive
codes. For the code of type-II, the set B is not a subgroup but
C is. The set B is a subgroup yet C is not for the code of
type-III. Neither of B and C is a subgroup in the last type of
code. It is noted that the codes like type-III or type-IV are the
new categories that have never been discovered so far [2].

V. CLASSICAL CORRESPONDENCES OF QUANTUM CODES

The quantum codes of types I and II have obvious classical
correspondences, as shown in Table II in Appendix A. The
former type refers to the classical linear code and the latter
to the nonlinear one. Both the type-I and type-II codes are
created by a set of codeword spinors B = {Sm ∈ su(2p); 0 ≤

m < K} in su(2p), 0 ≤ t ≤ p, and by an initial
state |ψ0〉 =

∑2k

r=1(−1)ǫr |αr〉 whose strings is a subgroup
C = {αr; 0 ≤ r < 2k} in Zp

2 . Each codeword spinor Sm

is included in a subspace Wωm
, ωm ∈ Zp

2 , of the partition
{P(C)} generated by a Cartan subalgebra C ∈ su(2p). Owing
to the isomorphism of the partition {P(C)} and the additive
group Zp

2 by Theorem 1, the behavior of the subspaces Wωm

in {P(C)} is equivalent to that of the strings ωm in Zp
2 .
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Since the subspaces {Wωm
} for the quantum code of type-

I is a subgroup of {P(C)}, the set of strings {ωm} is a
subgroup of Zp

2 . This indicates this type of quantum code has a
linear correspondence in classical codes. While the subspaces
{Wωm

} for the code of type-II is not a subgroup of {P(C)}
and the set of strings {ωm} is not a subgroup of Zp

2 . A such
type of quantum code thus has a nonlinear correspondence in
classical regime.

VI. CONCLUSION

With the group structure of the Lie algebra su(2p), we can
design a scheme to systematically generate an exhaustive set of
quantum codes [[p,K]] with the code length p and dimension
1 ≤ K ≤ 2p. In addition, we classify these generated quantum
codes according to the relations of codeword spinors and a
given initial quantum state. New types of quantum codes can
be discovered for the purpose of searching higher efficient
quantum codes.
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APPENDIX

A figure and a table are listed in next page. The figure
(Fig. 1) is a partition of the Lie algebra su(8), a 3-qubit
system. The 64 generators of su(8) are divided into eight
disjoint subspaces by the subgroup, a Cartan subalgebra C0.
These disjoint subspaces are related by the binary strings of
the additive group Z3

2 and there reveals the isomorphism of
the partition and Z3

2 . The table (Table I) demonstrates the
comparison of the quantum codes and classical codes.


