
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

743

Abstract—Aspect Oriented Programming promises many

advantages at programming level by incorporating the cross cutting
concerns into separate units, called aspects. Join Points are
distinguishing features of Aspect Oriented Programming as they
define the points where core requirements and crosscutting concerns
are (inter)connected. Currently, there is a problem of multiple
aspects’ composition at the same join point, which introduces the
issues like ordering and controlling of these superimposed aspects.
Dynamic strategies are required to handle these issues as early as
possible. State chart is an effective modeling tool to capture dynamic
behavior at high level design. This paper provides methodology to
formulate the strategies for multiple aspect composition at high level,
which helps to better implement these strategies at coding level. It
also highlights the need of designing shared join point at high level,
by providing the solutions of these issues using state chart diagrams
in UML 2.0. High level design representation of shared join points
also helps to implement the designed strategy in systematic way.

Keywords—Aspect Oriented Software Development, Shared Join
Points.

I. INTRODUCTION
SPECT Oriented Programming [1] [2] is a new software
development paradigm which enables to increase the

comprehensibility, adaptability and reusability by
modularizing the crosscutting concerns into the units called
“aspects” [3] [4]. It provides solutions of many real time
problems that neither the object oriented nor procedural
languages can sufficiently handle [2] [5]. “Aspect” in AOP is
like a class entity which mainly differs in instantiation and
inheritance [3]. Other constructs of AOP are join points,
pointcuts, advices and introductions [2] [5], among all, join
point is more important. Join point is defined as a well defined

This work is a part of our research project for Department of Computer

Science at International Islamic University, Islamabad, Pakistan.
 Muhammad Naveed is a student of MS (Software Engineering) at
International Islamic University Islamabad, Pakistan. Also working as a
Software Engineer in ESOLPK, 12 SNC Center, Blue Area, Islamabad,
Pakistan (e-mail: naveed_2334@yahoo.com).
 Muhammad Khalid Abdullah is a student of MS (Software Engineering) at
International Islamic University Islamabad, Pakistan (e-mail:
am.khalid@yahoo.com).

Khalid Rashid is with Faculty of Applied Science, International Islamic
University Islamabad, Pakistan (e-mail: drkhalid@yahoo.com).

Hafiz Farooq Ahmad is with Department of Computer Science,
International Islamic University Islamabad, Pakistan (e-mail:
farooq@comtec.co.jp).

execution point in a program [3].
Join points represent the key concept in Aspect-Oriented

Software Development (AOSD). Join points define the places
where two concerns i.e. core and aspectual, crosscut each
other [2] [3] [5] [6] [7] [8] [9]. Main task of aspect-oriented
introductions [2] [5], among all, join point is more important.
Join point is defined as a well defined execution point in a
program [3].

Join points define the places where two concerns i.e. core
and aspectual, crosscut each other [2] [3] [5] [6] [7] [8] [9].
Main task of aspect-oriented designers is to identify set(s) of
join points, where two concerns interconnect to each other,
and provide suitable representation for join points [8] [9] [10].

In many cases, a join point is superimposed by multiple
aspects at the same time, known as a shared join point [5] [8]
[10]. There are many example scenarios (one discussed in
section 4), where multiple aspects are being superimposed on
the same join point [8] [10] [11]. Currently, there are
problems with shared join points at implementation level due
to uncertain execution behavior of superimposed aspects [8]
[10] [11]. Since multiple aspects are being superimposed, it
becomes difficult to judge what will be the exact execution
order? If an aspect does not work; how to control the
execution order of other aspects? There is not sufficient
support available for these issues at implementation level, but
there are some indirect support and recommendation details
for AOP languages [5] [8] [11]. For example, AspectJ
provides precedence construct for ordering and do not provide
any direct support for controlling [5].

These issues are novel and being discussed at
implementation level only [8] [10]. These issues require the
strategies to order and control the superimposed aspects at run
time. The strategy presented at implementation level requires
to be modeled for shared join points at the early software
development stage [12] [13]. Due to the significance of join
points, particularly, the shared join points, the representation
of issues regarding the shared join points in an aspect-oriented
development environment is a major task for aspect-oriented
designers at high level design. This high level representation
can reduce the work cost by the formulation of early design
decisions.

Software design is an important activity in the software
development. It is like a blueprint of the software to be built
[14].Recently, Aspect Oriented Software Development is
making strong progress on the implementation level, but the
extensive support at design level is still insufficient [13].

Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, and Hafiz Farooq Ahmad

Representing Shared Join Points with State
Charts: A High Level Design Approach

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

744

Unified Modeling Language (UML) [7] of OMG group is one
of the most popular modeling languages to design different
artifacts of the software systems. UML [15] provides
numerous diagrams to model properties of a software system
[16]. It has become an industry standard now for a while. It
provides a verity of diagrams that can be used to model
software for aspect oriented development paradigm [17] [18].
Among these diagrams, state charts are very important to
model the dynamic behavior of the system. When the decision
on what action is to take in response to a given input, the state
chart is an effective design tool [18]. This work explains how
the shared join points can be modeled using state charts of
UML 2.0 at high level design. It also proposes a methodology
to formulate the strategies based on dynamic decisions at high
level design and finally the formulated strategy is
implemented in AspectJ, one of the most prominent Aspect
Oriented Programming languages [5].

The rest of the paper is organized as follows; Section 2
provides literature review. Section 3 presents proposed
methodology for modeling shared join points with state charts
at high level design. Section 4 describes the application of the
proposed methodology to a case study, and finally, Section 5
concludes the paper.

II. LITERATURE REVIEW
A detailed analysis of the problem aroused by shared join

points is discussed by Nagy et al. in 2005. Multiple aspects’
superimposition on the same join point affects the
functionality of each other due to different execution orders
among them. Software engineering perspective of Shared Join
Point problems is also discussed. It is recommended that, to
offer one solution which satisfies only a single case is not
preferred. AOP languages should offer a rich set of language
mechanism for composition specifications, so that, the
developers may choose the right specification for their
problem. It is very important to identify conflicts among
aspects at shared Joint point for the safety and correctness.
The already presented core model [10] is enhanced by adding
more constraints and the composition rules for multiple
constraints. The integration of the purposed model with
AspectJ is also presented. This model can be used with
AspectJ, if AspectJ support the named advices. Also the Join
Point interface has to be extended for this purpose. For
ordering, AspectJ uses declare precedence construct and for
controlling, the construct presented in Core Model needs
language support [8] [10].

Anis C. et al. presented an interaction model on the basis of
Interaction Specification Language (ISL) for modularizing
crosscutting concerns of component based applications. The
main idea of interactions is to rewrite a method body using the
reaction (advice). The interaction model is used to handle the
issues arouse by the Shared Join Point in a way that, the
composition mechanism generates an advice, which is the
result of merging all advices at that join point. Whenever a
shared join point is reached one single advice is executed,
which is semantically equivalent to the composed advice. The
merging mechanism is based on a finite set of merging rules.

The software engineering properties such as analyzability and
predictability can also be achieved by using this tool. Testing
and verification becomes much simpler [11].

Mahoney et al. described the importance of extended Finite
State Machines in order to capture the dynamic behavior of
systems [18]. A state chart is connected to a class that
specifies all behavioral aspects of the objects in that particular
class. They also describe that Aspect Oriented Modeling can
help in bridging the gab between software design and
implementation through the use of advanced features of state
charts. They have proposed a framework which helps in
simplifying the design of core requirements and cross cutting
concerns.

Mahoney elaborated the need of crosscutting concerns of
reactive systems using state machines. State Charts are used to
describe the dynamic behavior of separate concerns. The core
and aspectual requirements are represented by state in
different orthogonal regions. He addressed the communication
mechanism in orthogonal regions through broadcast events.
The broadcast events are used as a mechanism for implicit
weaving of aspect and core model in state charts [19].

The programming constructs of AspectJ are introduced by
Kiczales et al. The application of advices of two conceptually
and semantically independent aspects at the same join point is
addressed. It also described that the programmer does not
need to control relative ordering of such advice [5].

Mohamed Mancona Kande et al. explained the basic
concepts of AspectJ, a state of the art Aspect Oriented
Programming Language. Standard UML is used for modeling
these concepts and limitations of UML are highlighted. Some
extensions to UML are proposed to overcome these
limitations. A bottom up approach is followed for designing
classes and aspects of Aspect Oriented Programming [16].

The concepts of Join Point as Static Join Point and
Dynamic Join Point are addressed. UML association classes
(along with their new features), ports and connectors are used
among components for modeling [7].

Stein D. et al. presented an approach to model the join
points with the help of Join Point Indication Diagram (JPID)
and Join Point Designation Diagram (JPDD). JPID is
presented for the indication of join points in core model while
JPDD is presented for the indication of join points in aspects
[18] [19] [20], but it does not address any solution for Shared
Join Points.

There is massive work on modeling, modeling join points
as well as on aspect oriented programming where as the work
on shared point is only at implementation level. There is no
solution presented by the researchers to represent particular
issues of shared join point at high level in formulation of the
suitable design strategies for shared join points.

III. PROPOSED METHODOLOGY
This section presents the proposed methodology based on

state charts of UML 2.0. The section is divided into two sub-
sections. First describes, why to use state charts for shared
join point modeling and second subsection explains the
proposed design methodology.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

745

A. State Charts for Shared Join Point Modeling
The Unified Modeling Language (UML) has become

industry standard for modeling general and as well as for
specific purpose software artifacts. State charts in UML 2.0
[15] are very important means of modeling and capturing the
dynamic behavior of objects. State chart related to a class, can
specify all the behavioral aspect in that class [18]. A state
chart diagram is represented through a state machine which
models the individual behavior of the object. State machines
throughout the UML versions remained almost same [20].
However, some new elements like entry and exit point are
introduced in UML 2.0 [15]. Some of the elements of UML
2.0 like, composite state, choice pseudostate and terminate
pseudostate are very important means to model the behavior.

B. Methodology
The proposed design methodology mainly uses composite

state of UML for the multiple aspects’ composition at the
shared join point. The model consists of three main composite
states. These composite states are composition of the aspectual
and core requirements. Aspectual requirements are further
subdivided into two composite states; beforeCompositeState
and afterCompositeState. If multiple aspects are superimposed
before the core requirement, then their ordering and
controlling will be handled in beforeCompositeState. And if
the multiple aspects are superimposed after the core
requirement, then their ordering and controlling will be
handled in afterCompositeState. This means that each
composite state is responsible for handling issue related to
superimposed aspects contained by that composite state. The
core requirement is composed in the coreCompositeState.
These composite states are named as just for understanding.
So, at the abstract level, the aspectual and core requirement
compositions are handled in composite states. The big picture
of proposed methodology is shown in Fig. 1.

Fig. 1 Abstract view of proposed methodology

IV. CASE STUDY
To understand the problems of shared join point, it becomes

more convenient if we consider following case study. There
are also some examples related to these issues, discussed in

[8] [11]. The case study is about university course registration
system. There are some requirements such as, no student will
be allowed to register course without prior submission of fee,
and also no course will be registered if its prerequisites are not
passed by the student. The system should maintain log and
database persistence. In this scenario of university course
registration, CourseRegistration class fulfils the core
requirement of the system. The requirement of course
registration is fulfilled by registerCourse() method. The other
requirements are implemented in different aspects.

Suppose that requirement of logging is implemented by
aspect named Logging. The responsibility of Logging aspect is
to maintain the log of every entrance to a method, so Logging
aspect should run before the registerCourse() join point which
is now well defined point in the program.
 There are other requirements of student fee checking and
course prerequisites checking for the course being registered
by the student. These requirements are implemented by
CheckFee and CheckPreRequisite aspects respectively. These
aspects should also run before the registerCourse() join point.
Now, all three aspects will be executed on the
registerCourse() join point at the same time. In other words
this join point is being shared by the multiple superimposed
aspects.

The problem of ordering and controlling among these three
aspects arises. If either of the aspects does not provide the
desired results, the course should not be registered. The last
requirement is to check the database persistence implemented
by DBPersistence aspect, which ideally should run at the end
when course has been registered.

CheckPreRequisite
<<Aspect>>

Logging
<<Aspect>>

CheckFee
<<Aspect>>

CourseRegistration

registerCourse()

DBPersistance
<<Aspect>>

Fig. 2 Multiple aspects’ composition

Suppose that database is up and DBPersistence aspect

should work perfectly if the course has been registered. Now,
the superimposition of three aspects requires great efforts to
handle their ordering and controlling issues. The
superimposition of the multiple aspects at the join point
registerCourse() are shown in Fig. 2. All four aspects are
superimposed with registerCourse() join point. The ordering
and controlling issues are discussed at implementation level
and some strategies and software engineering rules are also
highlighted in [8] [11]. In order to define better ordering and
controlling strategies, one needs to model shared join points at
high level design, so that the ordering and controlling

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

746

strategies can be implemented perfectly at implementation
level. This reduces the work cost by identifying suitable
strategies at the early software development stage.

A. Application of the Proposed Methodology
The proposed methodology uses state charts, a design

constructs of UML 2.0 [15] to represent shared join point for
the case study discussed in university course registration
scenario.

This model comprises of three main composite states;

beforeCompositeState is to formulate the aspects that need to
be run before the core functionality which will be composed
in the second composite state coreCompositeState. Last
composite state is afterCompositeState which should contain
the aspect(s) that require(s) to be run after the core
functionality as shown in Fig. 3. Purposed model can be
customized. For example, there can be another composite state
for those aspects which need to be executed before as well as
after the core requirement i.e. around the core requirement.

Fig. 3 Detail design of proposed methodology for case study

Two different categories of composite states are defined;

one implementing the core requirement and other
implementing the aspectual requirement. We further sub-
categories the aspectual composite state into before and after
composite states. By having three composite states at abstract
level, we can easily model the core and aspectual
requirements in a systematic way.

We are more concerned with the first composite state i.e.
beforeCompositeState that contains the aspect need to be
executed before the core requirement and on the bases of their
results the core requirement will be implemented. This
composite state contains an aspect Logging and a sub-
composite state syncCompositeState which contains two
aspects CheckFee and CheckPreRequisite in its orthogonal
region for their concurrent execution. The aspects in
beforeCompositeState are superimposed and required to be

ordered and controlled. If we consider the above discussed
scenario, the Logging aspect should always run first. This
Logging aspect will transmit boolean guard value to first
choice pseudostate as input, which will evaluate these boolean
guard values and decides where to transmit the object. If the
boolean guard value is evaluated as true, the object will be
forwarded to syncCompositeState otherwise it will be sent to
terminate pseudostate, which destroys the object action. If the
object is in syncCompositeState and the boolean guard value
has been referred to CheckFee and CheckPreRequisite aspects
in the orthogonal regions, both will synchronously run and
their results will be transmitted as boolean guard values to
second Choice pseudostate that evaluates the boolean guard
value. If the value is true, it implements the course registration
core requirement otherwise object will be sent to terminate
pseudostate. Synchronous handling of two aspects takes place

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

747

because they don’t require any ordering constraint. Any one
of the aspects in syncCompositeState could run after the other.
Also the synchronous handling of these aspects in the
orthogonal regions will be handled by default as run to-
completion, in which each event is handled before the next
occur [20].

The DBPersistence aspect is an aspect that should run after
core requirement, so there is no need to order or control this
aspect. This representation allows the designers to show a
high level ordering and controlling mechanism for
superimposed aspects. It also shows how to resolve ordering
and controlling issues discussed. It provides flexibility to
designers to apply any of the strategies given in [9] at high
level design. By selecting a suitable strategy to resolve the
issue at high level design will help the programmers to
implement the strategy in an ideal way. It provides additional
feature of handling the new aspectual requirement in
systematic way. The presented design of shared join point
allows the designer to represent shared join point independent
of the implementation details at abstract level [21]. The design
at such an abstract level can provide benefits like scalability,
by representing new conflicting aspects in the model,
reusability, reusing the design strategy for other similar shared
join points, and maintainability, if any of the conflicting
aspects to be removed or to be added by identifying its effect
on the other aspects. Early representation of ordering and
controlling issues reduces the work cost by identifying the
complexity of issues and formulating suitable strategies to
solve the issues accordingly. Early the problem is identified
cheaper to solve.

V. CONCLUSION
Previously shared join points were discussed at

implementation level and to the best of our knowledge there is
no research done for this particular problem at design level.
The paper describes the need of modeling shared join point at
high level design. In this regard, state charts of UML 2.0 have
been used for modeling at high level. The main elements of
state charts are composite states which compose the
superimposed aspects at shared join point. At abstract level,
the composite states are used to categorize into core and
aspectual requirements. The strategies for ordering and
controlling are implemented through detailing the state charts
using the choice pseudostate as dynamic selection element and
guard values to evaluate the next transition. State charts
represent a better way to handle shared joint point Issues at
high level design. This allows the designers to design issues
regarding the shared join points at early design stages, and
programmers can implement these strategies accordingly. A
case study is presented with proposed methodology, which
shows in detail how issues(s) regarding shared join point(s)
can be represented at high level design.

REFERENCES
[1] Aspect-Oriented Software Development. http://www.aosd.net.

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, Ch.,
Loingtier, J.and Irwin, J.: “Aspect-Oriented Programming”. In
Proceedings of the 11th European Conference on Object-Oriented
Programming (ECOOP ´97) (Yväskylä, Finland, June 9-13, 1997).
Springer-Verlag, Berlin Heidelberg, 1997, LNCS 1241, Pages 220–242.

[3] Stein, D., Hanenberg, St., Unland, R..: “An UML-based Aspect-Oriented
Design Notation For AspectJ”. In Proc. Of AOSD ’02 (Enschede, the
Netherlands, Apr. 2002), ACM, pp. 106-112.

[4] Wesley Coelho and Gail C. Murphy: “Modeling Aspects: An
Implementation-Driven Approach”. Workshop on Best Practices for
Model Driven Software Development at OOPSLA 2004.

[5] Kiczales, G, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm & W.
Griswold: “An Overview of AspectJ”. In Proceedings of ECOOP 2001,
LNCS 2072, Springer Verlag, 2001.

[6] Boucke N., Holvoet T.: “State-based join points: Motivation and
requirements”. In Filman, R. E., Haupt, M., Hirschfeld, R. (eds):
Proceedings of the Second Dynamic Aspects Workshop (2005) 1-4.

[7] Eduardo Barra Zavaleta, Gonzalo Génova Fuster, Juan Llorens Morillo:
“An approach to Aspect Modelling with UML 2.0”. Workshop on
Aspect Oriented Modeling, October 11, 2004, Lisbon, Portugal, held in
Conjunction with the 7th International conference on the Unified
Modeling Language- UML 2004, October 10-15, 2004, Lisbon,
Portugal.

[8] I. Nagy, Lodewijk Bergmans and Mehmet Aksit: “Composing Aspects at
Shared Join Points”. Proceedings of International Conference
NetObjectDays, NODe2005.

[9] Stein, D., Hanenberg, S. and Unland, R.: “On Representing Join Points
in The UML”. In Proceedings of the 2nd Workshop on Aspect Modeling
with UML at the Fifth International Conference on the Unified
Modeling Language and its Applications (UML 2002), (Dresden,
Germany, 30 September – 4 October, 2002).

[10] I. Nagy, L. Bergmans, M. Aksit.: “Declarative Aspect Composition”.
Technical Report,
http://trese.ewi.utwente.nl/publications/publications.php?
action=showPublication&pub_id=346 University of Twente, (April
2005).

[11] Anis Charfi, Michel Riveill, Mireille Blay-Fornarino, Anne-Marie
Pinna-Déry: “Transparent and Dynamic Aspect Composition”. In
Workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT), Bonn (Germany), 21 march 2006.

[12] A. Rashid, N. M. Ali: “A State-based Join Point Model for AOP”.
Workshop on Views, Aspects and Roles — VAR (held with ECOOP
2005).

[13] Stein, D.; Hanenberg, S.; Unland, R.: “Modeling Pointcuts. Early
Aspects”. Workshop on Aspect-Oriented Requirements Engineering and
Architecture Design, AOSD 2004, Lancaster, UK, March 22, 2004.

[14] Eric Braude: Software Design: From Programming to Architecture. John
Wiley & Sons, Inc. 2004.

[15] Object Management Group: “Unified Modeling Language”.
Superstructure, version 2.0 formal/05-07-04.

[16] Mohamed Mancona Kande, Jorg Kienzle and Alfred Strohmeier, “From
AOP to UML- A Bottom-Up Approach”, Swiss Federal Institute of
Technology Lausanne, Switzerland. [2001].

[17] A. Rashid, Araujo J., A. Moreira, and I. Brito: “Aspect-Oriented
Requirements with UML”. Workshop on Aspect-Oriented Modeling
with UML (held with UML 2002).

[18] Mahoney, M., Bader, A., Aldawud, O., Elrad, T.: “Using Aspects to
Abstract and Modularize Statecharts.” The 5th Aspect-Oriented
Modeling Workshop in Conjunction with UML 2004.
http://www.cs.iit.edu/~oaldawud/AOM/mahoney.pdf.

[19] Mark Mahoney: “Modeling Crosscutting Concerns in Reactive Systems
with Aspect-Orientation”. Doctoral Symposium at MoDELS/UML 2005,
Montego Bay Jamaica, October 2005.

[20] Michelle Crane, Juergen Dingel: “UML Vs. Classical Vs. Rhapsody
Statecharts: Not All Models Are Created Equal”. ACM/IEEE 8th
International Conference on Model Driven Engineering Languages and
Systems (MoDELS 2005).

[21] Stein, D.; Hanenberg, S.; Unland, R.: “Position Paper on Aspect-
Oriented Modeling: Issues on Representing Crosscutting Features”. 3rd
International Workshop on Aspect-Oriented Modeling with UML,
AOSD 2003, Boston, MA, March 18, 2003.

