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Abstract— Phase locked loops (PLL) and delay locked loops 

(DLL) play an important role in establishing coherent references 

(phase of carrier and symbol timing) in digital communication 

systems. Fully digital receiver including digital carrier synchronizer 

and symbol timing synchronizer fulfils the conditions for universal 

multi-mode communication receiver with option of symbol rate 

setting over several digit places and long-term stability of 

requirement parameters. Afterwards it is necessary to realize PLL 

and DLL in synchronizer in digital form and to approach to these 

subsystems as a discrete representation of analog template. Analysis 

of discrete phase locked loop (DPLL) or discrete delay locked loop 

(DDLL) and technique to determine their characteristics based on 

analog (continuous-time) template is performed in this posed paper. 

There are derived transmission response and error function for 1st

order discrete locked loop and resulting equations and graphical 

representations for 2nd order one. It is shown that the spectrum 

translation due to sampling takes effect at frequency characteristics 

computing for specific values of loop parameters.     

Keywords—Carrier synchronization, Coherent demodulation, 

Software defined receiver, Symbol timing. 

I. INTRODUCTION

HASE and delay locked loops are the most frequently 

applied structures in various regulation systems, where the 

tracked quantity is phase of a signal (or more precisely 

immediate carrier frequency in communication system) or 

delay between two signals. Basic motivation for the study of 

PLL/DLL behavior in discrete domain has been the 

modernization of universal receiving system for ground 

station at Department of Radio Electronics. Main requirement 

of this is to reach high detection efficiency for data signals 

from experimental satellites with a wide range of bit rates. 

Therefore the demodulation algorithms have been processed 

Manuscript received September 30, 2007. This work has been supported by 

the post-doctoral grant of Czech Science Foundation No. 102/07/P514 

“Research of Digital Detection Methods for Low Energy Signals”, by the 

research grant of Czech Science Foundation No. 102/06/1672 

“Communication Systems of Experimental Satellites”, and by the research 

program of Ministry of Education of Czech Republic No. MSM0021630513 

“Advanced Electronic Communication Systems and Technologies” (ELCOM).   

J. Sebesta was with Brno University of Technology, Czech Republic. He is 

now with the Department of Radio Electronics, Faculty of Electrical 

Engineering and Communication, Brno University of Technology,    

Purkynova 118, 61200 Brno, Czech Republic (e-mail: 

sebestaj@feec.vutbr.cz). 

in the digital part of software defined receiver (SDR). This 

receiver is determined for demodulation of phase shift keying 

and continuous phase modulations with symbol rates from 

tens of bauds up to hundreds of kilobauds. Pivotal subsystems 

of the coherent demodulator are PLL for carrier 

synchronization and DLL for symbol timing synchronization.   

Generally, the PLL or DLL are non-linear systems 

demanding high-level mathematical computation of high-

order non-linear differential equations for determination theirs 

characteristics, e.g. using Planck-Fokker techniques [1]. Such 

solution can be simplified by linearization of error detector in 

tracking mode, where the loop is locked and error value of 

tracked quantity goes near around equilibrium point. 

Derivations of analog locked loop characteristics were 

described in many publications [2], [3], as well as loops in 

discrete domain based on equivalences with analog forms. 

Nevertheless, the spectrum translation due to sampling takes 

effect at resulting frequency characteristics, but in the most of 

these publications were directly used procedures from analog 

domain for discrete forms [4]. This phenomenon is the more 

remarkable the faster response of closed loop is. In following 

chapters the analyses with sampling implications on resulting 

frequency characteristics of DPLL/DDLL are executed. The 

phase or delay loops with fast response bring to bear in the 

coherent detection of narrow-band satellite signal involved by 

strong Doppler’s effect [5]. 

II. DISCRETE PLL AND DLL LINEARIZED MODEL

Considering general PLL, results for DLL can be obtained 

by direct substitution of delay for phase. Block diagram of 

a linearized PLL in analog domain (APLL) and discrete 

domain (DPLL) is shown in figure 1. Parameter kD is the gain 

of phase error detector in linearized model and it is specified 

as a ratio between output error value and true error value of 

input phase. This parameter corresponds to a slope 

(derivative) of error detector S-curve in equilibrium point. 

Function HLF(p) is a transmission function of loop filter and kN

is gain of voltage controlled oscillator (VCO). Closed-loop 

transfer function is defined for phase estimation E(t) and 

input phase (t) as a quotient of their transform E(p) and 

(p). Closed loop transfer function in p-plane for APLL is 

given by  
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Closed loop transfer function in z-plane for DPLL can be 

analogically got by  
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Another important function describing features of phase 

locked loops is error function, which defines transmission 

between error of phase estimation (p) and input phase (p).

Putting substitution E(p) = (p) - (p) together with 

equation (1), the error function in p-plane is     
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The error function in z-plane for discrete form of phase locked 

loop is  

zH
zHkkz

z
z
zzH cD

LFND
eD 1

1

1 .               (4) 

By appropriate choice of the loop filter and its transfer 

function, any order close loop transfer function and error 

function can be obtained. In this article only the 1st and 2nd

order loops will be taken into consideration. The next chapter 

derives basic DPLL functions for the simplest configuration of 

discrete locked loop with 0th order loop filter. The following 

section is focused on discussion of results for discrete 2nd

order loop.   

III. DERIVATION OF 1ST
 ORDER DPLL CHARACTERISTICS BASED 

ON ANALOG TEMPLATE 

The 1st locked loop contains the 0th order loop filter, it means 

that the multiplying coefficient k0 (frequency-independent 

gain) represents loop filter only. The closed-loop transfer 

function for continuous implementation is given by equation  
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where K0 = kD· kN· k0.  Transfer function defined by formula 

(5) corresponds to low-pass filter with cut-off frequency 

m = K0. Asymptotic slope down of transfer modulus in     

stop-band is 20 dB/dek. Closed loop transfer function for 

discrete implementation of 1st order PLL is 
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The equivalent discrete-time system with continuous-time 

system, which has low-pass frequency response, can be 

derived by using impulse-invariance method. This procedure 

apply the transformation relationship between Laplace 

transform (p-plane) and Z-transform on poles, it means 

transform of poles from p-plane to z-plane [3]  

SaP TP
P eZ .                                                                      (7) 

TSa is sampling period of discrete system and its value has to 

satisfy sampling theorem 

2
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Formulation of single pole of 1st order DPLL, which is 

derived from APLL system by (7), is     
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Parameter m is defined as normalized cut-off frequency of 1st

order DPLL     

Fig. 1 Linearized model phase locked loop in analog and discrete 

form 

Fig. 2 Close loop frequency responses of 1st order DPLL
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and it is possible to set it in range (0, 0.5). 

Coefficient K0 in (6) is derived by confrontation of the pole 

in (9) and the denominator of closed loop transfer function (6) 

meK 2

0 1                                          (11) 

Finally, the closed-loop transfer function of 1st order DPLL 

is given by substitution (11) in (6) 
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Similarly, the error function of 1st order DPLL is determined 

by formula 
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The closed loop frequency response of 1st order DPLL is 

presented in figure 2, where the slope down of modulus in 

stop-band less than 20 dB/dec is obvious and this value 

decreases with growing m. It is implication of imperfect 

fulfillment of sampling theorem (8), or effect of aliasing.  

Because of the aliasing that occurs in the sampling process, 

the frequency response and behavior of the DPLL is not 

identical to the original APLL.      

The last step of 1st order DPLL analyses is the 

determination of stability conditions. Single pole of DPLL 

system is given by formula (9), it lies on real axis inside of 

unity circle for any m in possible range (0, 0.5). Due to the 

1st order DPLL is unconditionally stable.  

IV. 2ND
 ORDER DPLL CHARACTERISTICS 

Analogically as the discrete 1st order locked loop 

characteristics computation, the 2nd order DPLL 

characteristics were derived. Block diagram of discrete loop 

filter for 2nd order PLL is shown in figure 3. There are several 

configurations of such loop filter, so following calculations 

represent DPLL system with filter in arrangement in figure 3. 

The derivation of DPLL characteristics was based on the 2nd

order analog PLL with integrator described by closed loop 

transfer function [] 
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where n is the natural frequency and  is the dumping factor. 

The two poles of transfer (14) are 
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The poles of discrete PLL form in z-plane are calculated by 

applying the impulse invariance method (7) mentioned above 
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TSa represents sampling period of discrete PLL system. The 

same procedure as in case of 1st DPLL was used and resulting 

formula of closed loop transfer for 2nd order DPLL was 

computed 
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The parameter n is defined as the normalized natural 

frequency relating to sampling frequency. The dumping factor 

has the same meaning and rate as in case of APLL. The 

coefficients of loop filter (see figure 3) are derived from 

transfer function (17)  
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An example of frequency responses of 2nd order DPLL is 

shown in figure 4. There is again evident the impact of 

aliasing that occurs in the sampling process.  

In the end, the stability of proposed discrete-time system 

was investigated. If the one pole in equation (15) is complex 

number, the second one is complex conjugate. Then one of 

them can be investigated and stability of 2nd order DPLL 

system is given by  

1
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Fig. 3 Block diagram of loop filter for 2nd order DPLL
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This condition can be rewritten on based of exponential 

function properties as investigation of a real part of exponent  

0Re 2122 nn j .                                  (21) 

Analytic solution of the real part of exponent can be divided 

in two intervals 
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Because of the normalized natural frequency n and the 

dumping factor are always positive the condition (21) is 

fulfilled at all times and this configuration of 2nd order DPLL 

is also unconditionally stable. 

V. CONCLUSION

In the paper an analyses of discrete form of phase locked 

loops was executed. Crucial aspect of resulting analyses is that 

the aliasing originating in sampling process affects the 

characteristics of DPLL or DDLL, especially in fast loops. It 

is important for a design of narrow band systems, where the 

fluctuation of tracked quantities could be sizable, as in 

satellite or deep-space communication.  

 Because the close loop transfer is corresponding to transfer 

of low-pass filter with unity gain in pass-band, the error 

function has to have a character of high-pass filter with the 

same cut-off frequency as the close loop.  The result of this is 

that the phase drift with low-frequency components do not 

take effect on phase error.  On the contrary, the fast phase 

drift has more significant impact on phase error.     
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Fig. 4 Close loop frequency responses of 2nd order DPLL 

( n = 0.01) 


