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Abstract - Fully customized hardware based technology provides 
high performance and low power consumption by specializing the 
tasks in hardware but lacks design flexibility since any kind of 
changes require re-design and re-fabrication. Software based 
solutions operate with software instructions due to which a great 
flexibility is achieved from the easy development and maintenance of 
the software code. But this execution of instructions introduces a high 
overhead in performance and area consumption. In past few decades 
the reconfigurable computing domain has been introduced which 
overcomes the traditional trades-off between flexibility and 
performance and is able to achieve high performance while 
maintaining a good flexibility. The dramatic gains in terms of chip 
performance and design flexibility achieved through the 
reconfigurable computing systems are greatly dependent on the 
design of their computational units being integrated with 
reconfigurable logic resources. The computational unit of any 
reconfigurable system plays vital role in defining its strength. In this 
research paper an RFU based computational unit design has been 
presented using the tightly coupled, multi-threaded reconfigurable 
cores. The proposed design has been simulated for VLIW based 
architectures and a high gain in performance has been observed as 
compared to the conventional computing systems.      
 

Keywords - Configuration Stream, Configuration overhead, 
Configuration Controller, Reconfigurable devices. 

 
I. RECONFIGURABLE COMPUTING 

In conventional computing, there are two primary methods 
being used for the execution of algorithms. The first method is 
to use the hardwired technology, such as Application Specific 
Integrated Circuits (ASICs) to perform the operations in 
hardware. A fully customized hardware is specially designed 
to execute an application or dedicated operation. The high 
specialization will result in very fast and efficient execution 
for the designed task as well as the power consumption 
overhead is minimal since the designers will avoid to use 
unnecessary logic. However, the huge amount of development 
work is required to achieve the extreme efficiency. Also, the 
hardwired circuit cannot be altered after fabrication. Any 
changes, modifications or updates to circuit require a re-design 
and re-fabrication of the chip. This is an expensive process in 
effort, time and cost for maintaining hardwired technology. 
The second execution method is to use the software based 
programmable microprocessors commonly known as general 
purpose processors (GPP). Applications are represented in the 
form of sequenced codes. The microprocessor executes the 
codes or instructions to perform a computation. Instruction Set 
Architecture (ISA) interfaces between the instructions and the 
execution hardware. The changes in either end will not affect 
the functionality of the other side as long as the ISA 

specification was followed. Therefore changes in software 
instructions can alter the functionality of an operation without 
the need to change any of the hardware resources. It gives a 
great flexibility to the designers to freely modify the software 
code. This great flexibility is in trade-off with the huge 
performance overhead. During execution the processor fetches 
each instruction from the memory, decodes its meaning and 
then performs the operation of the instruction and hence it 
follows a conventional fetch-decode-execute instruction cycle 
which introduces a performance overhead. These overheads 
result in degraded performance and more power consumption. 
While ISA serves as an interface between the software and the 
hardware it also limits the potential growth of the system. 
After chip fabrication any operations to be implemented must 
be built based on the ISA specifications. Improvements in the 
hardware must maintain the full ISA specification even 
obsolete ones to be backward compatible with the existing 
software programs. 

 
Reconfigurable Computing is introduced to fill the gap 

between hardware and software based systems. The goal is to 
achieve the performance better than that of software based 
solutions while maintaining the greater flexibility than that of 
the hardware based solutions. Reconfigurable computing, 
using reconfigurable processors, is based on reconfigurable 
core being integrated inside the processor as shown in Fig. 1. 
The reconfigurable core is composed of many computational 
elements whose functionality is determined through the 
programmable configurations. These elements some times 
known as Configurable Logic Blocks (CLBs) or Processing 
Units (PU), are connected by programmable routing resources. 
The idea of configuration is to map logic functions of a design 
to the processing units within a reconfigurable device and use 
the programmable interconnects to connect processing units 
together to form the necessary circuit. Huge flexibility comes 
from the programmable nature of processing elements and the 
routings. Performance can be much better than software based 
approaches due to the reduced execution overhead. Under this 
definition Field Programmable Gate Array (FPGA) is a form 
of reconfigurable computing device or system. FPGAs and 
other reconfigurable computing devices have been shown to 
accelerate a variety of the applications such as the encryption 
algorithms and the streaming applications.   
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While field programmable gate arrays demonstrated good 
performance in various applications, still it has shortcomings 
like mentioned below:  
 
   A.  Logic Granularity: The Classic FPGAs have a much low 
granularity in its design. When processing units are chained 
together to form a bigger operation, the low granularity 
enables better utilization. However, there will be large 
overhead to control and connect the many processing units, 
resulting in performance penalty. 
 
   B. Support for Reconfiguration: Configuration of the 
FPGA is done at initialization. Reconfiguration for a new 
application program usually requires the chip to be taken 
down and reprogrammed. Certain FPGAs may support run 
time reconfiguration, but it may take up to thousands of micro 
seconds to complete. 
 
   C. Hardware Constraints: FPGAs can only implement the 
applications within the limited size of its hardware resources. 
This size restriction will also make compilation more difficult. 
The disadvantages of FPGAs make it an unsuitable choice in 
certain applications. Many reconfigurable computing systems 
are developed and under research to make up the shortcomings 
of FPGAs. 

II. RELATED WORK IN ACTIVE DOMAIN 
A large no of reconfigurable processing architectures have 

been proposed in previous few decades. Previously proposed 
reconfigurable architectures generally fit into one of two 
major categories depending on the size of the computations 
they map onto the reconfigurable computational units and the 
nature of the design of reconfigurable computational units 
being used in them. In broader sense, a reconfigurable system 
either belongs to fine-grain design approach or to coarse-grain 
design approach.   

  
   A. Fine-grained Reconfigurable Architectures, such as 
CHIMERAE [4] integrate the small blocks of reconfigurable 
logic into superscalar processor architectures, treating the 
reconfigurable logic as programmable ALUs that can be 
configured to implement application-specific instructions. 

These systems can achieve the better performance than the 
conventional superscalar processors on a wide range of 
applications by mapping the commonly executed sequences of 
instructions onto their reconfigurable units, but the maximum 
speedup they can achieve is limited by the small amount of 
logic in their reconfigurable units. 
 

   B. Coarse-grained Reconfigurable Architectures, such as 
REMARC [5] provide larger blocks of reconfigurable logic 
that are less tightly-coupled with the programmable portions 
of the processor. These architectures can achieve extremely 
good performance on applications that contain long-running 
active nested loops that can be mapped onto the processor’s 
reconfigurable arrays but perform less well on applications 
that require frequent communication between programmable 
and reconfigurable portions of the processor. Systems such as 
Pilchard that integrates FPGAs into conventional workstations 
over the processor’s memory bus display similar behavior, 
although the relatively low bandwidth of a microprocessor’s 
memory bus makes them even more sensitive to the amount of 
the communication that an application requires between the 
processor and the FPGA. 

III. PROPOSED ARCHITECTURE 
The proposed computational unit is composed of a 

Configuration Unit (CONFU), which contains a Configuration 
Controller and a Multi-port Configuration Memory and a Bus 
Interface Unit (BIU), which contains the internal data-paths of 
computational unit and a set of fixed point registers and a 
Reconfigurable Core Unit (RCU), which contains an array of 
reconfigurable functional units (RFUs) being integrated with 
reconfigurable FPGA Cores. Consider Fig. 2 for the interfaces 
of the proposed computational unit with instruction pipeline. 

 

Fig. 1  Typical Reconfigurable Processor Architecture

Fig. 2  Interfaces With Instruction Pipeline
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   A. Configuration Unit (CONFU): CONFU is composed of 
a Configuration Controller and a Multi-port Configuration 
Memory as shown in Fig. 3. Configuration controller receives 
the op-codes of the eight instructions of the VLIW from the 
fetch unit and on the basis of these op-codes it decides to load 
one of the configuration blocks available in the memory for 
each RFU (if required). Also it checks if the op-code is a No 
Operation (NOP) or is same as that of any one of the existing 
op-codes. If so then the configuration controller does not load 
this new configuration into the RFUs but the hardware that is 
already loaded in RFUs is reused and hence the configuration 
time that was required for the reconfiguration of RFUs is 
saved and only those RFUs are reconfigured that are new 
ones. Hence the processor always takes the minimum possible 
time to reconfigure the RFUs during the execution of the 
application program and always has the most optimal 
configuration overhead [1]. Hence such a kind of optimistic 
configuration controller contributes a great factor of speed in 
the execution of applications by reconfigurable processors.  
 

The proposed computational unit has been dedicatedly 
interconnected with the configuration controller by using 
dedicated local buses as shown in Fig. 3. Since the proposed 
computational unit design is based on a VLIW architecture 
where it has eight reconfigurable functional units so that to 
activate a maximum of eight threads of applications, hence 
some times more than one RFU required configuration at the 
same time. If we reconfigure the multiple RFUs by using the 
conventional single-port configuration memories, then it will 
face a huge configuration overhead. Such a high configuration 
overhead greatly degrades the performance of computational 
unit and hence the performance of reconfigurable processor is 
drastically reduced [2], [3]. In order to avoid such kind of the 
performance reducing factors, a multi-port configuration 
memory has been used with eight configuration ports. In this 
way the computation unit is capable of loading configurations 
in all of its reconfigurable functional units at the same 
time.

 
  

  B. Bus Interface Unit (BIU): Bus Interface Unit of the 
proposed computational unit contains a set of interconnecting 
local buses and a set of fixed point registers being used for 
program execution. Consider the Fig. 4. The BIU contains the 
following major modules.  

 
a) External IO Logic (EIOL)  
b) RFUs Data-in/Data-out Logic (RDIOL) 
c) General-Purpose and Flag Registers (GFRs) 
d) Registers Input/Output Logic (RIOL) 

 
a) External IO Logic (EIOL)  

The EIOL of the BIU is used to load instructions in the 
instruction register, source operands in general-purpose 
registers and the configuration stream in RFUs. The second 
job of the EIOL is to store the configuration stream being 
loaded in the RFUs for the analysis purpose and results being 
generated after the execution of VLIW. The source operands 
Sr-1and Sr-2 are loaded into the internal general-purpose 
registers (GPRs) by the External De-MUX of size 1 x 24. The 
address given for the Data-in is connected to the select lines of 
De-MUX as well as to Decoder (5 x 24) input. De-MUX 
selects one of the general-purpose registers for data loading 
and the decoder enables its output channel connecting to the 
registers through the MUX of the size 2 x1. This MUX 
receives 32-bits data operand from External De-MUX at input 
“1” and receives 32-bits results from RFUs at the input “0”. If 
the Ext_IO_En=0 then it selects the result coming from the 
RFUs and loads it in the register. If the Ext_IO_En=1 then it 
selects the data coming from the External De-MUX and loads 
it in the registers. Since there are eight RFUs that can load 
their results in the same register, hence in order to solve this 
problem an 8 x 1 MUX (32-bits) is interfaced with each 
register input. Each MUX is controlled by the RFU Data-path 
Controller (see algorithm) which analyzes the Destination 
Addresses of all the RFUs and selects only that RFU whose 
output is valid output. In order to store the results and the flags 
being available in the GPRs and flag registers (FLGs) into the 
data cache of the processor, the 32 x 1 External MUX (32-
bits) is used which can read the contents of the selected 
register and sends it to the data cache of the reconfigurable 
processor. 

 
b) RFUs Data-in / Data-out Logic (RDIOL) 
In order to load/store the data across the RFUs there are 

two 32 x 1 MUXs   (32-bits) and one 1 x 24 De-MUX (32-
bits) for each RFU as shown in Fig. 4. Using two MUXs the 
RFU is able to read the source data operands (Sr-1 and Sr-2) 
from any one of the 32 registers and using the one De-MUX it 
stores its results back to any one of the GPRs. Flags generated 
during execution of the VLIW are loaded into relevant FLGs. 
 

c) General-Purpose and Flag Registers (GFRs)  
There are eight FLGs (32-bits) and twenty four GPRs (32-

bits). GPRs can be read and written by programmer but the 
FLGs can only be read by the programmer and can not be 
written. RFUs can read/write any one of these thirty two 
registers. More than one RFU can read the contents of the 
same register at the same time but only one RFU can write in a 
register at the same time because the read operation is 
shareable but the write operation is not shareable.  Fig. 3  Interfaces With Configuration Unit
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d) Registers Input/Output Logic (RIOL) 
FLGs are loaded with the flags, being generated by the 

RFUs and can be read by the programmer through the 
External MUX. In case of the GPRs, the programmer can read 
the registers through the External MUX but in order to write 
contents into registers there is a 2 x 1 MUX (32-bits) which 
selects the data for the register either from some RFU output 
or from data cache. The 8 x 1 MUX interfaced at the input of 
the 2 x 1 MUX selects the valid RFU for the results to be 
stored in the register. In order to select the valid RFU for 
results, there is a RFU Data path Controller (whose algorithm 
is shown) being attached with all MUXs. This controller reads 
the select lines of all the De-MUXs of RFUs and after analysis 
it selects that RFU whose output is a valid output. 

 
C. Reconfigurable Core Unit (RCU): Reconfigurable core 

unit is consisting of a layer of eight RFUs that are the 
computational units of reconfigurable processor and can be 
reconfigured at any time according to the demands of the 
running applications. They have been tightly coupled with 
integrated field programmable gate array cores as shown in 
Fig. 5. The outputs generated by the RFUs are also read by the 
FGL and the flags are calculated for each RFU. Flag register is 
a 32-bits register but recently only Carry Flag, Sign Flag, Zero 
Flag, Overflow Flag and Equal Flag have been computed in 
the system and the remaining twenty-seven bits are available 
for the future extension. 

 

 
 

   Field Programmable Gate Array (FPGAs) consists of an 
array of Configurable Logic Blocks (CLBs) overlaid with an 
interconnection network of wires known as Programmable 
Interconnect as shown in Fig. 6. Both the logic blocks and the 
interconnection network are configurable. The configurability 
is achieved by using either anti-fuse elements or SRAM 
memory bits to control the configurations of transistors. The 
Anti-fuse technology utilizes strong electric currents to create 
a connection between two terminals and is typically less 
reprogrammable. The SRAM based configuration can be 
reprogrammed on fly by downloading different configuration 
bits into the SRAM memory cells.  

 

 

Fig. 4  Proposed Computational Unit Design

Fig. 5  Reconfigurable Functional Unit (RFU) Fig. 6  FPGA Architecture
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Typical configurable logic block architectures contain a 
look-up table, a flip-flop, an additional combinational logic and 
SRAM memory cells to control the configurations of the 
configurable logic block as shown in Fig. 7. The configurable 
logic blocks at the periphery of the device also perform the I/O 
operations. The interconnection network can be reconfigured 
by changing the connections between the configurable logic 
blocks and the wires and by configuring the switch boxes, 
which connect different wires as shown in Fig. 9. The switch 
boxes known as Programmable Switch Matrix (PSM) for the 
interconnection network are also controlled by SRAM memory 
cells. The functions computed in the configurable logic block, 
the interconnection network and the I/O blocks can be 
configured using external data. A typical I/O Block design is 
shown in Fig. 8. FPGAs typically permit unlimited no of 
reconfigurations by using either serial interfaces or parallel 
interfaces like those provided by Xilinx series FPGAs. These 
versatile devices have been used to build processors and 
coprocessors whose internal architecture as well as the 
interconnections can be configured to match the needs of a 
running application.  

 

 

 

 
 

Current and future generation of reconfigurable devices 
ameliorate the reconfiguration cost by providing partial and 
dynamic reconfigurability [6], [7]. In partial reconfiguration, it 
is possible to modify the configuration of a part of the device 
while configuration of remaining parts is retained [12], [13]. In 
the dynamic reconfiguration, the devices permit this partial 
reconfiguration even while other logic blocks are performing 
computations [14], [15]. Devices in which multiple contexts of 
the configuration of logic block can be stored in the logic block 
and the context switched dynamically have also been proposed 
[6], [7]. In order to further increase the performance of such 
devices by reducing the configuration overheads, the concepts 
of Configuration Cloning [2], Configuration Pre-fetching [2], 
Configuration Context-Switching, Configuration Compression 
and Intelligent Configuration [3] techniques have also been 
proposed. 

Typically, the application requirements increase at a rate 
faster than the increase in the size of logic resources on most 
FPGA devices. FPGA architectures also have limits on the I/O 
capability due to the limitation on the number of I/O pins on 
the device. To map large applications onto configurable logic, 
various systems have been designed which have several 
FPGAs on a board. These architectures also provide local 
memory and dedicated or programmable interconnect between 
the FPGAs known as Field Programmable Interconnect 
(FPIC). These board level architectures are usually designed to 
function under an external controller or use one of the          
on-board FPGAs as a controller.  

 

IV. PERFORMANCE ANALYSIS EQUATION 
Following is the mathematical equation being formulated 

for the calculations of the total no of cycles (TTotal) consumed 
by the proposed computational unit for the execution of an 
application. Consider the Table.1 for the analysis equation 
parameters. 

 
TTotal = NVLIW (TVFT + TOFT) + EVLIW + βCNF 

 

 Where   βCNF = (NCNF x TCNF),    
               NVLIW = (NINST + NNOP) / 8 
               EVLIW = ∑ (EVLIW-0, EVLIW-1, EVLIW-2… EVLIW-N) Fig. 7  Configurable Logic Block (CLB) 

Look-Up Table 

Fig. 8  Input / Output Blocks (IOB)
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V. CALCULATED PERFORMANCE GAIN 
In order to measure and compare the performance of 

proposed computational unit, a reconfigurable processor 
(RISP) being integrated with the proposed computational unit 
has been analyzed and benchmarked with a typical DSP 
(TMS320C6X) processor by executing a variety of application 
programs on both of them. Performance statistics have been 
measured in terms of the no of clock cycles being consumed 
by each of them for execution. It has been observed that the 
segments of code of an application being under execution 
containing loops will be drastically boasted as shown in the 
graph in Fig. 10.  

 

VI. COMPARISON WITH EXISTING SYSTEMS 
In this section the proposed computational unit design of the 

reconfigurable processor has been compared with the 
computational units of some of the well known reconfigurable 
architectures.  
 
   A. Configuration Granularity: The proposed computational 
unit is fine-grain architecture. There exist many systems using 
this approach like CHIMERAE [4]. Using fine-grain approach 
the system can be reconfigured at instruction level and even at 
operator level. But there exist many other systems which use 
the coarse-grain architecture and can be reconfigured at ALU 
level. Among them are the REMARC [5], PipeRench [8], 
Garp [9] and Napa [10]. 
 
   B. RFU Coupling: The proposed computational unit is a 
tightly coupled architecture like CHIMAERA [4]. Others may 
use a coprocessor approach like GARP [9]. Tightly coupled 
designs have small configuration overheads but are suffered 
by dependant execution of RFUs with standard CPU core. 
 
   C. Operands Coding: The proposed computational unit is 
based on a fixed operand coding scheme. Some designs are 
based on the hardwired operand coding scheme like 
CHIMAERA [4] or are based on the flexible operand coding 
scheme like Napa [10. 
 
   D. Instruction Coding: The instruction of proposed 
computational unit is decoded such that the op-code of each 
instruction is being translated into the address of the 
concerned configuration block in the configuration memory 
like in CHIMAERA [4]. Other alternative is to use the         
op-code as an identifier to a configuration table which 
contains the address of the concerned configuration block in 
the configuration memory. 
 
   E. Program Concurrency: The proposed computational unit 
can execute more than one instruction (eight) at the same time.  
 

 

Parameters Description Possible Values 

Total Instructions (NINST) 1, 2, 3…..J 
Per Program 

Total NOPs Used (NNOP) 0 - 7  
Per VLIW 

Total VLIWs (NVLIW) 1, 2, 3…..K  
Per Program 

VLIW Fetch Time (TVFT) 1 Cycle  
Per VLIW 

Operand Fetch Time (TOFT) 0 - 1 Cycle  
Per VLIW 

VLIWs Execution Time (EVLIW)  1, 2, 3….L Cycles 
Per Program    

Total Configuration Time (βCNF) 0, 1, 2…M Cycles 
Per Program 

Total Configurations (NCNF) 0 - NVLIW 
Per Program 

Configuration Time (TCNF) 1, 2, 3…N Cycles 
Per VLIW 

Table.1 Analysis Equation Parameters

PSM 

Fig. 9  Programmable Interconnect 

Fig. 10  Performance Using Proposed Computational Unit
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Most reconfigurable systems are only able to execute one 
instruction at the same time. They are based on both CISC and 
RISC designs. The only superscalar processor that we know of 
this type is the OneChip98, which is based on the superscalar 
version of DLX. 
 
   F. Configuration Memory: The proposed computational 
unit is using a multi-port configuration memory unlike the 
existing architectures which are so for being designed using 
the simple single-port configuration memory.  
 

VII.  RESEARCH AREAS IN ACTIVE DOMAIN 
The following topics outline the different aspects of 

reconfigurable computing that research has been addressing in 
the past several years and still there is a lot of research work 
required to explore new ideas that can further enhanced the 
performance of reconfigurable computing systems. 

   A.  Computing Architectures 
As for as the reconfigurable architectures are concerned, a 

variety of reconfigurable devices and system architectures 
have been developed which propose the various ways of 
organizing and interfacing the configurable logic resources. 
Certain architectures are based on fine-grain functional units 
and some are based on coarse-grain functional units. Coarse-
grain architectures are configured on the fly to execute an 
operation from a given set of the operations. Also the 
commercially available reconfigurable architectures are 
exploring the integration of the reconfigurable logic and the 
microprocessors on the same chip. 
  

   B.  Algorithmic Synthesis  
Dynamically reconfigurable architectures give rise to new 

classes of problems in mapping computations onto the 
architectures. New algorithmic techniques are needed to 
schedule the computations. Existing algorithmic mapping 
techniques focus primarily on loops in general purpose 
programs. Loop structures provide repetitive computations, 
scope for pipelining and parallelization and are candidates for 
mapping to reconfigurable hardware.   

 

   C.  Software Tools 
Current software tools still rely on CAD based mapping 

techniques. But, there are several tools being developed to 
address run-time reconfiguration, compilation from high-level 
languages such as C, simulation of dynamically reconfigurable 
logic in software and the complete operating system for 
dynamically reconfigurable platforms. There is a significant 
lack of research in development of models of reconfigurable 
architectures that can be utilized for developing a formal 
framework for mapping applications. The Reconfigurable 
Mesh model was the earliest theoretical model that addressed 
dynamic reconfiguration in computation and communication 
structure. However, Reconfigurable Mesh model is more 
theoretical and hardware implementations have only been able 
to approximate the delay and speed assumptions in the model. 
There have been several research efforts that focused on 
developing architectures and the associated software tools for 
mapping onto their specific architecture. Some of these projects 
have addressed generic mapping techniques that can be 

extended to a class of the reconfigurable architectures. Such 
projects include Berkeley Garp [9], National Semiconductor 
NAPA [10], Northwestern MATCH [11] and CMU PipeRench 
[8]. Several efforts have also focused on developing  the 
parameterized libraries and components, precision being one of 
the parameters. Most FPGA device vendors provide such 
highly optimized parameterized libraries for their architectures. 
Efforts have also been made to generate such modules using 
high-level descriptions. 

   D.  Configuration Pipelining  
Pipelined designs have been studied by several researchers 

in the configurable computing domain. The concept of virtual 
pipelines and their mapping onto physical pipelines has also 
been analyzed. A group has addressed some of the issues in 
mapping virtual pipelines onto a physical pipeline by using 
incremental reconfiguration in the context of PipeRench [8]. 
Yet another group described the pipeline morphing and virtual 
pipelines as an idea to reduce the reconfiguration costs. A 
pipeline configuration is morphed into another configuration 
by incrementally reconfiguring the stage by stage while 
computations are being performed in the remaining stages. 
Virtual pipelines are mapped onto physical pipelines by 
morphing between pipeline stages. But, morphing is limited to 
architectures, which support fast reconfiguration of the order 
of a single pipeline stage execution.  
 

   E. Simulation Tools 
Several simulation tools have been developed for the 

reprogrammable FPGAs. Most of the tools are device based 
simulators and are not system level simulators. The most 
significant effort in this area has been the Dynamic Circuit 
Switching based simulation tools provided by a group of 
researchers. These tools study the dynamically reconfigurable 
behavior of FPGAs and are integrated into CAD framework. 
Though the simulation tools can analyze the dynamic circuit 
behavior of FPGAs, the tools are still low level. The simulation 
is based on CAD tools and requires the input design of the 
application to be specified in VHDL. The parameters for the 
design are obtained only after processing by the device specific 
tools. They described a visualization tool for reconfigurable 
libraries. They developed tools to simulate behavior and 
illustrate design structure. Their emphasis is on visualization of 
library modules and not system level simulation or application 
performance analysis.  

VIII. CONCLUSION  
Reconfigurable computing is becoming an important part of 

research in the field of digital computing. By placing the 
computationally intensive portions of applications onto the 
reconfigurable hardware, the applications can be greatly 
accelerated. Similar to software-only implementations, the 
mapped circuit is flexible, and can be changed over the lifetime 
of the system or even during the course of executions of the 
applications. Additionally, the computations mapped to the 
reconfigurable logic are executed in hardware, and therefore 
have performance similar to an ASIC. This performance stems 
from bypassing the fetch-decode-execute cycle of traditional 
microprocessors as well as allowing the parallel execution of 
multiple operations. 
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The proposed RFU based computational unit provides us a 
great performance parameter over the traditional processor 
computational units. In the proposed computational unit the 
hardware changes according to requirements of applications 
being executing. Hence the system follows the strategy of, the 
demand-driven hardware should be swapped in and the unused 
hardware should be swapped out and hence providing more 
hardware than that available in the system during the execution 
of the applications. This reconfiguration of the hardware does 
not stop the application being under execution. Due to the 
partial reconfiguration of device, the time overheads required 
to reconfigure device are compensated because the application 
keeps continue its operation during the reconfiguration of the 
device. RFU based computational units are very suitable for 
those applications where different kinds of processing units are 
frequently required to boast up the performance of executing 
application. 
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