
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

335

RFU Based Computational Unit Design
For Reconfigurable Processors

M. Aqeel Iqbal
Faculty of Engineering and Information Technology

Foundation University, Institute of Engineering and Management Sciences
New Lalazar, Rawalpindi Cantt. Pakistan

maqeeliqbal@hotmail.com

Abstract - Fully customized hardware based technology provides
high performance and low power consumption by specializing the
tasks in hardware but lacks design flexibility since any kind of
changes require re-design and re-fabrication. Software based
solutions operate with software instructions due to which a great
flexibility is achieved from the easy development and maintenance of
the software code. But this execution of instructions introduces a high
overhead in performance and area consumption. In past few decades
the reconfigurable computing domain has been introduced which
overcomes the traditional trades-off between flexibility and
performance and is able to achieve high performance while
maintaining a good flexibility. The dramatic gains in terms of chip
performance and design flexibility achieved through the
reconfigurable computing systems are greatly dependent on the
design of their computational units being integrated with
reconfigurable logic resources. The computational unit of any
reconfigurable system plays vital role in defining its strength. In this
research paper an RFU based computational unit design has been
presented using the tightly coupled, multi-threaded reconfigurable
cores. The proposed design has been simulated for VLIW based
architectures and a high gain in performance has been observed as
compared to the conventional computing systems.

Keywords - Configuration Stream, Configuration overhead,
Configuration Controller, Reconfigurable devices.

I. RECONFIGURABLE COMPUTING

In conventional computing, there are two primary methods
being used for the execution of algorithms. The first method is
to use the hardwired technology, such as Application Specific
Integrated Circuits (ASICs) to perform the operations in
hardware. A fully customized hardware is specially designed
to execute an application or dedicated operation. The high
specialization will result in very fast and efficient execution
for the designed task as well as the power consumption
overhead is minimal since the designers will avoid to use
unnecessary logic. However, the huge amount of development
work is required to achieve the extreme efficiency. Also, the
hardwired circuit cannot be altered after fabrication. Any
changes, modifications or updates to circuit require a re-design
and re-fabrication of the chip. This is an expensive process in
effort, time and cost for maintaining hardwired technology.
The second execution method is to use the software based
programmable microprocessors commonly known as general
purpose processors (GPP). Applications are represented in the
form of sequenced codes. The microprocessor executes the
codes or instructions to perform a computation. Instruction Set
Architecture (ISA) interfaces between the instructions and the
execution hardware. The changes in either end will not affect
the functionality of the other side as long as the ISA

specification was followed. Therefore changes in software
instructions can alter the functionality of an operation without
the need to change any of the hardware resources. It gives a
great flexibility to the designers to freely modify the software
code. This great flexibility is in trade-off with the huge
performance overhead. During execution the processor fetches
each instruction from the memory, decodes its meaning and
then performs the operation of the instruction and hence it
follows a conventional fetch-decode-execute instruction cycle
which introduces a performance overhead. These overheads
result in degraded performance and more power consumption.
While ISA serves as an interface between the software and the
hardware it also limits the potential growth of the system.
After chip fabrication any operations to be implemented must
be built based on the ISA specifications. Improvements in the
hardware must maintain the full ISA specification even
obsolete ones to be backward compatible with the existing
software programs.

Reconfigurable Computing is introduced to fill the gap

between hardware and software based systems. The goal is to
achieve the performance better than that of software based
solutions while maintaining the greater flexibility than that of
the hardware based solutions. Reconfigurable computing,
using reconfigurable processors, is based on reconfigurable
core being integrated inside the processor as shown in Fig. 1.
The reconfigurable core is composed of many computational
elements whose functionality is determined through the
programmable configurations. These elements some times
known as Configurable Logic Blocks (CLBs) or Processing
Units (PU), are connected by programmable routing resources.
The idea of configuration is to map logic functions of a design
to the processing units within a reconfigurable device and use
the programmable interconnects to connect processing units
together to form the necessary circuit. Huge flexibility comes
from the programmable nature of processing elements and the
routings. Performance can be much better than software based
approaches due to the reduced execution overhead. Under this
definition Field Programmable Gate Array (FPGA) is a form
of reconfigurable computing device or system. FPGAs and
other reconfigurable computing devices have been shown to
accelerate a variety of the applications such as the encryption
algorithms and the streaming applications.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

336

While field programmable gate arrays demonstrated good
performance in various applications, still it has shortcomings
like mentioned below:

 A. Logic Granularity: The Classic FPGAs have a much low
granularity in its design. When processing units are chained
together to form a bigger operation, the low granularity
enables better utilization. However, there will be large
overhead to control and connect the many processing units,
resulting in performance penalty.

 B. Support for Reconfiguration: Configuration of the
FPGA is done at initialization. Reconfiguration for a new
application program usually requires the chip to be taken
down and reprogrammed. Certain FPGAs may support run
time reconfiguration, but it may take up to thousands of micro
seconds to complete.

 C. Hardware Constraints: FPGAs can only implement the
applications within the limited size of its hardware resources.
This size restriction will also make compilation more difficult.
The disadvantages of FPGAs make it an unsuitable choice in
certain applications. Many reconfigurable computing systems
are developed and under research to make up the shortcomings
of FPGAs.

II. RELATED WORK IN ACTIVE DOMAIN
A large no of reconfigurable processing architectures have

been proposed in previous few decades. Previously proposed
reconfigurable architectures generally fit into one of two
major categories depending on the size of the computations
they map onto the reconfigurable computational units and the
nature of the design of reconfigurable computational units
being used in them. In broader sense, a reconfigurable system
either belongs to fine-grain design approach or to coarse-grain
design approach.

 A. Fine-grained Reconfigurable Architectures, such as
CHIMERAE [4] integrate the small blocks of reconfigurable
logic into superscalar processor architectures, treating the
reconfigurable logic as programmable ALUs that can be
configured to implement application-specific instructions.

These systems can achieve the better performance than the
conventional superscalar processors on a wide range of
applications by mapping the commonly executed sequences of
instructions onto their reconfigurable units, but the maximum
speedup they can achieve is limited by the small amount of
logic in their reconfigurable units.

 B. Coarse-grained Reconfigurable Architectures, such as
REMARC [5] provide larger blocks of reconfigurable logic
that are less tightly-coupled with the programmable portions
of the processor. These architectures can achieve extremely
good performance on applications that contain long-running
active nested loops that can be mapped onto the processor’s
reconfigurable arrays but perform less well on applications
that require frequent communication between programmable
and reconfigurable portions of the processor. Systems such as
Pilchard that integrates FPGAs into conventional workstations
over the processor’s memory bus display similar behavior,
although the relatively low bandwidth of a microprocessor’s
memory bus makes them even more sensitive to the amount of
the communication that an application requires between the
processor and the FPGA.

III. PROPOSED ARCHITECTURE
The proposed computational unit is composed of a

Configuration Unit (CONFU), which contains a Configuration
Controller and a Multi-port Configuration Memory and a Bus
Interface Unit (BIU), which contains the internal data-paths of
computational unit and a set of fixed point registers and a
Reconfigurable Core Unit (RCU), which contains an array of
reconfigurable functional units (RFUs) being integrated with
reconfigurable FPGA Cores. Consider Fig. 2 for the interfaces
of the proposed computational unit with instruction pipeline.

Fig. 1 Typical Reconfigurable Processor Architecture

Fig. 2 Interfaces With Instruction Pipeline

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

337

 A. Configuration Unit (CONFU): CONFU is composed of
a Configuration Controller and a Multi-port Configuration
Memory as shown in Fig. 3. Configuration controller receives
the op-codes of the eight instructions of the VLIW from the
fetch unit and on the basis of these op-codes it decides to load
one of the configuration blocks available in the memory for
each RFU (if required). Also it checks if the op-code is a No
Operation (NOP) or is same as that of any one of the existing
op-codes. If so then the configuration controller does not load
this new configuration into the RFUs but the hardware that is
already loaded in RFUs is reused and hence the configuration
time that was required for the reconfiguration of RFUs is
saved and only those RFUs are reconfigured that are new
ones. Hence the processor always takes the minimum possible
time to reconfigure the RFUs during the execution of the
application program and always has the most optimal
configuration overhead [1]. Hence such a kind of optimistic
configuration controller contributes a great factor of speed in
the execution of applications by reconfigurable processors.

The proposed computational unit has been dedicatedly
interconnected with the configuration controller by using
dedicated local buses as shown in Fig. 3. Since the proposed
computational unit design is based on a VLIW architecture
where it has eight reconfigurable functional units so that to
activate a maximum of eight threads of applications, hence
some times more than one RFU required configuration at the
same time. If we reconfigure the multiple RFUs by using the
conventional single-port configuration memories, then it will
face a huge configuration overhead. Such a high configuration
overhead greatly degrades the performance of computational
unit and hence the performance of reconfigurable processor is
drastically reduced [2], [3]. In order to avoid such kind of the
performance reducing factors, a multi-port configuration
memory has been used with eight configuration ports. In this
way the computation unit is capable of loading configurations
in all of its reconfigurable functional units at the same
time.

 B. Bus Interface Unit (BIU): Bus Interface Unit of the
proposed computational unit contains a set of interconnecting
local buses and a set of fixed point registers being used for
program execution. Consider the Fig. 4. The BIU contains the
following major modules.

a) External IO Logic (EIOL)
b) RFUs Data-in/Data-out Logic (RDIOL)
c) General-Purpose and Flag Registers (GFRs)
d) Registers Input/Output Logic (RIOL)

a) External IO Logic (EIOL)

The EIOL of the BIU is used to load instructions in the
instruction register, source operands in general-purpose
registers and the configuration stream in RFUs. The second
job of the EIOL is to store the configuration stream being
loaded in the RFUs for the analysis purpose and results being
generated after the execution of VLIW. The source operands
Sr-1and Sr-2 are loaded into the internal general-purpose
registers (GPRs) by the External De-MUX of size 1 x 24. The
address given for the Data-in is connected to the select lines of
De-MUX as well as to Decoder (5 x 24) input. De-MUX
selects one of the general-purpose registers for data loading
and the decoder enables its output channel connecting to the
registers through the MUX of the size 2 x1. This MUX
receives 32-bits data operand from External De-MUX at input
“1” and receives 32-bits results from RFUs at the input “0”. If
the Ext_IO_En=0 then it selects the result coming from the
RFUs and loads it in the register. If the Ext_IO_En=1 then it
selects the data coming from the External De-MUX and loads
it in the registers. Since there are eight RFUs that can load
their results in the same register, hence in order to solve this
problem an 8 x 1 MUX (32-bits) is interfaced with each
register input. Each MUX is controlled by the RFU Data-path
Controller (see algorithm) which analyzes the Destination
Addresses of all the RFUs and selects only that RFU whose
output is valid output. In order to store the results and the flags
being available in the GPRs and flag registers (FLGs) into the
data cache of the processor, the 32 x 1 External MUX (32-
bits) is used which can read the contents of the selected
register and sends it to the data cache of the reconfigurable
processor.

b) RFUs Data-in / Data-out Logic (RDIOL)
In order to load/store the data across the RFUs there are

two 32 x 1 MUXs (32-bits) and one 1 x 24 De-MUX (32-
bits) for each RFU as shown in Fig. 4. Using two MUXs the
RFU is able to read the source data operands (Sr-1 and Sr-2)
from any one of the 32 registers and using the one De-MUX it
stores its results back to any one of the GPRs. Flags generated
during execution of the VLIW are loaded into relevant FLGs.

c) General-Purpose and Flag Registers (GFRs)
There are eight FLGs (32-bits) and twenty four GPRs (32-

bits). GPRs can be read and written by programmer but the
FLGs can only be read by the programmer and can not be
written. RFUs can read/write any one of these thirty two
registers. More than one RFU can read the contents of the
same register at the same time but only one RFU can write in a
register at the same time because the read operation is
shareable but the write operation is not shareable. Fig. 3 Interfaces With Configuration Unit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

338

d) Registers Input/Output Logic (RIOL)
FLGs are loaded with the flags, being generated by the

RFUs and can be read by the programmer through the
External MUX. In case of the GPRs, the programmer can read
the registers through the External MUX but in order to write
contents into registers there is a 2 x 1 MUX (32-bits) which
selects the data for the register either from some RFU output
or from data cache. The 8 x 1 MUX interfaced at the input of
the 2 x 1 MUX selects the valid RFU for the results to be
stored in the register. In order to select the valid RFU for
results, there is a RFU Data path Controller (whose algorithm
is shown) being attached with all MUXs. This controller reads
the select lines of all the De-MUXs of RFUs and after analysis
it selects that RFU whose output is a valid output.

C. Reconfigurable Core Unit (RCU): Reconfigurable core

unit is consisting of a layer of eight RFUs that are the
computational units of reconfigurable processor and can be
reconfigured at any time according to the demands of the
running applications. They have been tightly coupled with
integrated field programmable gate array cores as shown in
Fig. 5. The outputs generated by the RFUs are also read by the
FGL and the flags are calculated for each RFU. Flag register is
a 32-bits register but recently only Carry Flag, Sign Flag, Zero
Flag, Overflow Flag and Equal Flag have been computed in
the system and the remaining twenty-seven bits are available
for the future extension.

 Field Programmable Gate Array (FPGAs) consists of an
array of Configurable Logic Blocks (CLBs) overlaid with an
interconnection network of wires known as Programmable
Interconnect as shown in Fig. 6. Both the logic blocks and the
interconnection network are configurable. The configurability
is achieved by using either anti-fuse elements or SRAM
memory bits to control the configurations of transistors. The
Anti-fuse technology utilizes strong electric currents to create
a connection between two terminals and is typically less
reprogrammable. The SRAM based configuration can be
reprogrammed on fly by downloading different configuration
bits into the SRAM memory cells.

Fig. 4 Proposed Computational Unit Design

Fig. 5 Reconfigurable Functional Unit (RFU) Fig. 6 FPGA Architecture

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

339

Typical configurable logic block architectures contain a
look-up table, a flip-flop, an additional combinational logic and
SRAM memory cells to control the configurations of the
configurable logic block as shown in Fig. 7. The configurable
logic blocks at the periphery of the device also perform the I/O
operations. The interconnection network can be reconfigured
by changing the connections between the configurable logic
blocks and the wires and by configuring the switch boxes,
which connect different wires as shown in Fig. 9. The switch
boxes known as Programmable Switch Matrix (PSM) for the
interconnection network are also controlled by SRAM memory
cells. The functions computed in the configurable logic block,
the interconnection network and the I/O blocks can be
configured using external data. A typical I/O Block design is
shown in Fig. 8. FPGAs typically permit unlimited no of
reconfigurations by using either serial interfaces or parallel
interfaces like those provided by Xilinx series FPGAs. These
versatile devices have been used to build processors and
coprocessors whose internal architecture as well as the
interconnections can be configured to match the needs of a
running application.

Current and future generation of reconfigurable devices
ameliorate the reconfiguration cost by providing partial and
dynamic reconfigurability [6], [7]. In partial reconfiguration, it
is possible to modify the configuration of a part of the device
while configuration of remaining parts is retained [12], [13]. In
the dynamic reconfiguration, the devices permit this partial
reconfiguration even while other logic blocks are performing
computations [14], [15]. Devices in which multiple contexts of
the configuration of logic block can be stored in the logic block
and the context switched dynamically have also been proposed
[6], [7]. In order to further increase the performance of such
devices by reducing the configuration overheads, the concepts
of Configuration Cloning [2], Configuration Pre-fetching [2],
Configuration Context-Switching, Configuration Compression
and Intelligent Configuration [3] techniques have also been
proposed.

Typically, the application requirements increase at a rate
faster than the increase in the size of logic resources on most
FPGA devices. FPGA architectures also have limits on the I/O
capability due to the limitation on the number of I/O pins on
the device. To map large applications onto configurable logic,
various systems have been designed which have several
FPGAs on a board. These architectures also provide local
memory and dedicated or programmable interconnect between
the FPGAs known as Field Programmable Interconnect
(FPIC). These board level architectures are usually designed to
function under an external controller or use one of the
on-board FPGAs as a controller.

IV. PERFORMANCE ANALYSIS EQUATION
Following is the mathematical equation being formulated

for the calculations of the total no of cycles (TTotal) consumed
by the proposed computational unit for the execution of an
application. Consider the Table.1 for the analysis equation
parameters.

TTotal = NVLIW (TVFT + TOFT) + EVLIW + βCNF

 Where βCNF = (NCNF x TCNF),
 NVLIW = (NINST + NNOP) / 8
 EVLIW = ∑ (EVLIW-0, EVLIW-1, EVLIW-2… EVLIW-N) Fig. 7 Configurable Logic Block (CLB)

Look-Up Table

Fig. 8 Input / Output Blocks (IOB)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

340

V. CALCULATED PERFORMANCE GAIN
In order to measure and compare the performance of

proposed computational unit, a reconfigurable processor
(RISP) being integrated with the proposed computational unit
has been analyzed and benchmarked with a typical DSP
(TMS320C6X) processor by executing a variety of application
programs on both of them. Performance statistics have been
measured in terms of the no of clock cycles being consumed
by each of them for execution. It has been observed that the
segments of code of an application being under execution
containing loops will be drastically boasted as shown in the
graph in Fig. 10.

VI. COMPARISON WITH EXISTING SYSTEMS
In this section the proposed computational unit design of the

reconfigurable processor has been compared with the
computational units of some of the well known reconfigurable
architectures.

 A. Configuration Granularity: The proposed computational
unit is fine-grain architecture. There exist many systems using
this approach like CHIMERAE [4]. Using fine-grain approach
the system can be reconfigured at instruction level and even at
operator level. But there exist many other systems which use
the coarse-grain architecture and can be reconfigured at ALU
level. Among them are the REMARC [5], PipeRench [8],
Garp [9] and Napa [10].

 B. RFU Coupling: The proposed computational unit is a
tightly coupled architecture like CHIMAERA [4]. Others may
use a coprocessor approach like GARP [9]. Tightly coupled
designs have small configuration overheads but are suffered
by dependant execution of RFUs with standard CPU core.

 C. Operands Coding: The proposed computational unit is
based on a fixed operand coding scheme. Some designs are
based on the hardwired operand coding scheme like
CHIMAERA [4] or are based on the flexible operand coding
scheme like Napa [10.

 D. Instruction Coding: The instruction of proposed
computational unit is decoded such that the op-code of each
instruction is being translated into the address of the
concerned configuration block in the configuration memory
like in CHIMAERA [4]. Other alternative is to use the
op-code as an identifier to a configuration table which
contains the address of the concerned configuration block in
the configuration memory.

 E. Program Concurrency: The proposed computational unit
can execute more than one instruction (eight) at the same time.

Parameters Description Possible Values

Total Instructions (NINST) 1, 2, 3…..J
Per Program

Total NOPs Used (NNOP) 0 - 7
Per VLIW

Total VLIWs (NVLIW) 1, 2, 3…..K
Per Program

VLIW Fetch Time (TVFT) 1 Cycle
Per VLIW

Operand Fetch Time (TOFT) 0 - 1 Cycle
Per VLIW

VLIWs Execution Time (EVLIW) 1, 2, 3….L Cycles
Per Program

Total Configuration Time (βCNF) 0, 1, 2…M Cycles
Per Program

Total Configurations (NCNF) 0 - NVLIW
Per Program

Configuration Time (TCNF) 1, 2, 3…N Cycles
Per VLIW

Table.1 Analysis Equation Parameters

PSM

Fig. 9 Programmable Interconnect

Fig. 10 Performance Using Proposed Computational Unit

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

341

Most reconfigurable systems are only able to execute one
instruction at the same time. They are based on both CISC and
RISC designs. The only superscalar processor that we know of
this type is the OneChip98, which is based on the superscalar
version of DLX.

 F. Configuration Memory: The proposed computational
unit is using a multi-port configuration memory unlike the
existing architectures which are so for being designed using
the simple single-port configuration memory.

VII. RESEARCH AREAS IN ACTIVE DOMAIN
The following topics outline the different aspects of

reconfigurable computing that research has been addressing in
the past several years and still there is a lot of research work
required to explore new ideas that can further enhanced the
performance of reconfigurable computing systems.

 A. Computing Architectures
As for as the reconfigurable architectures are concerned, a

variety of reconfigurable devices and system architectures
have been developed which propose the various ways of
organizing and interfacing the configurable logic resources.
Certain architectures are based on fine-grain functional units
and some are based on coarse-grain functional units. Coarse-
grain architectures are configured on the fly to execute an
operation from a given set of the operations. Also the
commercially available reconfigurable architectures are
exploring the integration of the reconfigurable logic and the
microprocessors on the same chip.

 B. Algorithmic Synthesis
Dynamically reconfigurable architectures give rise to new

classes of problems in mapping computations onto the
architectures. New algorithmic techniques are needed to
schedule the computations. Existing algorithmic mapping
techniques focus primarily on loops in general purpose
programs. Loop structures provide repetitive computations,
scope for pipelining and parallelization and are candidates for
mapping to reconfigurable hardware.

 C. Software Tools
Current software tools still rely on CAD based mapping

techniques. But, there are several tools being developed to
address run-time reconfiguration, compilation from high-level
languages such as C, simulation of dynamically reconfigurable
logic in software and the complete operating system for
dynamically reconfigurable platforms. There is a significant
lack of research in development of models of reconfigurable
architectures that can be utilized for developing a formal
framework for mapping applications. The Reconfigurable
Mesh model was the earliest theoretical model that addressed
dynamic reconfiguration in computation and communication
structure. However, Reconfigurable Mesh model is more
theoretical and hardware implementations have only been able
to approximate the delay and speed assumptions in the model.
There have been several research efforts that focused on
developing architectures and the associated software tools for
mapping onto their specific architecture. Some of these projects
have addressed generic mapping techniques that can be

extended to a class of the reconfigurable architectures. Such
projects include Berkeley Garp [9], National Semiconductor
NAPA [10], Northwestern MATCH [11] and CMU PipeRench
[8]. Several efforts have also focused on developing the
parameterized libraries and components, precision being one of
the parameters. Most FPGA device vendors provide such
highly optimized parameterized libraries for their architectures.
Efforts have also been made to generate such modules using
high-level descriptions.

 D. Configuration Pipelining
Pipelined designs have been studied by several researchers

in the configurable computing domain. The concept of virtual
pipelines and their mapping onto physical pipelines has also
been analyzed. A group has addressed some of the issues in
mapping virtual pipelines onto a physical pipeline by using
incremental reconfiguration in the context of PipeRench [8].
Yet another group described the pipeline morphing and virtual
pipelines as an idea to reduce the reconfiguration costs. A
pipeline configuration is morphed into another configuration
by incrementally reconfiguring the stage by stage while
computations are being performed in the remaining stages.
Virtual pipelines are mapped onto physical pipelines by
morphing between pipeline stages. But, morphing is limited to
architectures, which support fast reconfiguration of the order
of a single pipeline stage execution.

 E. Simulation Tools
Several simulation tools have been developed for the

reprogrammable FPGAs. Most of the tools are device based
simulators and are not system level simulators. The most
significant effort in this area has been the Dynamic Circuit
Switching based simulation tools provided by a group of
researchers. These tools study the dynamically reconfigurable
behavior of FPGAs and are integrated into CAD framework.
Though the simulation tools can analyze the dynamic circuit
behavior of FPGAs, the tools are still low level. The simulation
is based on CAD tools and requires the input design of the
application to be specified in VHDL. The parameters for the
design are obtained only after processing by the device specific
tools. They described a visualization tool for reconfigurable
libraries. They developed tools to simulate behavior and
illustrate design structure. Their emphasis is on visualization of
library modules and not system level simulation or application
performance analysis.

VIII. CONCLUSION
Reconfigurable computing is becoming an important part of

research in the field of digital computing. By placing the
computationally intensive portions of applications onto the
reconfigurable hardware, the applications can be greatly
accelerated. Similar to software-only implementations, the
mapped circuit is flexible, and can be changed over the lifetime
of the system or even during the course of executions of the
applications. Additionally, the computations mapped to the
reconfigurable logic are executed in hardware, and therefore
have performance similar to an ASIC. This performance stems
from bypassing the fetch-decode-execute cycle of traditional
microprocessors as well as allowing the parallel execution of
multiple operations.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

342

The proposed RFU based computational unit provides us a
great performance parameter over the traditional processor
computational units. In the proposed computational unit the
hardware changes according to requirements of applications
being executing. Hence the system follows the strategy of, the
demand-driven hardware should be swapped in and the unused
hardware should be swapped out and hence providing more
hardware than that available in the system during the execution
of the applications. This reconfiguration of the hardware does
not stop the application being under execution. Due to the
partial reconfiguration of device, the time overheads required
to reconfigure device are compensated because the application
keeps continue its operation during the reconfiguration of the
device. RFU based computational units are very suitable for
those applications where different kinds of processing units are
frequently required to boast up the performance of executing
application.

REFERENCES
[1] M. Aqeel Iqbal and Uzma Saeed Awan, ‘Reconfigurable Instruction Set
Processor Design Using Software Based Configuration’, Proceedings of IEEE
computer society, IEEE International Conference on Advanced Computer
Theory and Engineering 2008 (ICACTE-2008), December 20-22, 2008,
Phuket Island, Thailand.
[2] M. Aqeel Iqbal, Shoab A. Khan and Uzma Saeed Awan, 'RISP Design
with Most Optimal Configuration Overhead for VLIW Based Architectures',
Proceedings of IEEE computer society, 2nd IEEE International Conference
on Electrical Engineering 2008 (ICEE-2008), March 25-26, 2008, UET
Lahore, Pakistan.
[3] Aziz-Ur-Rehman, Dr. Aqeel A. Syed and M. Aqeel Iqbal, ‘Intelligent
Reconfigurable Instruction Set Processor (IRISP) Design’, Proceedings of
IEEE computer society, 11th IEEE International Multi-topic Conference 2007
(INMIC-2007), Dec 28-30, 2007, COMSATS Lahore, Pakistan.
[4] Ye, Z. A., Moshovos, A., Hauck, S., and Banerjee, P., "CHIMAERA: A
High-Performance Architecture With a Tightly-Coupled Reconfigurable
Functional Unit," Proceedings of the 27th International Symposium on
Computer Architecture, pp. 225-235, 2000.
[5] Miyamori, T. and Olukotun, K., REMARC: Reconfigurable Multimedia
Array Coprocessor IEICE Transactions on Information and Systems E82-D,
vol. pp. 389-397, Feb, 1999.
[6] Xilinx, Virtex Series FPGAs, http://www.xilinx.com, 2001.
[7] Xilinx, Inc. Virtex II Configuration Architecture Advanced Users’ Guide.
March, 2000.
[8] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,
and R. Laufer. "PipeRench: A Coprocessor for Streaming Multimedia
Acceleration", in Proc. Intl. Symp. on Computer Architecture, May 1999.
[9] Hauser, J. R. and Wawrzynek, J., "Garp: A MIPS Processor With a
Reconfigurable Coprocessor," IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 12-21, 1997.
[10] C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H.Holt, J.Arnold and
M. Gokhale, "The NAPA Adaptive Processing Architecture", IEEE
Symposium on FPGAs for Custom Computing Machines, Apr. 1998.
[11] Altera Inc.. Altera Mega Core Functions, San Jose, CA, 1999.
http://www.altera.com/html/tools/megacore.htm
[12] Philip James-Roxby and Steven A. Guccione. Automated Extraction of
Run-Time Parameterisable Cores from Programmable Device Configurations.
In Proceedings of IEEE Workshop on Field Programmable Custom
Computing Machines, pages 153-161, April 2000.
[13] Edson L. Horta and John W. Lockwood. PARBIT: A Tool to Transform
Bitfiles to Implement Partial Reconfiguration of Field Programmable Gate
Arrays (FPGAs). Washington University Department of Computer Science
Technical Report WUCS-01-13. July 2001. (Available at
http://www.arl.wustl.edu/arl/projects/fpx/parbit
[14] S. McMillan and S. Guccione, “Partial run-time reconfiguration using
JRTR,” in Field-Programmable Logic and Applications / The Roadmap to
Reconfigurable Computing (FPL’2000), (Villach, Austria), pp. 352–360, Aug.
2000.
[15] X. Inc., “Configuration and readback of Virtex FPGAs using (JTAG)
boundary scan.” Xilinx XAPP139, Feb. 2000.

