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Automatically Driven Vector for Guidewire

Segmentation in 2D and Biplane Fluoroscopy
Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, and Jacques A. de Guise

Abstract—The segmentation of endovascular tools in fluoroscopy
images can be accurately performed automatically or by minimum
user intervention, using known modern techniques. It has been proven
in literature, but no clinical implementation exists so far because
the computational time requirements of such technology have not
yet been met. A classical segmentation scheme is composed of
edge enhancement filtering, line detection, and segmentation. A new
method is presented that consists of a vector that propagates in the
image to track an edge as it advances. The filtering is performed
progressively in the projected path of the vector, whose orientation
allows for oriented edge detection, and a minimal image area is
globally filtered. Such an algorithm is rapidly computed and can
be implemented in real-time applications. It was tested on medical
fluoroscopy images from an endovascular cerebral intervention. Ex-
periments showed that the 2D tracking was limited to guidewires
without intersection crosspoints, while the 3D implementation was
able to cope with such planar difficulties.

Keywords—Edge detection, Line Enhancement, Segmentation,
Fluoroscopy.

I. INTRODUCTION

NUMEROUS applications in medical imaging technology

require automatic segmentation of long linear objects.

Examples like vascular structures enhanced by contrast agent

and endovascular tools used in minimally invasive surgeries

are all linear objects on x-ray images relatively clear to the

human eye. The typical image process of edge enhancement

followed by contour segmentation can be effective in such ap-

plications but it is rather expensive in calculation requirements.

Image processes aiding physicians during critical medical in-

terventions like endovascular surgery require fast computations

for near real-time feedback that cannot be accomplished by

classical offline algorithms.

Object segmentation in various image processing applica-

tions is often based on the contour extraction of the object.

First, contour enhancement is performed by filtering globally

the image without prior knowledge of the object’s orientation.

Then, line like structures are tracked using contour segmenta-

tion algorithms. Thus the entire image is processed twice.

We present in this paper an edge tracking algorithm based

on simultaneous filtering and segmentation in a small window

that is steered by an automatically driven vector. Consequently,

only a small portion of the image around the object of interest

is processed, substantially reducing the computational load.

This technique is applied to the segmentation of a guide
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wire during a cerebral endovascular intervention. The guide

wire is visible on two images taken simultaneously from a

biplane angiogram set on low-dose fluoroscopic video image

acquisition.

II. EXISTING METHODS

Object detection is a relatively large subject in the field of

numerical image processing. Our interests are in linear struc-

tures segmentation and tracking because therapeutic tools in

endovascular interventions (guidewires, micro-catheters, and

coils) all appear as line-like structures in acquired 2D images.

A review of contour techniques is presented here, followed by

an update on the state of the art of guidewire segmentation

techniques.

A. Edge Enhancement

The enhancement filtering of any oriented edge is generally

based on the gradient values combined with smoothing filters

[1]. The gradient is often computed on orthogonal axes. To

increase the edge sensitivity with convoluted kernels on edges

off orthogonal axes, steerable filters are designed to favour

a predetermined angled edge. With the Gaussian function re-

shaped, they can be rotated on any point of the image to locate

the highest score, or they can be smartly convoluted using

a precalculation of an edge-detected value [2]. The second

image derivation (Hessian matrix) is also useful for edges

of small line-like structures, to detect the center-line plateau.

Combined with the Gaussian filter, a plateau is constructed on

larger lines of a selected width [3]. More complex techniques

like anisotropic filtering [4] apply uneven smoothing, i.e. less

smoothing along edges to preserve contours and more on

the background to reduce the noise as much as possible.

From simple convolution to anisotropic filtering, the edge

enhancement calculation cost is rapidly increasing.

B. Contour Segmentation

The extraction of an object after a filtering enhancement

operation is quite dependent on the object of interest’s a priori

information. Any information such as the color, shape, size,

or even initial position can increase an automatic extraction’s

success rate. The known features help initialize and adjust

segmentation processes that are sensible to uniformed and

closed contours. Algorithms that exploit an object’s uniformity

are called region-based, while algorithms that exploit the con-

tours are called edge-based. A popular edge-based approach

is composed of a snake reshaping on local image features
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[5], [6], [7]. The features of interest form the external energy

that directs the reshaping of the snake. The snake can also

be restrained in its shape by an internal energy that insures

smoothness. The global external/internal scheme is solved by

minimization. The snake algorithm is part of processes called

active contours. When combined with region-based measures,

the snake algorithm is classified as level set [8]. Level sets

are less sensible to local noise and have higher lateral reach

than simple snakes, at a higher computational cost. A lighter

unidirectional version called fast marching [9] is also effective

and requires substantially less calculations.

Beside global segmentation algorithms, other approaches

are based on local data to drive object extraction. A deformable

model is initiated inside a structure and expands until edges

are hit [10]. In order to rely on local features, the contour must

be clear enough.

C. Guidewire Segmentation

Many researchers have worked on mathematical algorithms

to locate and track endovascular tools like guidewires on

fluoroscopic images. The motivation of such research is either

to enhance the planar display or to produce a 3D representation

of the tools inside the vascular structure. Palti-Wasserman

et al. [11] began in 1997 with the tracking of guide wires

during coronary arteries navigation for angioplasty. Images are

filtered to enhance linear structures to be tracked by a second-

degree polynomial using the Hough transform. A digital tool

is then projected back on live fluoroscopic feed. Baert, van

Walsum et al. [12], [13] transformed the endovascular tools

tracking from biplan setup to 3D digital scene using a stereo-

projection matrix. A single guide wire is segmented from a

first pass of template matching followed by a refined posi-

tional adjustment by a snake-energy-based fitting optimization

algorithm. They performed successfully a small offline clinical

study but the required calculation times prevented real time

implementation. The CardiOp-B team have started to work on

the tracking of single guide wires during cardiac intervention

[14]. The guide wire endpoints are detected and paired to

represent distinctive tools. This simple implementation only

addresses single small guide wires. More recent work by Barbu

et al. [15] present a guide wire tracking method based on line

segments detection filter from which segments are connected

to reconstruct linear objects. It is dedicated to track single

guide wires from live fluoroscopic images. The connection

method is tuned by a hierarchical algorithm called the Prob-

abilistic Boosting Tree. Although the learning phase can be

long, the resulting tracking algorithm can be implemented in

real-time and has shown promising results in offline studies.

III. PROPOSED METHOD

We are proposing a new method that combines the en-

hancement and the segmentation operations in a continuous

sampling algorithm. The enhancement is performed by a

steerable filter aligned on the previous edge sample orienta-

tion. Thus the filtering and the segmentation are performed

simultaneously on restricted regions surrounding the object

of interest in a sweeping progression scan. Such a process

Fig. 1. Propagating vector in 2D.

reduces substantially the computational requirements while

still benefiting from precise enhancement filtering.

A. 2D Automatically Steered Filter

On an image, an automatically steered filter can be used to

segment a continuous contour in an incremental progression.

On image I(x, y) of size m by n, let us define a fixed length

vector V of position (xv(u), yv(u)), constant speed υ, and

orientation θ(u). This vector is moved in the image by tracking

a contour. Although unknown, the contour can be represented

by a function f . The numerical differentiation at f(u) is

f ′

(u) =
f(u + 1) − f(u − 1)

2
. (1)

The motion of the vector is a function of u, which is the

differentiation step, of value ν in this example. The local slope

value f ′
(u) can serve as a steering filter alignment inside

a kernel window centered on (xv(u), yv(u)). This kernel is

of circular shape to equalize the length of cropped lines of

all orientations passing through the center. Fig.1 shows the

circular kernel centered on the vector tracking a line on a

gray value image at a certain instant u. The line segment slope

inside the filtered kernel window is computed by the Radon

transform [16], the most suited algorithm to rapidly detect

a bright line inside a circle. The highest Radon calculated

number gives the most probable line segment orientation. In

the possible case of line junction or branching, the Radon

transform will highlight more than one probable path that

can be processed accordingly. The incremental calculation is

performed by the knowledge of the previous position along the

line and the local slope. Thus, the next position is calculated

by isolating f(u + 1) from equation 1.

f(u + 1) = 2f ′

(u) + f(u − 1) . (2)

The slope is mapped to a specific direction, θ(u). The tracking

functions in Cartesian coordinates are

xv(u + 1) = xv(u − 1) + 2ν cos(θ(u)) , (3)
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Fig. 2. Propagating vector in 3D from biplane projections.

yv(u + 1) = yv(u − 1) − 2ν sin(θ(u)) . (4)

The vector moves from an initial manually selected (or

from an endpoint detection algorithm) position until a second

suitable endpoint is detected (for an open contour). For an

automatic endpoint detection, the local edge intensity mean

along the sweep can serve as a threshold value to stop the

scan at a sudden edge drop. Other cases like branching can

be processed from the Radon intensity results presenting more

than one straight-line outcomes. Then, the full segmentation

is completed when all vectors have stopped propagating.

B. Biplane Automatically Steered Filter

A tracking vector is also suited (and more efficient) for

edge segmentation on a biplane imaging modality. Instead of

relying on projection, the vector propagates in the real object

space (in 3D). Thus the object contour is realistic and not

subjected to projection overlays. In such a case, the biplane

images serve as external forces applied on the 3D vector.

The position transformation matrix and image source of each

projection are used for the segmented contour reconstruction

in the 3D scaled world. Fig. 2 represents this concept of

3D reconstruction of a linear object projected on two planar

sensors. The projection schemes have cone shapes, from a

single image source to a planar sensor, mimicking the x-ray

imaging technology of an angiogram. The projection of a fixed

length 3D vector on each sensor outlines a region of interest

in which line segments are enhanced. Thus an external force

is applied on the 3D vector direction, which is proportional

to the relative parallelism offset between the vector and the

sensor panel.

Considering a stereo-projection modality, the projections of

plane a and plane b are referenced to the same origin o.

Each plane is associated to a fixed position in space (oPa,
oPb), a focal origin (oPsa, oPsb), and an orientation matrix

(oaR, o

b
R). The 3D contour of interest is represented by a

function f and a tracking vector V is used to segment it. V

has a constant length υ, and its endpoints are oPv1 and oPv2.

The orientation possibilities of a vector in space represent a

sphere. Because the vector is always in a forward motion,

a half-sphere constitutes the only forward possibilities. The

half-sphere projection on each plane defines the kernel for

line enhancement on each image (as shown in Fig. 2). By

projecting the line-enhanced gray values back inside the half-

sphere and summing in both planes, the highest value inside

the sphere points to the most probable 3D tracking point.

The kernel projection on each plane can be calculated from

the projection matrix. First, each 3D point can be decomposed

in Cartesian coordinates, for example

oPa = [
oax

oay
oaz]

′ , (5)

Also, each point can be transferred from an origin to another.

For example

aPv1 =
a

oR oPv1 +
aPo =

o

aR−1
(

oPv1 −
oPa) , (6)

The projection of oPv1 on plane a (noted av1
′

x) can be solved

using the location of the ray origin, aPsa. This focal origin is,

by definition, on axis za.

av1
′

x =

av1x
asaz

asaz −
av1z

, av1
′

y =

av1y
asaz

asaz −
av1z

. (7)

The kernel shape determined from the vector’s half-sphere

projection is a partial ellipse because the projection scheme

is conic. The next position increment in space f(u+1) is not

calculated by the Radon transform (as in the 2D algorithm

of Section III-A), but directly from the projection inside the

sphere. In an orthogonal biplane setup, the projection on the

sphere would have a “+” shape whose intersection center

would mark the 3D path to follow. The tracking terminates

when the full segmentation is complete, i.e. when the edge

intensity fades on both planes.

IV. EXPERIMENT

The proposed algorithms were tested on fluoroscopic medi-

cal images since they are very difficult to process. Fluoroscopy

is a low-dose x-ray system that has low resolution and high

Poisson noise. Because the radiation is low, the noise level

is very close to the signal amplitude. The purpose of low-

dose is to reduce exposure to the patient and nearby medical

practitioner to a minimum because fluoroscopy is used con-

tinuously (video feedback). The fluoroscopy samples of Fig. 3

are simultaneous biplane projections taken during a cerebral

endovascular intervention. The resolution is 512 x 512 and the

gray intensity is on an 8-bit scale, although the overall image

levels are inside an approximate 30 grey level margin. The

experiment objective is to segment the guide wire present in

both images under real-time conditions since the images are

from a 15 frames per second sequence.

The 2D segmentation algorithm using a vector presented in

Section III-A was tested on both images. Fig. 4 shows the
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Fig. 3. Biplane fluoroscopic images of cerebral endovascular intervention.

results. The segmentation failed on the left when the vector

reached an intersection. The intersection’s small angle caused

a long overlap that prevented the vector from choosing the

proper path. Also, the corner angle sharpness restrained the

vector from continuing its propagation.

The biplane segmentation from the algorithm presented in

Section III-B succeeded in segmenting accurately the guide

wire in 3D. The intersection problem in one projection plane

was overcome by the 3D trajectory of the vector, relying on

the biplane correspondence. Fig. 5 shows the 3D scene with

the 3D guide wire and its projection on both planes.

V. CONCLUSION

This paper presented a new method for guidewire segmen-

tation, during endovascular intervention, based on a tracking

window that filters locally while advancing on an edge.

Fig. 4. 2D segmentation using automatically driven vector.

Fig. 5. 3D segmentation using automatically driven vector.

This method reduces calculations by partially filtering the

images and by relying on simple kinematic functions. The

steerable filters used also increase edge detection sensibil-

ity. Its effectiveness was tested successfully on particularly

difficult to process medical fluoroscopic images. While the

2D implementation was able to segment relatively smooth

curves but failed to sort intersection branches, the biplane

implementation was able to cope with the overlay problem

by relying simultaneously on the stereo-projections. The next

step of this research axis is to elaborate performance measures

(precision and computational time) on a large number of

images, thus allowing the algorithm to be implemented in

software dedicated to endovascular intervention.
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