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Abstract—The use of the oncologic index ISTER allows for a more
effective planning of the radiotherapic facilities in the hospitals. Any
change in the radiotherapy treatment, due to unexpected stops, may be
adapted by recalculating the doses to the new treatment duration while
keeping the optimal prognosis. The results obtained in a simulation
model on millions of patients allow the definition of optimal success
probability algorithms.
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I. INTRODUCTION

Dynamical system techniques use a population dynamics
model [1–4] to mathematically describe the tumour behavior
and its interaction with the immune system. Some of these
works model tumour behavior under clinical treatments like
cytokines [5] or radiovirotherapy [6] and properly explain
the qualitative behaviors of several tumours. Even though
great efforts had been made to describe cancer radiotherapy
treatments , they “are vaguely tied to [clinical] observations”
[2] and their large number of variables and coefficients make
their results hardly transposable to a clinical context.

The relevance of immune system tumor interaction in a
radiotherapy treatment (RT) and the importance of its study
have been highlighted in a previous work [7]. The role of
immune system in tumor control has been described in [1]
and widely discussed in further works [2, 8–12]. However,
in our opinion, its study and characterization has not been
sufficiently addressed in the context of the clinical practice to
plan alternative or contingency treatment.

In reference [7] the interplay between the immune system
and the tumour was analysed. From that work one conclusion
is drawn: the system behavior is determined by the efficiency
of the immune system over tumor growth, and the “deficiency”
of the immune system due to tumor growth. Of these two
properties, the most decissive was shown to be the first one,
the dimensionless parameter called ISTER. That parameter
allowed to find the success probability of a fractionated
radiotherapy treatment, using the survival fraction of tumour
cells, even if other parameters involved were unknown. The
calculation provided a way to classify patients, based on their
ISTER value, and to approach to the optimum treatment.
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There is an increasing concern about finding the suitable
planning that maximizes the outcome of a radiotherapy (RT)
treatment [13]. Many of the previous works assume normal
radiotherapy treatment development [14]. However, delays and
treatment interruptions occur in real life, and must be taken
into account. The problem of how to apply radiation treatments
in an optimal way under the influence of external factors is, in
our opinion, far from being fully solved. So some algorithm
is needed capable to determine the optimal dose to end the
treatment without significant loss of performance.

On the other hand the number of devices in radiotherapy
services is limited hence the appearance of waiting lists.
Waiting times have been shown to be a major problem in
the achievement of high treatment efficiency [15, 16].

The objective of this work is to aid in decision making of the
treatment priorization and planning recovery on device failure,
so that changes in treatment duration must not necessarily
imply a worser prognosis.

II. THE MODEL

We are going to use the model introduced in [7] to simu-
late the evolution of one million patients under radiotherapy
treatment. A short description of the model follows.

A Lotka-Volterra like model describes the tumor evolution
[5]. Tumor cells growth Ẋ (as usual, a dot over a quan-
tity represents its time derivative) depends on the current
tumor population as aX and its interaction with lymphocytes,
−bXY . Lymphocyte population grows due to tumor-immune
system interaction, dXY , and die with a rate −fY . The
tumor is assumed to secrete interleukins which produce an
immunity depression effect [17, 18], −kX . A constant flow, u,
of lymphocytes is assumed to arrive from the immune system.

As a result of RT treatment a fraction of cells of both
populations, lymphocytes and tumor cells is affected. The
lymphocytes population gets quickly reduced in a fraction
Bl in what is called the interphase death. However, affected
tumor cells will not die immediately; a fraction Bt will
loss its reproductive capacity and die in the mitosis process.
The fraction of affected cells in both populations and is the
complement of the survival factors St = 1 − Bt (tumor) and
Sl = 1 − Bl (lymphocytes). The inclusion of both population
affections brings a new equation for the tumor non clonogenic
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cells [6], Z, originated from radiation damage. Those cells will
also stimulate the lymphocyte population, as pZY , will decay
exponentially as −rZ due to the death of damaged cells, and
as −qZY due to the interaction with immune system. Finally
we arrive to

Ẋ = aX − bXY − Ḃt(T )X
Ẏ = dXY + pZY − fY − k(X + Z) + u − Ḃl(T )Y
Ż = Ḃt(T )X − rZ − qZY

(1)
where Ḃt(T ) = Bt

∑
δ(T−Tn) and Ḃl(T ) = Bl

∑
δ(T−Tn)

represent the amount of tumor cells and lymphocytes affected
by radiation per unit time. Tn are the time instants when
radiation doses are applied and δ(T − Tn) denotes Dirac’s
delta function centered at Tn. All parameters were estimated
and interpreted as in [19] or [12].

The linear stability analysis [7] of the dimensionless version
of system (1) shows that its qualitative behavior is determined
by just a set of dimensionless parameters: σ = ub/a2, λ =
f/a, κ = kb/ad. We can see that σ/λ is the efficiency of
immune system over tumor growth, and κ is the “deficiency”
of the immune system due to tumor growth. σ/λ was defined
as the ISTER parameter, and together with κ will be the only
relevant parameters of the problem.

For σ/λ < κ < 1, tumor will grow and tumor eradication
will be achieved only by bringing the system close enough to
the “tumor free” state, so that the immune system can get rid
of the tumor. We will focus our study to this region, beacuse
for κ > 1 and σ/λ < 1, the main effects of the tumour will be
the depression of immune system. Patient will perform badly
according to Karnofsky performance scale (KPS) [20] and will
not fulfill physical requirements to be subject to therapeutic
treatment (although a palliative treatment is always possible).

Eqs. (1) allow for unrealistic X values (even less than one
cell). However when the number of tumor cells becomes small
enough (thousands, for instance), immune system may kill
them [21]. We will assume that if the immune system has
a high efficiency it will have higher probabilities of killing
the tumor remaining cells and if the immune system has a
low efficiency the probability of killing those tumor cells will
be low. The simplest linear approximation to the probability
of tumor regression is then:

P (σ/λ) =
{

σ/λ if σ/λ < 1
1 if σ/λ ≥ 1 (2)

If no regression occurs, tumor will eventually regrow.
The goal of a radiotherapy treatment is to get X = 0, that

is, the tumor has disappeared. However, ther is a chance that
lymphocyte population becomes. Then, we will assume the
tumor escapes lymphocyte control and grows limited only by
space and nutrient considerations. At this point, we consider
treatment has failed.

In [7] the dynamics given by equations (1) and (2) was
simulated for one million “virtual patients” using physiological
random values for the parameters. The authors define the
“success probability”, Ps, as the fraction of “virtual patients”
with no tumor by the end of treatment. Moreover, they
conclude that Ps is a function of the tumor cell survival

factor, St, and the patient ISTER. Also, the long term
survival of patients does not improve with higher doses of
radiation, on the contrary, it is possible to get the maximum
success probability at intermediate doses. That maximum Ps

for the standard treatment simulated in [7] will be denoted
as Pmax(ISTER), for it only depends on the ISTER. This
standard protocol in ideal conditions will be taken in what
follows as the reference protocol or “gold standard”, against
which modified treatments will be compared.

III. SIMULATION AND RESULTS

The simulation will mimic different radiation treatments
using Eqs. (1) and condition (2). For the sake of realism, a
radiation session will be applied every workday (5 consecutive
days) and none in weekends (2 days). All treatments begin the
tenth day, and apply a variable number of sessions, N , from
20 to 40 for each patient [13, 22].

We have taken a random value for the survival fractions of
each patient tumor, to proceed in a more general way than
taking up a sort of tumors (e.g. breast, colon, etc.); so no
experimental expression were needed to calculate the survival
fraction of cells for the treatment dosage. The rest of the model
parameters were drawn from random log-normal distributions
(to avoid negative values) as described in [7, 19]. Those values
not giving a ISTER < 1 were rejected. Survival factors [21]
were also taken as random values. Initial conditions were taken
as Gaussian distributed.

We define the effect potential for tumor cells as

χ = − ln(St) (3)

in terms of the survival fraction of tumoral cells St. This
quantity grows monotonously with the radiation dose. In
exponential radiation effect models (linear or LQ, for instance)
χ becomes the tissue effect. For other models (see [21]) χ is
still a valuable magnitude, although its relation to the dose is
not so direct as in the case for the tissue effect.

The treatment success probability, Ps, was represented as a
function of ISTER, N and χ,

Ps = G(ISTER,N, χ) (4)

As expected, for each value of N we got similar results as
obtained in [7]. The surface represented in figure 1 corresponds
to a fixed value of the ISTER. This shows that whenever the
value of N increases, the optimized value of Ps can be achived
with a lower value of χ per session. Those values of χ that
optimize Ps, for each value of N , are represented in figure
2 in the form of a family of hyperbolas determined by the
ISTER value.

From these results (depicted in figures 1 and 2), the follow-
ing expression was found to relate χ and N in the boundary
of the maximum success probability Ps � Pmax:

χN

Pmax
= R (5)

Here R is a function of the ISTER that can be fitted as the
power law

R = A × ISTERm (6)
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Fig. 1. Ps representation for ISTER = 0.7 as a function of the effect
potential and the number of radiation sessions. Closer to black means lower,
yellow means closer to 0.7.
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Fig. 2. Effect potential per session that maximize the success probability Ps

for each value of N plotted for some values of ISTER parameter.

Our simulations provided m = −1.1±0.1 and A = 17±1. We
want to point out that Pmax is almost constant in the yellow
region in figure 1 or, what is the same, above each line in
figure 2. Thus Pmax is a function only of ISTER.

IV. DISCUSSION

Expressions (5) and (6) show how to take into account the
patient immunological state in order to classify him/her.

Once determined the ISTER for a patient we know the
prognosis of the patient, that is, the maximum success proba-
bility achievable with any treatment. This Pmax determines the
hyperbolas in figure 2 that relate the number of programmed
sessions with the minimal dose per session providing that
maximum success probability. This condition also satisfies the
ALARA principle [23].

In many cases the presence of the surrounding tissues does
not allow the administration of the former minimal dose for
the given N . In that case, equation (5) provides the number
of sessions needed to achieve the maximum probability with
the maximum dose rate allowed by the surrounding tissue.

Given the previous arguments, the value of the ISTER of a
patient determines the total radiation dose he needs to receive

in order to guarantee the best prognosis at the “minimum
cost”, that is, given the ISTER and the location of the tumor
(appropriate χ) equation (5) gives N .

Any change on N or the ISTER of the patient along
the treatment can be addressed using equation (5) to adapt
the treatment to the new conditions, while keeping the same
prognosis.

This methodology can be also applied to multifractionation
[24].

V. CONCLUSIONS

The present work introduces a generalization of [7] to a
scenario with a possibly variable number of sessions. Starting
from a system of equations and introducing a probabilistic cut-
off system, the simulations allows us to find the corresponding
effect potential per radiation session providing the maximum
value of the success probability. Consider, the following two
scenarios: the first one, for some time interval the RT machines
become unavailable when a patient needs an urgent treatment;
our work could guide the radiotherapists to design a parallel
treatment as efficient as that initially recommended for that
patient and adapted to the available time interval. The second
one, consider a patient with a dramatic change in his/her KPS
affecting his/her ISTER; our study allows to redesign a new
treatment adapted to the new situation, again with the best
prognosis and the lowest cost for the patient’s health, avoiding
the interruption of the treatment.
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