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A Family of Entropies on Interval-valued
Intuitionistic Fuzzy Sets and Their Applications in

Multiple Attribute Decision Making
Min Sun, Jing Liu

Abstract—The entropy of intuitionistic fuzzy sets is used to
indicate the degree of fuzziness of an interval-valued intuitionistic
fuzzy set(IvIFS). In this paper, we deal with the entropies of IvIFS.
Firstlt, we propose a family of entropies on IvIFS with a parameter
λ ∈ [0, 1], which generalize two entropy measures defined indepen-
dently by Zhang and Wei, for IvIFS, and then we prove that the
new entropy is an increasing function with respect to the parameter
λ. Furthermore, a new multiple attribute decision making(MADM)
method using entropy-based attribute weights is proposed to deal with
the decision making situations where the alternatives on attributes are
expressed by IvIFS and the attribute weights information is unknown.
Finally, a numerical example is given to illustrate the applications of
the proposed method.

Keywords—Interval-valued intuitionistic fuzzy sets, interval-
valued intuitionistic fuzzy entropy, multiple attribute decision making

I. INTRODUCTION

TO deal with vagueness and uncertainty in many real-
life areas, Zadeh[1] introduced fuzzy set(FS), which has

achieved a great success in various fields, such as group
decision, medical diagnosis, pattern recognition. After that,
many scholars have investigated FS and a lot of generalized
forms have been proposed. Among them, intuitionistic fuzzy
set(IFS) proposed Atanassov[2] and interval-valued intuition-
istic fuzzy sets(IvIFS) introduced by Atanassov and Gargov[3]
are two well-known generalizations of the conventional fuzzy
set theory. Both of them alleviate some drawbacks of Zadeh’s
fuzzy set. Entropy is a very important notion for measuring
uncertain information, which was first mentioned by Zadeh[1].
Later, many researchers have investigated entropy from dif-
ferent aspects, such as Deluca and Termin[4], Kaufmann[5],
Yager[6], Szmidt and Kacprzyk[7] introduced different en-
tropies on fuzzy set. As for intuitionistic fuzzy set, Bustince
and Burillo[8] firstly introduced an entropy on IFS in 1996,
and then Hung[9], Zhang[10], Vlachos and Sergiadis[11],
Zeng[12] presented different entropies on IFS from different
aspects. In respect to IvIFS, Zhang[13], Ye[14], Zhang et
al.[15], Wei et al.[16] proposed some entropies on IvIFS.
Although IvIFS is an important extension of FS, there are
few works involving the entropy on it. Therefore, it is worth
studying the entropy on IvIFS.

Mainly motivated by the entropies proposed by Zhang et
al.[15] and Wei et al.[16], in this paper, we will present a
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family of entropies on IvIFS by introducing a parameter λ ∈
[0, 1] to the entropy presented by Wei et al.[16]. Thus, a set of
entropy measures (depending on λ ∈ [0, 1]) is defined, which
include the entropies in [15] and [16] as special cases. That is,
if λ = 0, then our entropy is reduced to the entropy in [15],
and if λ = 1, then our entropy is reduced to the entropy in
[16].

A multiple attribute decision making(MADM) problem is
to find a desirable solution from a finite number of feasible
alternatives assessed on multiple attributes, both quantitative
and qualitative[17]. In order to choose a desirable solution,
decision maker often provide his/her preference information
which takes the form of numerical values, such as exact values,
interval-number values, FS, IFS and IvIFS. MADM is an inter-
esting research topic having received more and more attention
from researchers during the last several years. However, many
researchers mainly focus on the MADM problems with known
or incompletely known attribute weight information under
interval-valued intuitionistic fuzzy environment, and there is
little research on MADM with completely unknown attribute
weight information in the existing literature[18]. Thus, in this
paper, we will utilize the proposed IvIFS entropy to assess
attribute weights based on the IvIFS decision making matrix.

The rest of the paper is organized as follows. In Section 2,
we introduce the concept of IvIFS and some basic relations,
and propose a set of IvIFS entropies. In Section 3, a new
MADM method using entropy-based attribute weights under
IvIFS environment is constructed. A numerical example is
given to demonstrate the effectiveness of the proposed method
in Section 4. Concluding remarks are drawn in Section 5.

II. A FAMILY OF ENTROPIES ON INTERVAL-VALUED
INTUITIONISTIC FUZZY SETS

In this paper, let [I] denote the set of all the closed
subintervals of [0, 1].

Definition 2.1.[5] Let [a1, b1], [a2, b2] ∈ [I], we define

[a1, b1] ≤ [a2, b2], iff a1 ≤ a2, b1 ≤ b2;

[a1, b1] � [a2, b2], iff a1 ≤ a2, b1 ≥ b2; [a1, b1] =
[a2, b2], iff a1 = a2, b1 = b2.

Definition 2.2.[1] Let X be a universe of discourse. An
intuitionistic fuzzy set(IFS) in X is an object having the form:

A = {〈x, μA(x), vA(x)〉|x ∈ X},
where
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μA : X → [0, 1], vA : X → [0, 1]

with the condition

0 ≤ μA(x) + vA(x) ≤ 1, ∀x ∈ X.

The numbers μA(x) and vA(x) denote the degree of member-
ship and non-membership of x to A, respectively.

For convenience, we denote by IFS(X) the set of all the
IFS in X .

Definition 2.3.[2] An interval-valued intuitionistic fuzzy
set(IvIFS) A in the finite universe X is expressed by the form

A = {〈x, μA(x), vA(x)〉|x ∈ X},
where μA(x) = [μ−

A(x), μ
+
A(x)] ∈ [I] is called member-

ship interval of element x to IvIFS A, while vA(x) =
[v−A(x), v

+
A(x)] ∈ [I] is the non-membership interval of that

element to the set A, and the condition 0 ≤ μ+
A(x)+v

+
A(x) ≤ 1

must hold for any x ∈ X .
A point x is said to be crossover point of IvIFS A, if

μA(x) = vA(x).
An IvIFS A is viewed as a most vague IvIFS, also denoted

by AF , if μA(x) = vA(x) for all x ∈ X .
For convenience of notations, we denote by IvIFS(X) the

set of all the IvIFS in X .
We call the interval

[1− μ+
A(x)− v+A(x), 1− μ−

A(x)− v−A(x)],

abbreviated by [π−
A(x), π

+
A(x)] and denoted by πA(x), the

interval-valued intuitionistic index of x in A, which is a
hesitancy degree of x to A.

Definition 2.4.[2] Let A,B ∈IvIFS(X), then some opera-
tions can be defined as follows:

A ∪B = {〈xi, [μ−
A(xi) ∨ μ−

B(xi), μ
+
A(xi) ∨

μ+
B(xi)], [v

−
A(xi) ∧ v−B(xi), v+A(xi) ∧ v+B(xi)]〉|xi ∈ X};

A ∩B = {〈xi, [μ−
A(xi) ∧ μ−

B(xi), μ
+
A(xi) ∧

μ+
B(xi)], [v

−
A(xi) ∨ v−B(xi), v+A(xi) ∨ v+B(xi)]〉|xi ∈ X},

where ∨,∧ stand for max and min operators, respectively.

AC = {〈xi, [v−A(xi), v+A(xi)], [μ−
A(xi), μ

+
A(xi)]〉|xi ∈ X};

A ⊆ B, iff [μ−
A(xi), μ

+
A(xi)] ≤ [μ−

B(xi), μ
+
B(xi)],

and [v−A(xi), v
+
A(xi)] ≥ [v−B(xi)v

+
B(xi)] xi ∈ X;

A � B, iff [μ−
A(xi), μ

+
A(xi)] � [μ−

B(xi), μ
+
B(xi)],

and [v−A(xi), v
+
A(xi)] � [v−B(xi)v

+
B(xi)] xi ∈ X.

Now we give the entropy concept of IvIFS which is similar
to the work of Zhang et al.[15].

Definition 2.5. A real function E : IvIF(X) → [0, 1] is
named an entropy on IvIFSs, if E satisfies all the following
properties:

(E1) E(A) = 0 iff A is a crisp set;
(E2) E(A) = 1 iff μA(xi) = vA(xi), ∀xi ∈ X;
(E3) E(A) = E(AC);
(E4) E(A) ≤ E(B) if A is less fuzzy than B, which is

defined as

μA(xi) ≤ μB(xi), vA(xi) ≥ vB(xi), for μB(xi) ≤ vB(xi);

μA(xi) ≥ μB(xi), vA(xi) ≤ vB(xi), for μB(xi) ≥ vB(xi);

μA(xi) � μB(xi), vB(xi) � vA(xi), for μB(xi) � vB(xi);

μA(xi) � μB(xi), vB(xi) � vA(xi), for μB(xi) � vB(xi).

Now we recall some entropy formulas for an IvIFS. For an
IvIFS A = {〈xi, μA(xi), vA(xi)〉|xi ∈ X}, Zhang et al.[15]
defined he following entropy EZJ for A:

EZJ(A) =
1

n

n∑
i=1

μ−
A(xi) ∧ v−A(xi) + μ+

A(xi) ∧ v+A(xi)
μ−
A(xi) ∨ v−A(xi) + μ+

A(xi) ∨ v+A(xi)
. (1)

Especially, when [μ−
A(xi), μ

+
A(xi)] = [0, 0], [v−A(xi), v

+
A(xi)]

= [0, 0], ∀xi ∈ X , they put EZJ(A) = 1.
For an IvIFS A, Wei et al.[16] gave a different entropy

formula by
EWW(A) =

1

n

n∑
i=1

μ−
A(xi) ∧ v−A(xi) + μ+

A(xi) ∧ v+A(xi) + π−
A(xi) + π+

A(xi)

μ−
A(xi) ∨ v−A(xi) + μ+

A(xi) ∨ v+A(xi) + π−
A(xi) + π+

A(xi)
.

(2)
Example 2.1. Let X = {x1, x2, · · · , xn} be a universe of

discourse. Let A1 = {〈xi, [0.1, 0.2], [0.2, 0.4]〉|xi ∈ X},A2 =
{〈xi, [0.2, 0.2], [0.3, 0.5]〉|xi ∈ X}. Calculate the entropies of
A1 and A2.

From the entropy formula EZJ(A), we have:

EZJ(A1) =
0.1 + 0.2

0.2 + 0.4
= 0.5, EZJ(A2) =

0.2 + 0.2

0.3 + 0.5
= 0.5.

Therefore EZJ(A1) = EZJ(A2), then EZJ(A) can not distin-
guish the fuzzyness of A1 and A2.

Example 2.2. Let X = {x1, x2, · · · , xn} be a universe of
discourse. Let A3 = {〈xi, [0.2, 0.4], [0, 0]〉|xi ∈ X}, A4 =
{〈xi, [3/10, 2/5], [0, 1/7]〉|xi ∈ X}. Calculate the entropies
of A3 and A4.

From the entropy formula EWW(A), we have:

EWW(A3) =
0 + 0 + 1.4

0.2 + 0.4 + 1.4
= 0.7.

EWW(A4) =
0 + 1/7 + (2− 3/10− 2/5− 1/7)

3/10 + 2/5 + (2− 3/10− 2/5− 1/7))
= 0.7.

Therefore EWW(A3) = EWW(A4), then EWW(A) can not
distinguish the fuzzyness of A3 and A4.

Motivated by the entropies (1) and (2), now we give an
entropy measure for IvIFSs. For each A ∈ IvIFS(X), define
E(A, λ) by

E(A, λ) =

1

n

n∑
i=1

μ−
A(xi) ∧ v−A(xi) + μ+

A(xi) ∧ v+A(xi) + λ(π−
A(xi) + π+

A(xi))

μ−
A(xi) ∨ v−A(xi) + μ+

A(xi) ∨ v+A(xi) + λ(π−
A(xi) + π+

A(xi))
,

(3)
where λ ∈ [0, 1] is a parameter.

Obviously, if λ = 0, then E(A, λ) is reduced to the entropy
EZJ(A); Meanwhile, if λ = 1, then E(A, λ) degenerates to
the entropy EWW(A). In the following, we will restrict the
parameter λ ∈ (0, 1).

Theorem 2.1. The mapping E(A, λ), defined by (3), is an
entropy measure for IvIFS, i.e., it satisfies all the properties
in Definition 2.5.
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Proof. We only need to prove that all the properties in
Definition 2.5 hold.

(E1) If A is a crisp set, then for each xi ∈ X , we have

[μ−
A(xi), μ

+
A(xi)] = [0, 0], [v−A(xi), v

+
A(xi)] = [1, 1];

or

[μ−
A(xi), μ

+
A(xi)] = [1, 1], [v−A(xi), v

+
A(xi)] = [0, 0],

So, πA(xi) = [0, 0] for each xi ∈ X . From (3) we obtain that
E(A, λ) = 0.

On the other hand, suppose now that E(A, λ) = 0. From
(3) and λ ∈ (0, 1), we have

μ−
A(xi) ∧ v−A(xi) = 0, μ+

A(xi) ∧ v+A(xi) = 0,

π−
A(xi) = 0, π+

A(xi) = 0.

This set of equations implies that A is a crisp set.
(E2) If μA(xi) = vA(xi), ∀xi ∈ X; i.e.,

μ−
A(xi) = v−A(xi), μ

+
A(xi) = v+A(xi), ∀xi ∈ X,

then

μ−
A(xi) ∧ v−A(xi) + μ+

A(xi) ∧ v+A(xi) =
μ−
A(xi) ∨ v−A(xi) + μ+

A(xi) ∨ v+A(xi).
Thus, E(A, λ) = 1.

On the other hand, if E(A, λ) = 1, then for each xi ∈ X ,
we immediately obtain that

μ−
A(xi) ∧ v−A(xi) = μ−

A(xi) ∨ v−A(xi), μ+
A(xi) ∧ v+A(xi) =

μ+
A(xi) ∨ v+A(xi).

Hence, μ−
A(xi) = v−A(xi), μ

+
A(xi) = v+A(xi), which means

that μA(xi) = vA(xi).
(E3) It is obvious that E(AC , λ) = E(A, λ) from AC =

{〈xi, [v−A(xi), v+A(xi)], [μ−
A(xi), μ

+
A(xi)]〉|xi ∈ X}.

(E4) To prove it, we need to separate X into four parts as
follows:

X1 = {xi ∈ X|μB(xi) ≤ vB(xi)},

X2 = {xi ∈ X|μB(xi) ≥ vB(xi)},

X3 = {xi ∈ X|μB(xi) � vB(xi)},

X4 = {xi ∈ X|μB(xi) � vB(xi)}.

Suppose A is less fuzzy than B. If xi ∈ X1, then μA(xi) ≤
μB(xi), vA(xi) ≥ vB(xi), for μB(xi) ≤ vB(xi); i.e.,

μ−
A(xi) ≤ μ−

B(xi) ≤ v−B(xi) ≤ v−A(xi),

μ+
A(xi) ≤ μ+

B(xi) ≤ v+B(xi) ≤ v+A(xi).

Therefore, we have

μ−
A(xi) + μ+

A(xi) + λ(π−
A(xi) + π+

A(xi))

= 2λ+ (1− λ)μ−
A(xi) + (1− λ)μ+

A(xi)− λv−A(xi)
−λv+A(xi)

≤ 2λ+ (1− λ)μ−
B(xi) + (1− λ)μ+

B(xi)− λv−B(xi)
−λv+B(xi)

= μ−
B(xi) + μ+

B(xi) + λ(π−
B(xi) + π+

B(xi)).

v−A(xi) + v+A(xi) + λ(π−
A(xi) + π+

A(xi))

= 2λ+ (1− λ)v−A(xi) + (1− λ)v+A(xi)− λμ−
A(xi)

−λμ+
A(xi)

≥ 2λ+ (1− λ)v−B(xi) + (1− λ)v+B(xi)− λμ−
B(xi)

−λμ+
B(xi)

= v−B(xi) + v+B(xi) + λ(π−
B(xi) + π+

B(xi)).

Hence by (3), we have E(A, λ) ≤ E(B, λ). Similarly, we can
prove that the above inequality holds for all xi ∈ X2, xi ∈
X3, xi ∈ X4, respectively. This completes the proof.

Remark 2.1. If A ∈ IFS(X), then μA = μ−
A(xi) =

μ+
A(xi), vA = v−A(xi) = v+A(xi). Hence the entropy measure

formula given by (3), reduces to the entropy formulas on
IFS(X), which is new. So we have the following corollary.

Corollary 2.1. The mapping E(A, λ), defined by

E(A, λ) =
1

n

n∑
i=1

μA(xi) ∧ vA(xi) + λπA(xi)

μA(xi) ∨ vA(xi) + λπA(xi)
,

where λ ∈ [0, 1] is a parameter, is an entropy on IFS(X).
The proposed entropy E(A, λ) also has the following im-

portant property.
Theorem 2.2. Let A,B ∈ IvIFS(X) and if they satisfy that

for any xi ∈ X , either A(xi) ⊆ B(xi) or B(xi) ⊆ A(xi), then
we can get

E(A, λ) + E(B, λ) = E(A ∩B, λ) + E(A ∪B, λ),
for any λ ∈ [0, 1].

Proof. Its proof is similar to that of Theorem 2 in [15].
Theorem 2.3. The proposed IvIFS entropy as equation (3)

is an increasing function of λ on [0,1].
Proof. The proof is obvious. Thus it is omitted.
To validate the Theorem 2.3, we introduce the following

numerical example.
Example 2.3. Assume that there are three IvIFS Ai(i =

1, 2, 3) on X = {x}. We adopt (3) to calculate the entropies
of Ai(i = 1, 2, 3) by choosing different values of λ. The
IvIFS Ai(i = 1, 2, 3) and their entropies based on different
values of λ are listed in Table 1(A1=([0.3,0.7],[0.1,0.3]),
A2=([0.4,0.4],[0.5,0.5]), A3=([0.2,0.5],[0.1,0.2])). The results

TABLE I
IVIFS ENTROPIES OF Ai(i = 1, 2, 3) WITH DIFFERENT λ.

A1 A2 A3

E(Ai, 0.1) 0.43 0.8039 0.50
E(Ai, 0.2) 0.46 0.8077 0.56
E(Ai, 0.3) 0.49 0.8113 0.60
E(Ai, 0.4) 0.52 0.8148 0.64
E(Ai, 0.5) 0.54 0.8181 0.67
E(Ai, 0.6) 0.56 0.8214 0.69
E(Ai, 0.7) 0.58 0.8246 0.71
E(Ai, 0.8) 0.59 0.8276 0.73
E(Ai, 0.9) 0.61 0.8305 0.75

of Example 2.3 confirm Theorem 2.3. In fact, a set of entropy
measures is defined in Equation (3), which depends on the
parameter λ ∈ [0, 1], and the choice of λ mainly depends on
the specific application.
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III. MULTIPLE ATTRIBUTE DECISION MAKING METHOD

In this section, we present a multiple attribute decision
making method using entropy-based attribute weights with
alternatives on attributes denoted by IvIFS, and the attribute
weights information for alternatives is unknown. Let A =
{A1, A2, · · · , Am} be a discrete set of alternatives, and G =
{G1, G2, · · · , Gn} be the set of attributes. The IvIFS decision
D of A on G is as below:

D =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ ,

where aij = ([μ−
ij , μ

+
ij ], [v

−
ij , v

+
ij ])(i = 1, 2, . . . ,m; j =

1, 2, . . . , n) denotes an IvIFS value. Now we give a method
of MADM based on the proposed entropy formula.

Step 1. In order to eliminate the impact of different
physical dimension to the decision making result, we need
to normalize each attribute value ãij in the matrix D into
a corresponding element in the matrix R = (r̃ij)m×n =
([μ̃−

ij , μ̃
+
ij ], [ṽ

−
ij , ṽ

+
ij ])m×n. Consider that there are generally

benefit attributes and cost attributes. The normalizing methods
are shown as follows[18]:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

μ̃−
ij = μ−

ij/
√∑n

i=1(2− v−ij − v+ij)
2

μ̃+
ij = μ+

ij/
√∑n

i=1(2− v−ij − v+ij)
2

ṽ−ij = 1− (1− v−ij)/
√∑n

i=1(μ
−
ij + μ+

ij)
2

ṽ+ij = 1− (1− v+ij)/
√∑n

i=1(μ
−
ij + μ+

ij)
2

for benefit attributes Gj , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

μ̃−
ij = (1− v−ij)

−1/
√∑n

i=1((1/μ
−
ij) + (1/μ+

ij))
2

μ̃+
ij = (1− v+ij)

−1/
√∑n

i=1((1/μ
−
ij) + (1/μ+

ij))
2

ṽ−ij = 1− (1/μ−
ij)/

√∑n
i=1((1− v−ij)−1 + (1− v+ij)

−1)2

ṽ+ij = 1− (1/μ+
ij)/

√∑n
i=1((1− v−ij)−1 + (1− v+ij)

−1)2

for cost attributes Gj , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Step 2. Set λ ∈ [0, 1]. Then based on the proposed entropy

formula (3), we obtain the entropy matrix E = (eij)m×n of
the normalized decision matrix R, where eij = E(r̃ij , λ) for
i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Then the information entropy
of attribute Gj is defined as follows[18]:

Ej =
1

m

m∑
i=1

eij ,

Thus the attribute weight wj(j = 1, 2, . . . , n) is calculated by

wj =
1− Ej∑n

j=1(1− Ej)
.

That is, if the entropy value for an attribute is smaller across
alternatives, it should provide decision-maker with the useful
information. Therefore, the attribute should be assigned a
bigger weight; otherwise, such an attribute will be judged
unimportant by decision-maker. In other words, such an at-
tribute should be assigned a very small weight[21].

Step 3. Based on the attribute weights in Step 2, we obtain
the weighted arithmetic average value expressed by αi =
([ai, bi], [ci, di]) for Ai(i = 1, 2, . . . ,m) using the interval-
valued intuitionistic fuzzy weighted averaging(IIFWA) opera-
tor[19]:

αi = IIFWAw(r̃i1, r̃i2, . . . , r̃in)

= w1r̃i1 ⊕ w2r̃i2 ⊕ · · ·wnr̃in
= ([1−

n∏
j=1

(1− μ̃−
ij)

wj , 1−
n∏
j=1

(1− μ̃+
ij)

wj ],

[

n∏
j=1

(ṽ−ij)
wj ,

n∏
j=1

(ṽ+ij)
wj ]).

Step 4. Calculate the scores S(α̃i)(i = 1, 2, . . . ,m) and
the accuracy H(α̃i)(i = 1, 2, . . . ,m) of the collective overall
intuitionistic fuzzy preference values α̃i(i = 1, 2, . . . ,m),
where S(α̃i) and H(α̃i) are defined as follows:

S(α̃i) =
1

2
(ai − ci + bi − di),

and
H(α̃i) =

1

2
(ai + ci + bi + di).

Step 5. Rank all the alternative Ai(i = 1, 2, . . . ,m) and
then to select the best one(s) in accordance with S(α̃i) and
H(α̃i)(i = 1, 2, . . . ,m).

Step 6. End.

IV. ILLUSTRATIVE EXAMPLE

In this section, we utilize a practical multiple attribute
decision making problem to illustrate the application of the
developed approach.

Suppose an organization plans to implement ERP sys-
tem(adapted from [20]). The first step is to form a project
team that consists of CIO and two senior representatives
from user departments. By collecting all possible information
about ERP vendors and systems, project team choose five
potential ERP systems Ai(i = 1, 2, . . . , 5) as candidates. The
company employs some external professional organizations (or
experts) to aid this decision-making. The project team selects
four attributes to evaluate the alternatives: (1)function and
technology G1; (2) strategic fitness G2; (3) vendor’s ability
G3; (4)vendor’s reputation G4. The five possible suppliers
Ai(i = 1, 2, . . . , 5) are to be evaluated using the interval-
valued intuitionistic fuzzy numbers under the above four at-
tributes. The decision matrix is listed in the following matrices
D = (aij)5×4 as follows:

D =

⎡
⎢⎢⎢⎢⎣

([0.5, 0.6], [0.2, 0.3]) ([0.4, 0.7], [0.2, 0.3])
([0.3, 0.5], [0.2, 0.4]) ([0.2, 0.4], [0.4, 0.5])
([0.5, 0.7], [0.1, 0.2]) ([0.1, 0.4], [0.5, 0.6])
([0.5, 0.6], [0.3, 0.4]) ([0.0, 0.1], [0.7, 0.8])
([0.4, 0.5], [0.4, 0.5]) ([0.5, 0.6], [0.1, 0.2])

([0.3, 0.6], [0.3, 0.4]) ([0.4, 0.5], [0.2, 0.4])
([0.4, 0.7], [0.2, 0.3]) ([0.0, 0.3], [0.5, 0.7])
([0.6, 0.8], [0.1, 0.2]) ([0.2, 0.4], [0.3, 0.6])
([0.2, 0.4], [0.3, 0.6]) ([0.5, 0.7], [0.1, 0.2])
([0.2, 0.5], [0.3, 0.4]) ([0.6, 0.8], [0.1, 0.2])

⎤
⎥⎥⎥⎥⎦
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Then, we utilize the developed approach in Section 3 to get
the most desirable alternative(s).

Step 1. Firstly, calculate the normalized decision matrix R,
and the result is shown as follows:

R =⎡
⎢⎢⎢⎢⎣

([0.16, 0.19], [0.65, 0.70]) ([0.15, 0.26], [0.57, 0.62])
([0.09, 0.16], [0.65, 0.74]) ([0.07, 0.15], [0.67, 0.73])
([0.16, 0.22], [0.61, 0.65]) ([0.04, 0.15], [0.73, 0.78])
([0.16, 0.19], [0.70, 0.74]) ([0.00, 0.04], [0.84, 0.89])
([0.13, 0.16], [0.74, 0.78]) ([0.18, 0.22], [0.51, 0.57])

([0.10, 0.19], [0.68, 0.73]) ([0.13, 0.16], [0.63, 0.72])
([0.13, 0.22], [0.64, 0.68]) ([0.00, 0.10], [0.77, 0.86])
([0.19, 0.26], [0.59, 0.64]) ([0.06, 0.13], [0.68, 0.81])
([0.06, 0.13], [0.68, 0.82]) ([0.16, 0.23], [0.58, 0.63])
([0.06, 0.16], [0.68, 0.73]) ([0.19, 0.26], [0.58, 0.63])

⎤
⎥⎥⎥⎥⎦

Step 2. Set λ = 0.5, then the entropy matrix e of the
normalized decision matrix R is

e =

⎡
⎢⎢⎢⎢⎣

0.3333 0.4388 0.2821 0.3072
0.2739 0.2579 0.3468 0.1331
0.3889 0.2048 0.4388 0.2121
0.2945 0.0840 0.2085 0.4184
0.2384 0.4925 0.2539 0.4493

⎤
⎥⎥⎥⎥⎦

and the entropy vector of attribute Gj(j = 1, 2, . . . , 4) is

E = [0.3058, 0.2956, 0.3060, 0.3040].

Thus the attribute weight vector is

w = (0.2489, 0.2526, 0.2489, 0.2496).

If we set λ = 1, then the entropy matrix e of the normalized
decision matrix R is

e =

⎡
⎢⎢⎢⎢⎣

0.3939 0.5094 0.3450 0.3801
0.3486 0.3371 0.4121 0.1947
0.4568 0.2707 0.4968 0.2818
0.3394 0.1378 0.2762 0.4907
0.2807 0.5750 0.3315 0.5097

⎤
⎥⎥⎥⎥⎦

and the entropy vector of attribute Gj(j = 1, 2, 3, 4) is

E = [0.3639, 0.3660, 0.3723, 0.3714].

Thus the attribute weight vector is

w = (0.2518, 0.2509, 0.2484, 0.2488).

Step 3. Using the interval-valued intuitionistic fuzzy
weighted averaging(IIFWA) operator, we obtain the weighted
arithmetic average value expressed by αi = ([ai, bi], [ci, di])
for Ai(i = 1, 2, . . . , 5) :

α1 = ([0.1354, 0.2011], [0.6310, 0.6908]),

α2 = ([0.0736, 0.1585], [0.6807, 0.7497]),

α3 = ([0.1145, 0.1915], [0.6504, 0.7163]),

α4 = ([0.0973, 0.1501], [0.6944, 0.7641]),

α5 = ([0.1417, 0.2013], [0.6207, 0.6720])

for λ = 0.5, and

α1 = ([0.1354, 0.2009], [0.6311, 0.6910]),

α2 = ([0.0737, 0.1585], [0.6806, 0.7497]),

α3 = ([0.1147, 0.1917], [0.6502, 0.7160]),

α4 = ([0.0976, 0.1503], [0.6943, 0.7639]),

α5 = ([0.1416, 0.2011], [0.6212, 0.6725])

for λ = 1.
Step 4. Calculate the scores S(αi)(i = 1, 2, . . . , 5) of the

collective overall preference values αi(i = 1, 2, 3, 4, 5):

S(α1) = −0.4926, S(α2) = −0.5992,

S(α3) = −0.5303, S(α4) = −0.6056, S(α5) = −0.4749

for λ = 0.5, and

S(α1) = −0.4929, S(α2) = −0.5990,

S(α3) = −0.5299, S(α4) = −0.6052, S(α5) = −0.4755

for λ = 1.
Step 5. Rank all the alternatives Ai(i = 1, 2, . . . , 5) in ac-

cordance with the scores S(αi)(i = 1, 2, . . . , 5) of the overall
preference values αi(i = 1, 2, . . . , 5), and we have the same
ranking order for λ = 0.5 and 1: A5 � A1 � A3 � A2 � A4,
and thus the most desirable alternative is A5.

V. CONCLUSION

In this paper, we have proposed a family of entropies on
interval-valued intuitionistic fuzzy sets, which depend on a
parameter and include some well-known entropies as special
cases. We have studied some desirable properties of the pro-
posed entropies, and give an approach based on the proposed
entropies. Finally, an illustrative example has been given to
show the efficiency of the developed method.

ACKNOWLEDGMENT

This work is supported by the Foundation of Zhejiang
Provincial Education Department (No.Y201225096), and the
Foundation of Shandong Provincial Education Department
(No.J08LI66)

REFERENCES

[1] Zadeh L.A., Fuzzy Sets. Information and Control, 1965, 8: 338-353.
[2] Atanassov K., Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986,

20: 87-96.
[3] Atanassov K., Gargov G., Interval-valued intuitionistic fuzzy sets. Fuzzy

Sets and Systems, 1989, 31(3): 343-349.
[4] DeLuca A., Termini S., A deTnition of nonprobabilistic entropy in the

setting of fuzzy sets theory. Information and Control, 1972, 20: 301-312.
[5] Kaufmann A., Introduction to the theory of fuzzy sets: Fundamental

Theoretical Elements, Vol.1, Academic Press, New York, 1975.
[6] Yager R.R., On themeasure of fuzziness and negation. Part 1: Membership

in the unit interval, Internat. J. General System, 1979, 5: 221-229.
[7] Szmidt E., Kacprzyk J., Entropy for intuitionistic fuzzy sets. Fuzzy Sets

and Systems, 2001, 118: 467-477.
[8] Bustince H., Burillo P., Vague sets are intuitionistic fuzzy sets. Fuzzy

Sets Systems, 1996, 79: 403-405.
[9] Hung W., A note on entropy of intuitionistic fuzzy sets. International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2003,
11(5): 627-633.

[10] Zhang H., Zhang W., Mei C., Entropy of interval-valued fuzzy sets based
on distance and its relationship with similarity measure. Knowledge-
Based Systems, 2009, 22(6): 449-454.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:4, 2013

592

[11] Vlachos I., Sergiadis G., Intuitionistic fuzzy information- Applications
to pattern recognition. Pattern Recognition Letters, 2007, 28(2): 197-206.

[12] Zeng, W., Yu F., Yu X., Chen H. and Wu S., Entropy of intuitionistic
fuzzy set based on similarity measure. International Journal of Innovative
Computing, Information and Control, 2009, 5(12): 4737-4744.

[13] Zhang Y.J., Ma P.J., Su X.H., Zhang C.P., Entropy on Interval-valued
Intuitionistic Fuzzy Sets and Its Application in Multi-attribute Decision
Making. 2011 Proceedings of the 14th International Conference on
Information Fusion (FUSION), 2011, 1-7.

[14] Ye J., Multicriteria fuzzy decision-making method using entropy
weights-based correlation coefficients of interval-valued intuitionistic
fuzzy sets. Applied Mathematical Modelling, 2010, 34(12): 3864-3870.

[15] Zhang Q.S., Jiang S.Y., Jia B.G. and Luo S.H., Some information mea-
sures for interval-valued intuitionistic fuzzy sets. Information Sciences,
2010, 180: 5130-5145.

[16] Wei C.P, Wang P., Zhang Y.Z., Entropy, similarity measure of interval-
valued intuitionistic fuzzy sets and their applications. Information Sci-
ences, 2011, 181: 4273-4286.

[17] Wei C.P., Gao Z.H., An intuitionistic fuzzy entropy measure based on
the trigonometric function. Control and Decision(Accepted).

[18] Qi X.W., Liang C.Y., Zhang E.Q., Ding Y., Approach to interval-
valued intuitionistic fuzzy multiple attributes group decision making
based on maximum entropy. Systems Engineering-Theory and Practice,
2011, 31(10): 1940-1948.

[19] Xu Z.S., Methods for aggregating interval-valued intuitionistic fuzzy in-
formation and their application to decision making. Control and Decision,
2007, 22(2): 215-219.

[20] Wei G.W., Zhao X.F., Lin R., Wang H.J., Generalized triangular
fuzzy correlated averaging operator and their application to multi-
ple attribute decision making. Applied Mathematical Modelling, 2011,
doi:10.1016/j.apm.2011.09.062.

[21] Ye J., Multiple Attribute Group Decision-Making Methods with Com-
pletely UnknownWeights in Intuitionistic Fuzzy Setting and Interval-
Valued Intuitionistic Fuzzy Setting. Group Decis. Negot., 2011, DOI
10.1007/s10726-011-9255-5.


